Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2016

01-07-2016

Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction

Authors: Jiaxing Wang, Songhe Lu, Qijun Zheng, Nan Hu, Wenjun Yu, Na Li, Min Liu, Beilei Gao, Guoyong Zhang, Yingmei Zhang, Haichang Wang

Published in: Cardiovascular Toxicology | Issue 3/2016

Login to get access

Abstract

Paraquat (1,1’-dim ethyl-4-4’-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca2+ handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca2+ defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage.
Literature
1.
go back to reference Cristovao, A. C., Choi, D. H., Baltazar, G., Beal, M. F., & Kim, Y. S. (2009). The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxidants & Redox Signaling, 11, 2105–2118.CrossRef Cristovao, A. C., Choi, D. H., Baltazar, G., Beal, M. F., & Kim, Y. S. (2009). The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxidants & Redox Signaling, 11, 2105–2118.CrossRef
2.
go back to reference Jones, B. C., Huang, X., Mailman, R. B., Lu, L., & Williams, R. W. (2014). The perplexing paradox of paraquat: The case for host-based susceptibility and postulated neurodegenerative effects. Journal of Biochemical and Molecular Toxicology, 28, 191–197.CrossRefPubMedPubMedCentral Jones, B. C., Huang, X., Mailman, R. B., Lu, L., & Williams, R. W. (2014). The perplexing paradox of paraquat: The case for host-based susceptibility and postulated neurodegenerative effects. Journal of Biochemical and Molecular Toxicology, 28, 191–197.CrossRefPubMedPubMedCentral
3.
go back to reference Blanco-Ayala, T., Anderica-Romero, A. C., & Pedraza-Chaverri, J. (2014). New insights into antioxidant strategies against paraquat toxicity. Free Radical Research, 48, 623–640.CrossRefPubMed Blanco-Ayala, T., Anderica-Romero, A. C., & Pedraza-Chaverri, J. (2014). New insights into antioxidant strategies against paraquat toxicity. Free Radical Research, 48, 623–640.CrossRefPubMed
4.
go back to reference Niso-Santano, M., Bravo-San Pedro, J. M., Gomez-Sanchez, R., Climent, V., Soler, G., Fuentes, J. M., & Gonzalez-Polo, R. A. (2011). ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicological Sciences, 119, 156–168.CrossRefPubMed Niso-Santano, M., Bravo-San Pedro, J. M., Gomez-Sanchez, R., Climent, V., Soler, G., Fuentes, J. M., & Gonzalez-Polo, R. A. (2011). ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicological Sciences, 119, 156–168.CrossRefPubMed
5.
go back to reference McCormack, A. L., Thiruchelvam, M., Manning-Bog, A. B., Thiffault, C., Langston, J. W., Cory-Slechta, D. A., & Di Monte, D. A. (2002). Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiology of Diseases, 10, 119–127.CrossRef McCormack, A. L., Thiruchelvam, M., Manning-Bog, A. B., Thiffault, C., Langston, J. W., Cory-Slechta, D. A., & Di Monte, D. A. (2002). Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiology of Diseases, 10, 119–127.CrossRef
6.
go back to reference Niso-Santano, M., Moran, J. M., Garcia-Rubio, L., Gomez-Martin, A., Gonzalez-Polo, R. A., Soler, G., & Fuentes, J. M. (2006). Low concentrations of paraquat induces early activation of extracellular signal-regulated kinase 1/2, protein kinase B, and c-Jun N-terminal kinase 1/2 pathways: Role of c-Jun N-terminal kinase in paraquat-induced cell death. Toxicological Sciences, 92, 507–515.CrossRefPubMed Niso-Santano, M., Moran, J. M., Garcia-Rubio, L., Gomez-Martin, A., Gonzalez-Polo, R. A., Soler, G., & Fuentes, J. M. (2006). Low concentrations of paraquat induces early activation of extracellular signal-regulated kinase 1/2, protein kinase B, and c-Jun N-terminal kinase 1/2 pathways: Role of c-Jun N-terminal kinase in paraquat-induced cell death. Toxicological Sciences, 92, 507–515.CrossRefPubMed
7.
go back to reference Peng, J., Mao, X. O., Stevenson, F. F., Hsu, M., & Andersen, J. K. (2004). The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. Journal of Biological Chemistry, 279, 32626–32632.CrossRefPubMed Peng, J., Mao, X. O., Stevenson, F. F., Hsu, M., & Andersen, J. K. (2004). The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. Journal of Biological Chemistry, 279, 32626–32632.CrossRefPubMed
8.
go back to reference Dinis-Oliveira, R. J., Duarte, J. A., Sanchez-Navarro, A., Remiao, F., Bastos, M. L., & Carvalho, F. (2008). Paraquat poisonings: Mechanisms of lung toxicity, clinical features, and treatment. Critical Reviews in Toxicology, 38, 13–71.CrossRefPubMed Dinis-Oliveira, R. J., Duarte, J. A., Sanchez-Navarro, A., Remiao, F., Bastos, M. L., & Carvalho, F. (2008). Paraquat poisonings: Mechanisms of lung toxicity, clinical features, and treatment. Critical Reviews in Toxicology, 38, 13–71.CrossRefPubMed
9.
go back to reference Cherukuri, H., Pramoda, K., Rohini, D., Thunga, G., Vijaynarayana, K., Sreedharan, N., et al. (2014). Demographics, clinical characteristics and management of herbicide poisoning in tertiary care hospital. Toxicology International, 21, 209–213.CrossRefPubMedPubMedCentral Cherukuri, H., Pramoda, K., Rohini, D., Thunga, G., Vijaynarayana, K., Sreedharan, N., et al. (2014). Demographics, clinical characteristics and management of herbicide poisoning in tertiary care hospital. Toxicology International, 21, 209–213.CrossRefPubMedPubMedCentral
10.
go back to reference Wang, Q., Yang, L., Hua, Y., Nair, S., Xu, X., & Ren, J. (2014). AMP-activated protein kinase deficiency rescues paraquat-induced cardiac contractile dysfunction through an autophagy-dependent mechanism. Toxicological Sciences, 142, 6–20.CrossRefPubMedPubMedCentral Wang, Q., Yang, L., Hua, Y., Nair, S., Xu, X., & Ren, J. (2014). AMP-activated protein kinase deficiency rescues paraquat-induced cardiac contractile dysfunction through an autophagy-dependent mechanism. Toxicological Sciences, 142, 6–20.CrossRefPubMedPubMedCentral
11.
go back to reference Fahim, M. A., Howarth, F. C., Nemmar, A., Qureshi, M. A., Shafiullah, M., Jayaprakash, P., & Hasan, M. Y. (2013). Vitamin E ameliorates the decremental effect of paraquat on cardiomyocyte contractility in rats. PLoS ONE, 8, e57651.CrossRefPubMedPubMedCentral Fahim, M. A., Howarth, F. C., Nemmar, A., Qureshi, M. A., Shafiullah, M., Jayaprakash, P., & Hasan, M. Y. (2013). Vitamin E ameliorates the decremental effect of paraquat on cardiomyocyte contractility in rats. PLoS ONE, 8, e57651.CrossRefPubMedPubMedCentral
12.
go back to reference Song, C., Kan, B., Yu, G., Jian, X., Wang, J., & Sun, J. (2014). Acute paraquat poisoning with sinus bradycardia: A case report. Experimental and Therapeutic Medicine, 8, 1459–1462.PubMedPubMedCentral Song, C., Kan, B., Yu, G., Jian, X., Wang, J., & Sun, J. (2014). Acute paraquat poisoning with sinus bradycardia: A case report. Experimental and Therapeutic Medicine, 8, 1459–1462.PubMedPubMedCentral
13.
go back to reference Dong, X. S., Xu, X. Y., Sun, Y. Q., Wei, L., Jiang, Z. H., & Liu, Z. (2013). Toll-like receptor 4 is involved in myocardial damage following paraquat poisoning in mice. Toxicology, 312, 115–122.CrossRefPubMed Dong, X. S., Xu, X. Y., Sun, Y. Q., Wei, L., Jiang, Z. H., & Liu, Z. (2013). Toll-like receptor 4 is involved in myocardial damage following paraquat poisoning in mice. Toxicology, 312, 115–122.CrossRefPubMed
14.
go back to reference Ge, W., Zhang, Y., Han, X., & Ren, J. (2010). Cardiac-specific overexpression of catalase attenuates paraquat-induced myocardial geometric and contractile alteration: Role of ER stress. Free Radical Biology and Medicine, 49, 2068–2077.CrossRefPubMedPubMedCentral Ge, W., Zhang, Y., Han, X., & Ren, J. (2010). Cardiac-specific overexpression of catalase attenuates paraquat-induced myocardial geometric and contractile alteration: Role of ER stress. Free Radical Biology and Medicine, 49, 2068–2077.CrossRefPubMedPubMedCentral
15.
go back to reference Gonzalez-Polo, R. A., Rodriguez-Martin, A., Moran, J. M., Niso, M., Soler, G., & Fuentes, J. M. (2004). Paraquat-induced apoptotic cell death in cerebellar granule cells. Brain Research, 1011, 170–176.CrossRefPubMed Gonzalez-Polo, R. A., Rodriguez-Martin, A., Moran, J. M., Niso, M., Soler, G., & Fuentes, J. M. (2004). Paraquat-induced apoptotic cell death in cerebellar granule cells. Brain Research, 1011, 170–176.CrossRefPubMed
16.
go back to reference McCormack, A. L., Atienza, J. G., Johnston, L. C., Andersen, J. K., Vu, S., & Di Monte, D. A. (2005). Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. Journal of Neurochemistry, 93, 1030–1037.CrossRefPubMed McCormack, A. L., Atienza, J. G., Johnston, L. C., Andersen, J. K., Vu, S., & Di Monte, D. A. (2005). Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. Journal of Neurochemistry, 93, 1030–1037.CrossRefPubMed
17.
go back to reference Alexi, T., Borlongan, C. V., Faull, R. L., Williams, C. E., Clark, R. G., Gluckman, P. D., & Hughes, P. E. (2000). Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Progress in Neurobiology, 60, 409–470.CrossRefPubMed Alexi, T., Borlongan, C. V., Faull, R. L., Williams, C. E., Clark, R. G., Gluckman, P. D., & Hughes, P. E. (2000). Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Progress in Neurobiology, 60, 409–470.CrossRefPubMed
18.
go back to reference Tawara, T., Fukushima, T., Hojo, N., Isobe, A., Shiwaku, K., Setogawa, T., & Yamane, Y. (1996). Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Archives of Toxicology, 70, 585–589.CrossRefPubMed Tawara, T., Fukushima, T., Hojo, N., Isobe, A., Shiwaku, K., Setogawa, T., & Yamane, Y. (1996). Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Archives of Toxicology, 70, 585–589.CrossRefPubMed
19.
go back to reference Niso-Santano, M., Gonzalez-Polo, R. A., Bravo-San Pedro, J. M., Gomez-Sanchez, R., Lastres-Becker, I., Ortiz-Ortiz, M. A., et al. (2010). Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radical Biology and Medicine, 48, 1370–1381.CrossRefPubMed Niso-Santano, M., Gonzalez-Polo, R. A., Bravo-San Pedro, J. M., Gomez-Sanchez, R., Lastres-Becker, I., Ortiz-Ortiz, M. A., et al. (2010). Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radical Biology and Medicine, 48, 1370–1381.CrossRefPubMed
20.
go back to reference Lee, J. C., Park, C. Y., Choi, S. W., Kim, J. C., Lim, K. M., Kim, K., et al. (2008). Comparison of a pulsatile blood pump and a peristaltic roller pump during hemoperfusion treatment in a canine model of paraquat poisoning. Artificial Organs, 32, 541–546.CrossRefPubMed Lee, J. C., Park, C. Y., Choi, S. W., Kim, J. C., Lim, K. M., Kim, K., et al. (2008). Comparison of a pulsatile blood pump and a peristaltic roller pump during hemoperfusion treatment in a canine model of paraquat poisoning. Artificial Organs, 32, 541–546.CrossRefPubMed
21.
go back to reference Wang, W. H., Zhang, H., Yu, Y. L., Jiang, J. H., & Xue, C. (2005). Correlation of plasma endothelin and multiple organ dysfunction syndrome caused by acute paraquat poisoning. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 17, 293–295.PubMed Wang, W. H., Zhang, H., Yu, Y. L., Jiang, J. H., & Xue, C. (2005). Correlation of plasma endothelin and multiple organ dysfunction syndrome caused by acute paraquat poisoning. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 17, 293–295.PubMed
22.
go back to reference Zhang, Z., Jian, X., Zhang, W., Wang, J., & Zhou, Q. (2013). Using Bosentan to treat paraquat poisoning-induced acute lung injury in rats. PLoS ONE, 8, e75943.CrossRefPubMedPubMedCentral Zhang, Z., Jian, X., Zhang, W., Wang, J., & Zhou, Q. (2013). Using Bosentan to treat paraquat poisoning-induced acute lung injury in rats. PLoS ONE, 8, e75943.CrossRefPubMedPubMedCentral
23.
go back to reference Finck, B. N., & Kelly, D. P. (2006). PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. The Journal of Clinical Investigation, 116, 615–622.CrossRefPubMedPubMedCentral Finck, B. N., & Kelly, D. P. (2006). PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. The Journal of Clinical Investigation, 116, 615–622.CrossRefPubMedPubMedCentral
24.
go back to reference Schilling, J., & Kelly, D. P. (2011). The PGC-1 cascade as a therapeutic target for heart failure. Journal of Molecular and Cellular Cardiology, 51, 578–583.CrossRefPubMed Schilling, J., & Kelly, D. P. (2011). The PGC-1 cascade as a therapeutic target for heart failure. Journal of Molecular and Cellular Cardiology, 51, 578–583.CrossRefPubMed
25.
go back to reference Rey, B., Roussel, D., Romestaing, C., Belouze, M., Rouanet, J. L., Desplanches, D., et al. (2010). Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria. BMC physiology, 10, 5.CrossRefPubMedPubMedCentral Rey, B., Roussel, D., Romestaing, C., Belouze, M., Rouanet, J. L., Desplanches, D., et al. (2010). Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria. BMC physiology, 10, 5.CrossRefPubMedPubMedCentral
26.
go back to reference Latchman, D. S. (2001). Heat shock proteins and cardiac protection. Cardiovascular Research, 51, 637–646.CrossRefPubMed Latchman, D. S. (2001). Heat shock proteins and cardiac protection. Cardiovascular Research, 51, 637–646.CrossRefPubMed
27.
go back to reference Mymrikov, E. V., & Haslbeck, M. (2015). Medical implications of understanding the functions of human small heat shock proteins. Expert Review of Proteomics, 12, 295–308.CrossRefPubMed Mymrikov, E. V., & Haslbeck, M. (2015). Medical implications of understanding the functions of human small heat shock proteins. Expert Review of Proteomics, 12, 295–308.CrossRefPubMed
28.
go back to reference Kedzierski, R. M., Grayburn, P. A., Kisanuki, Y. Y., Williams, C. S., Hammer, R. E., Richardson, J. A., et al. (2003). Cardiomyocyte-specific endothelin A receptor knockout mice have normal cardiac function and an unaltered hypertrophic response to angiotensin II and isoproterenol. Molecular and Cellular Biology, 23, 8226–8232.CrossRefPubMedPubMedCentral Kedzierski, R. M., Grayburn, P. A., Kisanuki, Y. Y., Williams, C. S., Hammer, R. E., Richardson, J. A., et al. (2003). Cardiomyocyte-specific endothelin A receptor knockout mice have normal cardiac function and an unaltered hypertrophic response to angiotensin II and isoproterenol. Molecular and Cellular Biology, 23, 8226–8232.CrossRefPubMedPubMedCentral
29.
go back to reference Day, B. J., & Crapo, J. D. (1996). A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced lung injury in vivo. Toxicology and Applied Pharmacology, 140, 94–100.CrossRefPubMed Day, B. J., & Crapo, J. D. (1996). A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced lung injury in vivo. Toxicology and Applied Pharmacology, 140, 94–100.CrossRefPubMed
30.
go back to reference Liang, L., Shou, X. L., Zhao, H. K., Ren, G. Q., Wang, J. B., Wang, X. H., et al. (2015). Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKbeta-AMPK-dependent regulation of autophagy. Biochimica et Biophysica Acta, 1852, 343–352.CrossRefPubMed Liang, L., Shou, X. L., Zhao, H. K., Ren, G. Q., Wang, J. B., Wang, X. H., et al. (2015). Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKbeta-AMPK-dependent regulation of autophagy. Biochimica et Biophysica Acta, 1852, 343–352.CrossRefPubMed
31.
go back to reference Hu, N., Dong, M., & Ren, J. (2014). Hydrogen sulfide alleviates cardiac contractile dysfunction in an Akt2-knockout murine model of insulin resistance: role of mitochondrial injury and apoptosis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 306, R761–R771.PubMedPubMedCentral Hu, N., Dong, M., & Ren, J. (2014). Hydrogen sulfide alleviates cardiac contractile dysfunction in an Akt2-knockout murine model of insulin resistance: role of mitochondrial injury and apoptosis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 306, R761–R771.PubMedPubMedCentral
32.
go back to reference Zhang, Y., Xu, X., Ceylan-Isik, A. F., Dong, M., Pei, Z., Li, Y., & Ren, J. (2014). Ablation of Akt2 protects against lipopolysaccharide-induced cardiac dysfunction: role of Akt ubiquitination E3 ligase TRAF6. Journal of Molecular and Cellular Cardiology, 74, 76–87.CrossRefPubMedPubMedCentral Zhang, Y., Xu, X., Ceylan-Isik, A. F., Dong, M., Pei, Z., Li, Y., & Ren, J. (2014). Ablation of Akt2 protects against lipopolysaccharide-induced cardiac dysfunction: role of Akt ubiquitination E3 ligase TRAF6. Journal of Molecular and Cellular Cardiology, 74, 76–87.CrossRefPubMedPubMedCentral
33.
go back to reference Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefPubMed Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefPubMed
34.
go back to reference Garcia-Garcia, A., Anandhan, A., Burns, M., Chen, H., Zhou, Y., & Franco, R. (2013). Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicological Sciences, 136, 166–182.CrossRefPubMedPubMedCentral Garcia-Garcia, A., Anandhan, A., Burns, M., Chen, H., Zhou, Y., & Franco, R. (2013). Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicological Sciences, 136, 166–182.CrossRefPubMedPubMedCentral
35.
go back to reference Gonzalez-Polo, R. A., Niso-Santano, M., Ortiz-Ortiz, M. A., Gomez-Martin, A., Moran, J. M., Garcia-Rubio, L., et al. (2007). Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicological Sciences, 97, 448–458.CrossRefPubMed Gonzalez-Polo, R. A., Niso-Santano, M., Ortiz-Ortiz, M. A., Gomez-Martin, A., Moran, J. M., Garcia-Rubio, L., et al. (2007). Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicological Sciences, 97, 448–458.CrossRefPubMed
36.
go back to reference Clark, D. G., McElligott, T. F., & Hurst, E. W. (1966). The toxicity of paraquat. British Journal of Industrial Medicine, 23, 126–132.PubMedPubMedCentral Clark, D. G., McElligott, T. F., & Hurst, E. W. (1966). The toxicity of paraquat. British Journal of Industrial Medicine, 23, 126–132.PubMedPubMedCentral
37.
go back to reference Bus, J. S., Aust, S. D., & Gibson, J. E. (1976). Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. Environmental Health Perspectives, 16, 139–146.CrossRefPubMedPubMedCentral Bus, J. S., Aust, S. D., & Gibson, J. E. (1976). Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. Environmental Health Perspectives, 16, 139–146.CrossRefPubMedPubMedCentral
38.
go back to reference Giri, S. N., Hollinger, M. A., & Schiedt, M. J. (1981). The effects of paraquat and superoxide dismutase on pulmonary vascular permeability and edema in mice. Archives of Environmental Health, 36, 149–154.CrossRefPubMed Giri, S. N., Hollinger, M. A., & Schiedt, M. J. (1981). The effects of paraquat and superoxide dismutase on pulmonary vascular permeability and edema in mice. Archives of Environmental Health, 36, 149–154.CrossRefPubMed
39.
go back to reference Li, Q., Yang, X., Sreejayan, N., & Ren, J. (2007). Insulin-like growth factor I deficiency prolongs survival and antagonizes paraquat-induced cardiomyocyte dysfunction: Role of oxidative stress. Rejuvenation Res, 10, 501–512.CrossRefPubMed Li, Q., Yang, X., Sreejayan, N., & Ren, J. (2007). Insulin-like growth factor I deficiency prolongs survival and antagonizes paraquat-induced cardiomyocyte dysfunction: Role of oxidative stress. Rejuvenation Res, 10, 501–512.CrossRefPubMed
40.
go back to reference Ceylan-Isik, A. F., Dong, M., Zhang, Y., Dong, F., Turdi, S., Nair, S., et al. (2013). Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy. Basic Research in Cardiology, 108, 335.CrossRefPubMedPubMedCentral Ceylan-Isik, A. F., Dong, M., Zhang, Y., Dong, F., Turdi, S., Nair, S., et al. (2013). Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy. Basic Research in Cardiology, 108, 335.CrossRefPubMedPubMedCentral
41.
go back to reference Zhang, Y., Li, L., Hua, Y., Nunn, J. M., Dong, F., Yanagisawa, M., & Ren, J. (2012). Cardiac-specific knockout of ET(A) receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction. Journal of Molecular Cell Biology, 4, 97–107.CrossRefPubMedPubMedCentral Zhang, Y., Li, L., Hua, Y., Nunn, J. M., Dong, F., Yanagisawa, M., & Ren, J. (2012). Cardiac-specific knockout of ET(A) receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction. Journal of Molecular Cell Biology, 4, 97–107.CrossRefPubMedPubMedCentral
42.
go back to reference Ren, J., Pulakat, L., Whaley-Connell, A., & Sowers, J. R. (2010). Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. Journal of Molecular Medicine (Berl), 88, 993–1001.CrossRef Ren, J., Pulakat, L., Whaley-Connell, A., & Sowers, J. R. (2010). Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. Journal of Molecular Medicine (Berl), 88, 993–1001.CrossRef
43.
go back to reference Zhang, Y., Xia, Z., La Cour, K. H., & Ren, J. (2011). Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeation pore opening. Antioxidants & Redox Signaling, 15, 2407–2424.CrossRef Zhang, Y., Xia, Z., La Cour, K. H., & Ren, J. (2011). Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeation pore opening. Antioxidants & Redox Signaling, 15, 2407–2424.CrossRef
44.
go back to reference Kim, H. R., Park, B. K., Oh, Y. M., Lee, Y. S., Lee, D. S., Kim, H. K., et al. (2006). Green tea extract inhibits paraquat-induced pulmonary fibrosis by suppression of oxidative stress and endothelin-l expression. Lung, 184, 287–295.CrossRefPubMed Kim, H. R., Park, B. K., Oh, Y. M., Lee, Y. S., Lee, D. S., Kim, H. K., et al. (2006). Green tea extract inhibits paraquat-induced pulmonary fibrosis by suppression of oxidative stress and endothelin-l expression. Lung, 184, 287–295.CrossRefPubMed
Metadata
Title
Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction
Authors
Jiaxing Wang
Songhe Lu
Qijun Zheng
Nan Hu
Wenjun Yu
Na Li
Min Liu
Beilei Gao
Guoyong Zhang
Yingmei Zhang
Haichang Wang
Publication date
01-07-2016
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2016
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-015-9331-1

Other articles of this Issue 3/2016

Cardiovascular Toxicology 3/2016 Go to the issue