Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2009

01-03-2009

Metabolites of MDMA Induce Oxidative Stress and Contractile Dysfunction in Adult Rat Left Ventricular Myocytes

Authors: Sylvia K. Shenouda, Kurt J. Varner, Felix Carvalho, Pamela A. Lucchesi

Published in: Cardiovascular Toxicology | Issue 1/2009

Login to get access

Abstract

Repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy) produces eccentric left ventricular (LV) dilation and diastolic dysfunction. While the mechanism(s) underlying this toxicity are unknown, oxidative stress plays an important role. MDMA is metabolized into redox cycling metabolites that produce superoxide. In this study, we demonstrated that metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Metabolites of MDMA used in this study included alpha-methyl dopamine, N-methyl alpha-methyl dopamine and 2,5-bis(glutathion-S-yl)-alpha-MeDA. Dihydroethidium was used to detect drug-induced increases in reactive oxygen species (ROS) production in ventricular myocytes. Contractile function and changes in intracellular calcium transients were measured in paced (1 Hz), Fura-2 AM loaded, myocytes using the IonOptix system. Production of ROS in ventricular myocytes treated with MDMA was not different from control. In contrast, all three metabolites of MDMA exhibited time- and concentration-dependent increases in ROS that were prevented by N-acetyl-cysteine (NAC). The metabolites of MDMA, but not MDMA alone, significantly decreased contractility and impaired relaxation in myocytes stimulated at 1 Hz. These effects were prevented by NAC. Together, these data suggest that MDMA-induced oxidative stress in the left ventricle can be due, at least in part, to the metabolism of MDMA to redox active metabolites.
Literature
1.
go back to reference Nichols, D. E. (1986). Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. Journal of Psychoactive Drugs, 18, 305–313.PubMed Nichols, D. E. (1986). Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. Journal of Psychoactive Drugs, 18, 305–313.PubMed
4.
go back to reference Sadeghian, S., Darvish, S., Shahbazi, S., & Mahmoodian, M. (2007). Two ecstasy-induced myocardial infarctions during a three month period in a young man. Archives of Iranian Medicine, 10, 409–412.PubMed Sadeghian, S., Darvish, S., Shahbazi, S., & Mahmoodian, M. (2007). Two ecstasy-induced myocardial infarctions during a three month period in a young man. Archives of Iranian Medicine, 10, 409–412.PubMed
6.
go back to reference Badon, L. A., Hicks, A., Lord, K., Ogden, B. A., Meleg-Smith, S., & Varner, K. J. (2002). Changes in cardiovascular responsiveness and cardiotoxicity elicited during binge administration of Ecstasy. The Journal of Pharmacology and Experimental Therapeutics, 302, 898–907. doi:10.1124/jpet.302.3.898.PubMedCrossRef Badon, L. A., Hicks, A., Lord, K., Ogden, B. A., Meleg-Smith, S., & Varner, K. J. (2002). Changes in cardiovascular responsiveness and cardiotoxicity elicited during binge administration of Ecstasy. The Journal of Pharmacology and Experimental Therapeutics, 302, 898–907. doi:10.​1124/​jpet.​302.​3.​898.PubMedCrossRef
7.
go back to reference Shenouda, S. K., Lord, K. C., McIlwain, E., Lucchesi, P. A., & Varner, K. J. (2008). Ecstasy produces left ventricular dysfunction and oxidative stress in rats. Cardiovascular Research, 79, 662–670. doi:10.1093/cvr/cvn129.PubMedCrossRef Shenouda, S. K., Lord, K. C., McIlwain, E., Lucchesi, P. A., & Varner, K. J. (2008). Ecstasy produces left ventricular dysfunction and oxidative stress in rats. Cardiovascular Research, 79, 662–670. doi:10.​1093/​cvr/​cvn129.PubMedCrossRef
8.
go back to reference Sprague, J. E., & Nichols, D. E. (1995). The monoamine oxidase-B inhibitor L-deprenyl protects against 3,4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficits. The Journal of Pharmacology and Experimental Therapeutics, 273, 667–673.PubMed Sprague, J. E., & Nichols, D. E. (1995). The monoamine oxidase-B inhibitor L-deprenyl protects against 3,4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficits. The Journal of Pharmacology and Experimental Therapeutics, 273, 667–673.PubMed
9.
go back to reference Colado, M. I., O’Shea, E., Granados, R., Murray, T. K., & Green, A. R. (1997). In vivo evidence for free radical involvement in the degeneration of rat brain 5-HT following administration of MDMA (‘ecstasy’) and p-chloroamphetamine but not the degeneration following fenfluramine. British Journal of Pharmacology, 121, 889–900. doi:10.1038/sj.bjp.0701213.PubMedCrossRef Colado, M. I., O’Shea, E., Granados, R., Murray, T. K., & Green, A. R. (1997). In vivo evidence for free radical involvement in the degeneration of rat brain 5-HT following administration of MDMA (‘ecstasy’) and p-chloroamphetamine but not the degeneration following fenfluramine. British Journal of Pharmacology, 121, 889–900. doi:10.​1038/​sj.​bjp.​0701213.PubMedCrossRef
10.
go back to reference Colado, M. I., & Green, A. R. (1995). The spin trap reagent alpha-phenyl-N-tert-butyl nitrone prevents ‘ecstasy’-induced neurodegeneration of 5-hydroxytryptamine neurones. European Journal of Pharmacology, 280, 343–346. doi:10.1016/0014-2999(95)00298-Y.PubMedCrossRef Colado, M. I., & Green, A. R. (1995). The spin trap reagent alpha-phenyl-N-tert-butyl nitrone prevents ‘ecstasy’-induced neurodegeneration of 5-hydroxytryptamine neurones. European Journal of Pharmacology, 280, 343–346. doi:10.​1016/​0014-2999(95)00298-Y.PubMedCrossRef
11.
12.
go back to reference Carvalho, M., Remiao, F., Milhazes, N., Borges, F., Fernandes, E., Monteiro Mdo, C., et al. (2004). Metabolism is required for the expression of ecstasy-induced cardiotoxicity in vitro. Chemical Research in Toxicology, 17, 623–632. doi:10.1021/tx049960f.PubMedCrossRef Carvalho, M., Remiao, F., Milhazes, N., Borges, F., Fernandes, E., Monteiro Mdo, C., et al. (2004). Metabolism is required for the expression of ecstasy-induced cardiotoxicity in vitro. Chemical Research in Toxicology, 17, 623–632. doi:10.​1021/​tx049960f.PubMedCrossRef
13.
go back to reference Carvalho, M., Hawksworth, G., Milhazes, N., Borges, F., Monks, T. J., Fernandes, E., et al. (2002). Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: An in vitro study using rat and human renal proximal tubular cells. Archives of Toxicology, 76, 581–588. doi:10.1007/s00204-002-0381-3.PubMedCrossRef Carvalho, M., Hawksworth, G., Milhazes, N., Borges, F., Monks, T. J., Fernandes, E., et al. (2002). Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: An in vitro study using rat and human renal proximal tubular cells. Archives of Toxicology, 76, 581–588. doi:10.​1007/​s00204-002-0381-3.PubMedCrossRef
14.
go back to reference Carvalho, M., Remiao, F., Milhazes, N., Borges, F., Fernandes, E., Carvalho, F., et al. (2004). The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology, 200, 193–203. doi:10.1016/j.tox.2004.03.016.PubMedCrossRef Carvalho, M., Remiao, F., Milhazes, N., Borges, F., Fernandes, E., Carvalho, F., et al. (2004). The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology, 200, 193–203. doi:10.​1016/​j.​tox.​2004.​03.​016.PubMedCrossRef
15.
go back to reference Ninkovic, M., Malicevic, Z., Selakovic, V., Simic, I., & Vasiljevic, I. (2004). N-methyl-3,4-methylenedioxyamphetamine-induced hepatotoxicity in rats: Oxidative stress after acute and chronic administration. Vojnosanitetski Pregled. Military-Medical and Pharmaceutical Review, 61, 125–131.PubMed Ninkovic, M., Malicevic, Z., Selakovic, V., Simic, I., & Vasiljevic, I. (2004). N-methyl-3,4-methylenedioxyamphetamine-induced hepatotoxicity in rats: Oxidative stress after acute and chronic administration. Vojnosanitetski Pregled. Military-Medical and Pharmaceutical Review, 61, 125–131.PubMed
16.
go back to reference Schifano, F., Oyefeso, A., Webb, L., Pollard, M., Corkery, J., & Ghodse, A. H. (2003). Review of deaths related to taking ecstasy, England and Wales, 1997–2000. BMJ (Clinical Research Ed.), 326, 80–81. doi:10.1136/bmj.326.7380.80.CrossRef Schifano, F., Oyefeso, A., Webb, L., Pollard, M., Corkery, J., & Ghodse, A. H. (2003). Review of deaths related to taking ecstasy, England and Wales, 1997–2000. BMJ (Clinical Research Ed.), 326, 80–81. doi:10.​1136/​bmj.​326.​7380.​80.CrossRef
21.
go back to reference Jiang, J. P., & Downing, S. E. (1990). Catecholamine cardiomyopathy: Review and analysis of pathogenetic mechanisms. The Yale Journal of Biology and Medicine, 63, 581–591.PubMed Jiang, J. P., & Downing, S. E. (1990). Catecholamine cardiomyopathy: Review and analysis of pathogenetic mechanisms. The Yale Journal of Biology and Medicine, 63, 581–591.PubMed
23.
go back to reference Verheyden, S. L., Henry, J. A., & Curran, H. V. (2003). Acute, sub-acute and long-term subjective consequences of ‘ecstasy’ (MDMA) consumption in 430 regular users. Human Psychopharmacology, 18, 507–517. doi:10.1002/hup.529.PubMedCrossRef Verheyden, S. L., Henry, J. A., & Curran, H. V. (2003). Acute, sub-acute and long-term subjective consequences of ‘ecstasy’ (MDMA) consumption in 430 regular users. Human Psychopharmacology, 18, 507–517. doi:10.​1002/​hup.​529.PubMedCrossRef
24.
go back to reference Elliott, S. P. (2005). MDMA and MDA concentrations in antemortem and postmortem specimens in fatalities following hospital admission. Journal of Analytical Toxicology, 29, 296–300.PubMed Elliott, S. P. (2005). MDMA and MDA concentrations in antemortem and postmortem specimens in fatalities following hospital admission. Journal of Analytical Toxicology, 29, 296–300.PubMed
26.
go back to reference Pavek, P., & Dvorak, Z. (2008). Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Current Drug Metabolism, 9, 129–143. doi:10.2174/138920008783571774.PubMedCrossRef Pavek, P., & Dvorak, Z. (2008). Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Current Drug Metabolism, 9, 129–143. doi:10.​2174/​1389200087835717​74.PubMedCrossRef
27.
go back to reference Hiramatsu, M., Kumagai, Y., Unger, S. E., & Cho, A. K. (1990). Metabolism of methylenedioxymethamphetamine: Formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. The Journal of Pharmacology and Experimental Therapeutics, 254, 521–527.PubMed Hiramatsu, M., Kumagai, Y., Unger, S. E., & Cho, A. K. (1990). Metabolism of methylenedioxymethamphetamine: Formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. The Journal of Pharmacology and Experimental Therapeutics, 254, 521–527.PubMed
28.
go back to reference Miller, R. T., Lau, S. S., & Monks, T. J. (1997). 2,5-Bis-(glutathion-S-yl)-alpha-methyldopamine, a putative metabolite of (+/−)-3,4-methylenedioxyamphetamine, decreases brain serotonin concentrations. European Journal of Pharmacology, 323, 173–180. doi:10.1016/S0014-2999(97)00044-7.PubMedCrossRef Miller, R. T., Lau, S. S., & Monks, T. J. (1997). 2,5-Bis-(glutathion-S-yl)-alpha-methyldopamine, a putative metabolite of (+/−)-3,4-methylenedioxyamphetamine, decreases brain serotonin concentrations. European Journal of Pharmacology, 323, 173–180. doi:10.​1016/​S0014-2999(97)00044-7.PubMedCrossRef
29.
go back to reference Yeh, S. Y. (1999). N-tert-butyl-alpha-phenylnitrone protects against 3,4-methylenedioxymethamphetamine-induced depletion of serotonin in rats. Synapse (New York, N.Y.), 31, 169–177. Yeh, S. Y. (1999). N-tert-butyl-alpha-phenylnitrone protects against 3,4-methylenedioxymethamphetamine-induced depletion of serotonin in rats. Synapse (New York, N.Y.), 31, 169–177.
30.
go back to reference Gudelsky, G. A. (1996). Effect of ascorbate and cysteine on the 3,4-methylenedioxymethamphetamine-induced depletion of brain serotonin. Journal of Neural Transmission, 103, 1397–1404. doi:10.1007/BF01271253.PubMedCrossRef Gudelsky, G. A. (1996). Effect of ascorbate and cysteine on the 3,4-methylenedioxymethamphetamine-induced depletion of brain serotonin. Journal of Neural Transmission, 103, 1397–1404. doi:10.​1007/​BF01271253.PubMedCrossRef
31.
go back to reference Aguirre, N., Barrionuevo, M., Ramirez, M. J., Del Rio, J., & Lasheras, B. (1999). Alpha-lipoic acid prevents 3, 4-methylenedioxy-methamphetamine (MDMA)-induced neurotoxicity. Neuroreport, 10, 3675–3680.PubMedCrossRef Aguirre, N., Barrionuevo, M., Ramirez, M. J., Del Rio, J., & Lasheras, B. (1999). Alpha-lipoic acid prevents 3, 4-methylenedioxy-methamphetamine (MDMA)-induced neurotoxicity. Neuroreport, 10, 3675–3680.PubMedCrossRef
32.
go back to reference Cadet, J. L., Ladenheim, B., Baum, I., Carlson, E., & Epstein, C. (1994). CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA). Brain Research, 655, 259–262. doi:10.1016/0006-8993(94)91624-1.PubMedCrossRef Cadet, J. L., Ladenheim, B., Baum, I., Carlson, E., & Epstein, C. (1994). CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA). Brain Research, 655, 259–262. doi:10.​1016/​0006-8993(94)91624-1.PubMedCrossRef
33.
go back to reference Sabri, A., Byron, K. L., Samarel, A. M., Bell, J., & Lucchesi, P. A. (1998). Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes. Circulation Research, 82, 1053–1062.PubMed Sabri, A., Byron, K. L., Samarel, A. M., Bell, J., & Lucchesi, P. A. (1998). Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes. Circulation Research, 82, 1053–1062.PubMed
34.
go back to reference Kwon, S. H., Pimentel, D. R., Remondino, A., Sawyer, D. B., & Colucci, W. S. (2003). H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. Journal of Molecular and Cellular Cardiology, 35, 615–621. doi:10.1016/S0022-2828(03)00084-1.PubMedCrossRef Kwon, S. H., Pimentel, D. R., Remondino, A., Sawyer, D. B., & Colucci, W. S. (2003). H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. Journal of Molecular and Cellular Cardiology, 35, 615–621. doi:10.​1016/​S0022-2828(03)00084-1.PubMedCrossRef
35.
go back to reference Gao, W. D., Liu, Y., & Marban, E. (1996). Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation, 94, 2597–2604.PubMed Gao, W. D., Liu, Y., & Marban, E. (1996). Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation, 94, 2597–2604.PubMed
36.
go back to reference He, X., Liu, Y., Sharma, V., Dirksen, R. T., Waugh, R., Sheu, S. S., et al. (2003). ASK1 associates with troponin T and induces troponin T phosphorylation and contractile dysfunction in cardiomyocytes. American Journal of Pathology, 163, 243–251.PubMed He, X., Liu, Y., Sharma, V., Dirksen, R. T., Waugh, R., Sheu, S. S., et al. (2003). ASK1 associates with troponin T and induces troponin T phosphorylation and contractile dysfunction in cardiomyocytes. American Journal of Pathology, 163, 243–251.PubMed
37.
go back to reference Itoh, S., Ding, B., Bains, C. P., Wang, N., Takeishi, Y., Jalili, T., et al. (2005). Role of p90 ribosomal S6 kinase (p90RSK) in reactive oxygen species and protein kinase C beta (PKC-beta)-mediated cardiac troponin I phosphorylation. The Journal of Biological Chemistry, 280, 24135–24142. doi:10.1074/jbc.M413015200.PubMedCrossRef Itoh, S., Ding, B., Bains, C. P., Wang, N., Takeishi, Y., Jalili, T., et al. (2005). Role of p90 ribosomal S6 kinase (p90RSK) in reactive oxygen species and protein kinase C beta (PKC-beta)-mediated cardiac troponin I phosphorylation. The Journal of Biological Chemistry, 280, 24135–24142. doi:10.​1074/​jbc.​M413015200.PubMedCrossRef
39.
go back to reference Taam, G. M., Takeo, S., Ziegelhoffer, A., Singal, P. K., Beamish, R. E., & Dhalla, N. S. (1986). Effect of adrenochrome on adenine nucleotides and mitochondrial oxidative phosphorylation in rat heart. The Canadian Journal of Cardiology, 2, 88–93.PubMed Taam, G. M., Takeo, S., Ziegelhoffer, A., Singal, P. K., Beamish, R. E., & Dhalla, N. S. (1986). Effect of adrenochrome on adenine nucleotides and mitochondrial oxidative phosphorylation in rat heart. The Canadian Journal of Cardiology, 2, 88–93.PubMed
40.
41.
go back to reference Guidarelli, A., Fiorani, M., & Cantoni, O. (2004). Enhancing effects of intracellular ascorbic acid on peroxynitrite-induced U937 cell death are mediated by mitochondrial events resulting in enhanced sensitivity to peroxynitrite-dependent inhibition of complex III and formation of hydrogen peroxide. The Biochemical Journal, 378, 959–966. doi:10.1042/BJ20031167.PubMedCrossRef Guidarelli, A., Fiorani, M., & Cantoni, O. (2004). Enhancing effects of intracellular ascorbic acid on peroxynitrite-induced U937 cell death are mediated by mitochondrial events resulting in enhanced sensitivity to peroxynitrite-dependent inhibition of complex III and formation of hydrogen peroxide. The Biochemical Journal, 378, 959–966. doi:10.​1042/​BJ20031167.PubMedCrossRef
Metadata
Title
Metabolites of MDMA Induce Oxidative Stress and Contractile Dysfunction in Adult Rat Left Ventricular Myocytes
Authors
Sylvia K. Shenouda
Kurt J. Varner
Felix Carvalho
Pamela A. Lucchesi
Publication date
01-03-2009
Publisher
Humana Press Inc
Published in
Cardiovascular Toxicology / Issue 1/2009
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-009-9034-6

Other articles of this Issue 1/2009

Cardiovascular Toxicology 1/2009 Go to the issue