Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2015

01-07-2015

SIRT4 Suppresses Inflammatory Responses in Human Umbilical Vein Endothelial Cells

Authors: Yu Tao, Chunhua Huang, Yingmei Huang, Lang Hong, Hong Wang, Zijie Zhou, Yun Qiu

Published in: Cardiovascular Toxicology | Issue 3/2015

Login to get access

Abstract

The most common feature of endothelial dysfunction is endothelial inflammation. A bunch of factors are associated with endothelial dysfunction. These include pro-inflammatory cytokines, cell adhesion molecules, and matrix degrading enzymes. SIRT4, a member of the sirtuin family, is a mitochondrial ADP-ribosyltransferase. The roles of SIRT4 in regulating inflammation in endothelial cells are unknown. In this study, we found that lipopolysaccharide treatment decreased the expression of SIRT4 in human umbilical vein endothelial cells. Silence of SIRT4 exacerbated the expression of pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), COX-prostaglandin system (COX-2), ECM remodeling enzymes MMP-9, and the adhesion molecule ICAM-1. The upregulation of these genes are involved in inflammation, vascular remodeling, and angiogenesis. In contrast, overexpression of SIRT4 attenuated the induction of these factors. Mechanistically, SIRT4 was found to interfere with the NF-κB signaling pathway by preventing NF-κB nuclear translocation and thereby has an anti-inflammatory function. Loss of SIRT4 increased the nuclear translocation as well as the transcriptional activity of NF-κB. However, overexpression of SIRT4 mitigated the nuclear translocation and the transcriptional activity of NF-κB. Our data suggested that SIRT4 might be a potential pharmacological target for inflammatory vascular diseases.
Literature
2.
go back to reference Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109, III27–III32.PubMedCrossRef Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109, III27–III32.PubMedCrossRef
3.
go back to reference Hoge, M., & Amar, S. (2006). Role of interleukin-1 in bacterial atherogenesis. Drugs of Today (Barcelona), 42, 683–688.CrossRef Hoge, M., & Amar, S. (2006). Role of interleukin-1 in bacterial atherogenesis. Drugs of Today (Barcelona), 42, 683–688.CrossRef
4.
go back to reference Newby, A. C. (2012). Matrix metalloproteinase inhibition therapy for vascular diseases. Vascular Pharmacology, 56, 232–244.PubMedCrossRef Newby, A. C. (2012). Matrix metalloproteinase inhibition therapy for vascular diseases. Vascular Pharmacology, 56, 232–244.PubMedCrossRef
5.
go back to reference Martínez-González, J., & Badimon, L. (2007). Mechanisms underlying the cardiovascular effects of COX-inhibition: Benefits and risks. Current Pharmaceutical Design, 13, 2215–2227.PubMedCrossRef Martínez-González, J., & Badimon, L. (2007). Mechanisms underlying the cardiovascular effects of COX-inhibition: Benefits and risks. Current Pharmaceutical Design, 13, 2215–2227.PubMedCrossRef
6.
go back to reference Borradaile, N. M., & Pickering, J. G. (2009). NAD(+), sirtuins, and cardiovascular disease. Current Pharmaceutical Design, 15, 110–117.PubMedCrossRef Borradaile, N. M., & Pickering, J. G. (2009). NAD(+), sirtuins, and cardiovascular disease. Current Pharmaceutical Design, 15, 110–117.PubMedCrossRef
7.
go back to reference Potente, M., & Dimmeler, S. (2008). Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle, 7, 2117–2122.PubMedCrossRef Potente, M., & Dimmeler, S. (2008). Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle, 7, 2117–2122.PubMedCrossRef
8.
go back to reference Pirinen, E., Lo Sasso, G., & Auwerx, J. (2012). Mitochondrial sirtuins and metabolic homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, 26, 759–770.CrossRef Pirinen, E., Lo Sasso, G., & Auwerx, J. (2012). Mitochondrial sirtuins and metabolic homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, 26, 759–770.CrossRef
9.
go back to reference Zhou, G., Hamik, A., Nayak, L., Tian, H., et al. (2012). Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. The Journal of clinical investigation, 122, 4727–4731.PubMedCentralPubMedCrossRef Zhou, G., Hamik, A., Nayak, L., Tian, H., et al. (2012). Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. The Journal of clinical investigation, 122, 4727–4731.PubMedCentralPubMedCrossRef
10.
go back to reference Castellani, R. J., Gupta, Y., Sheng, B., et al. (2011). A novel origin for granulovacuolar degeneration in aging and Alzheimer’s disease: Parallels to stress granules. Laboratory Investigation, 91, 1777–1786.PubMedCentralPubMedCrossRef Castellani, R. J., Gupta, Y., Sheng, B., et al. (2011). A novel origin for granulovacuolar degeneration in aging and Alzheimer’s disease: Parallels to stress granules. Laboratory Investigation, 91, 1777–1786.PubMedCentralPubMedCrossRef
11.
go back to reference Zhou, F., Zhang, L., Gong, K., et al. (2008). LEF-1 activates the transcription of E2F1. Biochemical and biophysical research communications, 365, 149–153.PubMedCrossRef Zhou, F., Zhang, L., Gong, K., et al. (2008). LEF-1 activates the transcription of E2F1. Biochemical and biophysical research communications, 365, 149–153.PubMedCrossRef
12.
go back to reference Sheng, B., Wang, X., Su, B., et al. (2012). Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. Journal of Neurochemistry, 120, 419–429.PubMedCentralPubMedCrossRef Sheng, B., Wang, X., Su, B., et al. (2012). Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. Journal of Neurochemistry, 120, 419–429.PubMedCentralPubMedCrossRef
13.
go back to reference Collins, T., & Cybulsky, M. I. (2001). NF-kB: Pivotal mediator or innocent bystander in atherogenesis? The Journal of clinical investigation, 107, 255–264.PubMedCentralPubMedCrossRef Collins, T., & Cybulsky, M. I. (2001). NF-kB: Pivotal mediator or innocent bystander in atherogenesis? The Journal of clinical investigation, 107, 255–264.PubMedCentralPubMedCrossRef
14.
go back to reference Lappas, M. (2012). Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediators of Inflammation, 2012, 597514. doi:10.1155/2012/597514. Lappas, M. (2012). Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediators of Inflammation, 2012, 597514. doi:10.​1155/​2012/​597514.
15.
go back to reference Shen, Z., Ajmo, J. M., et al. (2009). Role of SIRT1 in regulation of LPS-or two ethanol metabolites-induced TNF-α production in cultured macrophage cell lines. American Journal of Physiology. Gastrointestinal and Liver Physiology, 296, 1047–1053.CrossRef Shen, Z., Ajmo, J. M., et al. (2009). Role of SIRT1 in regulation of LPS-or two ethanol metabolites-induced TNF-α production in cultured macrophage cell lines. American Journal of Physiology. Gastrointestinal and Liver Physiology, 296, 1047–1053.CrossRef
16.
go back to reference Yuan, Q., Chen, L., Xiang, D. X., et al. (2011). Effect of resveratrol derivative BTM-0512 on high glucose-induced dysfunction of endothelial cells: Role of SIRT1. Canadian Journal of Physiology and Pharmacology, 89, 713–722.PubMedCrossRef Yuan, Q., Chen, L., Xiang, D. X., et al. (2011). Effect of resveratrol derivative BTM-0512 on high glucose-induced dysfunction of endothelial cells: Role of SIRT1. Canadian Journal of Physiology and Pharmacology, 89, 713–722.PubMedCrossRef
17.
go back to reference Schlegel, N., Leweke, R., Meir, M., et al. (2012). Role of NF-κB activation in LPS-induced endothelial barrier breakdown. Histochemistry and Cell Biology, 138, 627–641.PubMedCrossRef Schlegel, N., Leweke, R., Meir, M., et al. (2012). Role of NF-κB activation in LPS-induced endothelial barrier breakdown. Histochemistry and Cell Biology, 138, 627–641.PubMedCrossRef
18.
go back to reference Ahuja, N., Schwer, B., Carobbio, S., et al. (2007). Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. Journal of Biological Chemistry, 282, 33583–33592.PubMedCrossRef Ahuja, N., Schwer, B., Carobbio, S., et al. (2007). Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. Journal of Biological Chemistry, 282, 33583–33592.PubMedCrossRef
19.
go back to reference Cogswell, P. C., Kashatus, D. F., Keifer, J. A., Guttridge, D. C., Reuther, J. Y., Bristow, C., et al. (2003). NF-κB and IκBα are found in the mitochondria, Evidence for regulation of mitochondrial gene expression by NF-κB. Journal of Biological Chemistry, 278, 2963–2968.PubMedCrossRef Cogswell, P. C., Kashatus, D. F., Keifer, J. A., Guttridge, D. C., Reuther, J. Y., Bristow, C., et al. (2003). NF-κB and IκBα are found in the mitochondria, Evidence for regulation of mitochondrial gene expression by NF-κB. Journal of Biological Chemistry, 278, 2963–2968.PubMedCrossRef
20.
go back to reference Nasrin, N., Wu, X., Fortier, E., Feng, Y., Bare, O. C., Chen, S., et al. (2010). SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. Science Signaling, 285, 31995–32002. Nasrin, N., Wu, X., Fortier, E., Feng, Y., Bare, O. C., Chen, S., et al. (2010). SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. Science Signaling, 285, 31995–32002.
Metadata
Title
SIRT4 Suppresses Inflammatory Responses in Human Umbilical Vein Endothelial Cells
Authors
Yu Tao
Chunhua Huang
Yingmei Huang
Lang Hong
Hong Wang
Zijie Zhou
Yun Qiu
Publication date
01-07-2015
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2015
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9287-6

Other articles of this Issue 3/2015

Cardiovascular Toxicology 3/2015 Go to the issue