Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2015

01-07-2015

Cardiomyocytes are Protected from Antiretroviral Nucleoside Analog-Induced Mitochondrial Toxicity by Overexpression of PGC-1α

Authors: Yongmin Liu, Eunwoo Shim, Yasmin Crespo-Mejias, PhuongGiang Nguyen, Alexander Gibbons, Daniel Liu, Eric Shide, Miriam C. Poirier

Published in: Cardiovascular Toxicology | Issue 3/2015

Login to get access

Abstract

The nucleoside reverse transcriptase inhibitors (NRTIs), used for treatment of the human immunodeficiency virus-1, compromise mitochondria in cardiomyocytes and other host cells, limiting the clinical use of these drugs. To explore underlying mechanisms, we overexpressed PGC-1α, a master regulator of mitochondrial biogenesis, twofold in H9c2 rat cardiomyocyte cultures, hypothesizing that this might protect the mitochondria from damage induced by the NRTI combination zidovudine (AZT) and didanosine (ddI). The experimental groups, evaluated during 16 passages (P) of drug exposure, included: PGC-1α-overexpressing cells with no exposure, or exposure to 50 µM AZT plus 50 µM ddI; and control cells with no exposure or exposure to the same doses of AZT and ddI. The AZT/ddI combination caused a growth inhibition of 15–20 % in control cells, but none in PGC-1α cells. Apoptosis was highest in AZT/ddI-exposed control cells, and PGC-1α overexpression protected cells from AZT/ddI-induced apoptosis. At P3, P6, P8, and P12, uncoupled mitochondrial oxygen consumption rate, determined by Seahorse 24 XF Analyzer, as higher in AZT/ddI-exposed PGC-1α cells, compared to AZT/ddI-exposed control cells (p < 0.05 at all P). Complex I activity was higher in AZT/ddI-exposed PGC-1α overexpressing cells than that in AZT/ddI-exposed control cells (p < 0.05), and reactive oxygen species levels were lower in PGC-1α overexpressing cells than that in control cells (p < 0.05) when both were exposed to AZT/ddI. Taken together, these experiments show proof of concept that overexpression of PGC-1α protects cardiomyocytes from NRTI-induced toxicity, and suggest that a pharmaceutical agent with similar activity may protect against NRTI-induced mitochondrial toxicity.
Literature
1.
go back to reference Wallace, K. B. (2008). Mitochondria off target of drug therapy. Trends in Pharmacological Sciences, 29, 361–366.PubMedCrossRef Wallace, K. B. (2008). Mitochondria off target of drug therapy. Trends in Pharmacological Sciences, 29, 361–366.PubMedCrossRef
2.
go back to reference Blanche, S., Tardieu, M., Benhammou, V., Warszawski, J., & Rustin, P. (2006). Mitochondrial dysfunction following perinatal exposure to nucleoside analogues. AIDS, 20, 1685–1690.PubMedCrossRef Blanche, S., Tardieu, M., Benhammou, V., Warszawski, J., & Rustin, P. (2006). Mitochondrial dysfunction following perinatal exposure to nucleoside analogues. AIDS, 20, 1685–1690.PubMedCrossRef
3.
go back to reference Blanche, S., Tardieu, M., Rustin, P., Slama, A., Barret, B., Firtion, G., et al. (1999). Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet, 354, 1084–1089.PubMedCrossRef Blanche, S., Tardieu, M., Rustin, P., Slama, A., Barret, B., Firtion, G., et al. (1999). Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet, 354, 1084–1089.PubMedCrossRef
4.
go back to reference Koczor, C. A., & Lewis, W. (2010). Nucleoside reverse transcriptase inhibitor toxicity and mitochondrial DNA. Expert opinion on drug metabolism & toxicology, 6, 1493–1504.CrossRef Koczor, C. A., & Lewis, W. (2010). Nucleoside reverse transcriptase inhibitor toxicity and mitochondrial DNA. Expert opinion on drug metabolism & toxicology, 6, 1493–1504.CrossRef
5.
go back to reference Lewis, W. (2005). Nucleoside reverse transcriptase inhibitors, mitochondrial DNA and AIDS therapy. Antiviral Therapy, 10(Suppl 2), M13–M27.PubMed Lewis, W. (2005). Nucleoside reverse transcriptase inhibitors, mitochondrial DNA and AIDS therapy. Antiviral Therapy, 10(Suppl 2), M13–M27.PubMed
6.
go back to reference Kohler, J. J., & Lewis, W. (2007). A brief overview of mechanisms of mitochondrial toxicity from NRTIs. Environmental and Molecular Mutagenesis, 48, 166–172.PubMedCrossRef Kohler, J. J., & Lewis, W. (2007). A brief overview of mechanisms of mitochondrial toxicity from NRTIs. Environmental and Molecular Mutagenesis, 48, 166–172.PubMedCrossRef
7.
go back to reference Poirier, M. C., Olivero, O. A., Walker, D. M., & Walker, V. E. (2004). Perinatal genotoxicity and carcinogenicity of anti-retroviral nucleoside analog drugs. Toxicology and Applied Pharmacology, 199, 151–161.PubMedCrossRef Poirier, M. C., Olivero, O. A., Walker, D. M., & Walker, V. E. (2004). Perinatal genotoxicity and carcinogenicity of anti-retroviral nucleoside analog drugs. Toxicology and Applied Pharmacology, 199, 151–161.PubMedCrossRef
8.
go back to reference Anderson, P. L., Kakuda, T. N., & Lichtenstein, K. A. (2004). The cellular pharmacology of nucleoside- and nucleotide-analogue reverse-transcriptase inhibitors and its relationship to clinical toxicities. Clinical Infectious Diseases, 38, 743–753.PubMedCrossRef Anderson, P. L., Kakuda, T. N., & Lichtenstein, K. A. (2004). The cellular pharmacology of nucleoside- and nucleotide-analogue reverse-transcriptase inhibitors and its relationship to clinical toxicities. Clinical Infectious Diseases, 38, 743–753.PubMedCrossRef
9.
go back to reference Lewis, W., Copeland, W. C., & Day, B. J. (2001). Mitochondrial dna depletion, oxidative stress, and mutation: mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. Laboratory Investigation, 81, 777–790.PubMedCrossRef Lewis, W., Copeland, W. C., & Day, B. J. (2001). Mitochondrial dna depletion, oxidative stress, and mutation: mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. Laboratory Investigation, 81, 777–790.PubMedCrossRef
10.
go back to reference Lewis, W., Day, B. J., & Copeland, W. C. (2003). Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nature Reviews Drug Discovery, 2, 812–822.PubMedCrossRef Lewis, W., Day, B. J., & Copeland, W. C. (2003). Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nature Reviews Drug Discovery, 2, 812–822.PubMedCrossRef
11.
go back to reference Leone, T. C., & Kelly, D. P. (2011). Transcriptional control of cardiac fuel metabolism and mitochondrial function. Cold Spring Harbor Symposia on Quantitative Biology, 76, 175–182.PubMedCentralPubMedCrossRef Leone, T. C., & Kelly, D. P. (2011). Transcriptional control of cardiac fuel metabolism and mitochondrial function. Cold Spring Harbor Symposia on Quantitative Biology, 76, 175–182.PubMedCentralPubMedCrossRef
12.
go back to reference Scarpulla, R. C. (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews, 88, 611–638.PubMedCrossRef Scarpulla, R. C. (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews, 88, 611–638.PubMedCrossRef
13.
go back to reference Aggeli, I. K., Beis, I., & Gaitanaki, C. (2008). Oxidative stress and calpain inhibition induce alpha B-crystallin phosphorylation via p38-MAPK and calcium signalling pathways in H9c2 cells. Cellular Signalling, 20, 1292–1302.PubMedCrossRef Aggeli, I. K., Beis, I., & Gaitanaki, C. (2008). Oxidative stress and calpain inhibition induce alpha B-crystallin phosphorylation via p38-MAPK and calcium signalling pathways in H9c2 cells. Cellular Signalling, 20, 1292–1302.PubMedCrossRef
14.
go back to reference Liu, Y., Borchert, G. L., Surazynski, A., & Phang, J. M. (2008). Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene, 27, 6729–6737.PubMedCrossRef Liu, Y., Borchert, G. L., Surazynski, A., & Phang, J. M. (2008). Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene, 27, 6729–6737.PubMedCrossRef
15.
go back to reference Liu, Y., Nguyen, P., Baris, T. Z., & Poirier, M. C. (2012). Molecular analysis of mitochondrial compromise in rodent cardiomyocytes exposed long term to nucleoside reverse transcriptase inhibitors (NRTIs). Cardiovascular Toxicology, 12, 123–134.PubMedCrossRef Liu, Y., Nguyen, P., Baris, T. Z., & Poirier, M. C. (2012). Molecular analysis of mitochondrial compromise in rodent cardiomyocytes exposed long term to nucleoside reverse transcriptase inhibitors (NRTIs). Cardiovascular Toxicology, 12, 123–134.PubMedCrossRef
16.
go back to reference Lu, Z., Xu, X., Hu, X., Fassett, J., Zhu, G., Tao, Y., et al. (2010). PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxidants & Redox Signaling, 13, 1011–1022.CrossRef Lu, Z., Xu, X., Hu, X., Fassett, J., Zhu, G., Tao, Y., et al. (2010). PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxidants & Redox Signaling, 13, 1011–1022.CrossRef
17.
go back to reference Schilling, J., & Kelly, D. P. (2011). The PGC-1 cascade as a therapeutic target for heart failure. Journal of Molecular and Cellular Cardiology, 51, 578–583.PubMedCentralPubMedCrossRef Schilling, J., & Kelly, D. P. (2011). The PGC-1 cascade as a therapeutic target for heart failure. Journal of Molecular and Cellular Cardiology, 51, 578–583.PubMedCentralPubMedCrossRef
18.
go back to reference St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jager, S., et al. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127, 397–408.PubMedCrossRef St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jager, S., et al. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127, 397–408.PubMedCrossRef
19.
go back to reference Rasbach, K. A., & Schnellmann, R. G. (2007). Signaling of mitochondrial biogenesis following oxidant injury. Journal of Biological Chemistry, 282, 2355–2362.PubMedCrossRef Rasbach, K. A., & Schnellmann, R. G. (2007). Signaling of mitochondrial biogenesis following oxidant injury. Journal of Biological Chemistry, 282, 2355–2362.PubMedCrossRef
21.
go back to reference Schon, E. A., DiMauro, S., Hirano, M., & Gilkerson, R. W. (2010). Therapeutic prospects for mitochondrial disease. Trends in Molecular Medicine, 16, 268–276.PubMedCentralPubMedCrossRef Schon, E. A., DiMauro, S., Hirano, M., & Gilkerson, R. W. (2010). Therapeutic prospects for mitochondrial disease. Trends in Molecular Medicine, 16, 268–276.PubMedCentralPubMedCrossRef
22.
go back to reference Lai, L., Leone, T. C., Zechner, C., Schaeffer, P. J., Kelly, S. M., Flanagan, D. P., et al. (2008). Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes & Development, 22, 1948–1961.CrossRef Lai, L., Leone, T. C., Zechner, C., Schaeffer, P. J., Kelly, S. M., Flanagan, D. P., et al. (2008). Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes & Development, 22, 1948–1961.CrossRef
23.
go back to reference Lehman, J. J., Barger, P. M., Kovacs, A., Saffitz, J. E., Medeiros, D. M., & Kelly, D. P. (2000). Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. The Journal of Clinical Investigation, 106, 847–856.PubMedCentralPubMedCrossRef Lehman, J. J., Barger, P. M., Kovacs, A., Saffitz, J. E., Medeiros, D. M., & Kelly, D. P. (2000). Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. The Journal of Clinical Investigation, 106, 847–856.PubMedCentralPubMedCrossRef
24.
go back to reference Lehman, J. J., & Kelly, D. P. (2002). Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Failure Reviews, 7, 175–185.PubMedCrossRef Lehman, J. J., & Kelly, D. P. (2002). Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Failure Reviews, 7, 175–185.PubMedCrossRef
25.
go back to reference Sihag, S., Cresci, S., Li, A. Y., Sucharov, C. C., & Lehman, J. J. (2009). PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. Journal of Molecular and Cellular Cardiology, 46, 201–212.PubMedCentralPubMedCrossRef Sihag, S., Cresci, S., Li, A. Y., Sucharov, C. C., & Lehman, J. J. (2009). PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. Journal of Molecular and Cellular Cardiology, 46, 201–212.PubMedCentralPubMedCrossRef
26.
go back to reference Lee, H. C., & Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. International Journal of Biochemistry & Cell Biology, 37, 822–834.CrossRef Lee, H. C., & Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. International Journal of Biochemistry & Cell Biology, 37, 822–834.CrossRef
27.
go back to reference Dam, A. D., Mitchell, A. S., & Quadrilatero, J. (2013). Induction of mitochondrial biogenesis protects against caspase-dependent and caspase-independent apoptosis in L6 myoblasts. Biochimica et Biophysica Acta, 1833, 3426–3435.PubMedCrossRef Dam, A. D., Mitchell, A. S., & Quadrilatero, J. (2013). Induction of mitochondrial biogenesis protects against caspase-dependent and caspase-independent apoptosis in L6 myoblasts. Biochimica et Biophysica Acta, 1833, 3426–3435.PubMedCrossRef
28.
go back to reference Patten, I. S., & Arany, Z. (2012). PGC-1 coactivators in the cardiovascular system. Trends in Endocrinology and Metabolism: TEM, 23, 90–97.PubMedCrossRef Patten, I. S., & Arany, Z. (2012). PGC-1 coactivators in the cardiovascular system. Trends in Endocrinology and Metabolism: TEM, 23, 90–97.PubMedCrossRef
29.
go back to reference Liu, Y., Shim, E., Nguyen, P., Gibbons, A. T., Mitchell, J. B., & Poirier, M. C. (2014). Tempol protects cardiomyocytes from nucleoside reverse transcriptase inhibitor-induced mitochondrial toxicity. Toxicological Sciences, 139, 133–141.PubMedCentralPubMedCrossRef Liu, Y., Shim, E., Nguyen, P., Gibbons, A. T., Mitchell, J. B., & Poirier, M. C. (2014). Tempol protects cardiomyocytes from nucleoside reverse transcriptase inhibitor-induced mitochondrial toxicity. Toxicological Sciences, 139, 133–141.PubMedCentralPubMedCrossRef
30.
go back to reference Bastin, J., Aubey, F., Rotig, A., Munnich, A., & Djouadi, F. (2008). Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cell lacking its components. Journal of Clinical Endocrinology and Metabolism, 93, 1433–1441.PubMedCrossRef Bastin, J., Aubey, F., Rotig, A., Munnich, A., & Djouadi, F. (2008). Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cell lacking its components. Journal of Clinical Endocrinology and Metabolism, 93, 1433–1441.PubMedCrossRef
31.
go back to reference Hondares, E., Mora, O., Yubero, P., de la Concepcion, M. R., Iglesias, R., Giralt, M., et al. (2006). Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology, 147, 2829–2838.PubMedCrossRef Hondares, E., Mora, O., Yubero, P., de la Concepcion, M. R., Iglesias, R., Giralt, M., et al. (2006). Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology, 147, 2829–2838.PubMedCrossRef
32.
go back to reference Johri, A., Calingasan, N. Y., Hennessey, T. M., Sharma, A., Yang, L., Wille, E., et al. (2012). Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Human Molecular Genetics, 21, 1124–1137.PubMedCentralPubMedCrossRef Johri, A., Calingasan, N. Y., Hennessey, T. M., Sharma, A., Yang, L., Wille, E., et al. (2012). Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Human Molecular Genetics, 21, 1124–1137.PubMedCentralPubMedCrossRef
Metadata
Title
Cardiomyocytes are Protected from Antiretroviral Nucleoside Analog-Induced Mitochondrial Toxicity by Overexpression of PGC-1α
Authors
Yongmin Liu
Eunwoo Shim
Yasmin Crespo-Mejias
PhuongGiang Nguyen
Alexander Gibbons
Daniel Liu
Eric Shide
Miriam C. Poirier
Publication date
01-07-2015
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2015
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9288-5

Other articles of this Issue 3/2015

Cardiovascular Toxicology 3/2015 Go to the issue