Skip to main content
Top
Published in: Cardiovascular Toxicology 1/2009

01-03-2009

Long-Term Exposure to AZT, but not d4T, Increases Endothelial Cell Oxidative Stress and Mitochondrial Dysfunction

Authors: Erik R. Kline, Leda Bassit, Brenda I. Hernandez-Santiago, Mervi A. Detorio, Bill Liang, Dean J. Kleinhenz, Erik R. Walp, Sergey Dikalov, Dean P. Jones, Raymond F. Schinazi, Roy L. Sutliff

Published in: Cardiovascular Toxicology | Issue 1/2009

Login to get access

Abstract

Nucleoside reverse transcriptase inhibitors (NRTIs), such as zidovudine (AZT) and stavudine (d4T), cause toxicities to numerous tissues, including the liver and vasculature. While much is known about hepatic NRTI toxicity, the mechanism of toxicity in endothelial cells is incompletely understood. Human aortic endothelial and HepG2 liver cells were exposed to 1 μM AZT or d4T for up to 5 weeks. Markers of oxidative stress, mitochondrial function, NRTI phosphorylation, mitochondrial DNA (mtDNA) levels, and cytotoxicity were monitored over time. In endothelial cells, AZT significantly oxidized glutathione redox potential, increased total cellular and mitochondrial-specific superoxide, decreased mitochondrial membrane potential, increased lactate release, and caused cell death from weeks 3 through 5. Toxicity occurred in the absence of di- and tri-phosphorylated AZT and mtDNA depletion. These data show that oxidative stress and mitochondrial dysfunction in endothelial cells occur with a physiologically relevant concentration of AZT, and require long-term exposure to develop. In contrast, d4T did not induce endothelial oxidative stress, mitochondrial dysfunction, or cytotoxicity despite the presence of d4T-triphosphate. Both drugs depleted mtDNA in HepG2 cells without causing cell death. Endothelial cells are more susceptible to AZT-induced toxicity than HepG2 cells, and AZT caused greater endothelial dysfunction than d4T because of its pro-oxidative effects.
Literature
1.
go back to reference Hung, C. C., & Chang, S. C. (2004). Impact of highly active antiretroviral therapy on incidence and management of human immunodeficiency virus-related opportunistic infections. The Journal of Antimicrobial Chemotherapy, 54(5), 849–853. doi:10.1093/jac/dkh438.PubMedCrossRef Hung, C. C., & Chang, S. C. (2004). Impact of highly active antiretroviral therapy on incidence and management of human immunodeficiency virus-related opportunistic infections. The Journal of Antimicrobial Chemotherapy, 54(5), 849–853. doi:10.​1093/​jac/​dkh438.PubMedCrossRef
3.
4.
go back to reference Lewis, W., Grupp, I. L., Grupp, G., Hoit, B., Morris, R., Samarel, A. M., et al. (2000). Cardiac dysfunction occurs in the HIV-1 transgenic mouse treated with zidovudine. Laboratory Investigation, 80(2), 187–197.PubMedCrossRef Lewis, W., Grupp, I. L., Grupp, G., Hoit, B., Morris, R., Samarel, A. M., et al. (2000). Cardiac dysfunction occurs in the HIV-1 transgenic mouse treated with zidovudine. Laboratory Investigation, 80(2), 187–197.PubMedCrossRef
5.
go back to reference Nolan, D., & Mallal, S. (2004). Complications associated with NRTI therapy: Update on clinical features and possible pathogenic mechanisms. Antiviral Therapy, 9(6), 849–863.PubMed Nolan, D., & Mallal, S. (2004). Complications associated with NRTI therapy: Update on clinical features and possible pathogenic mechanisms. Antiviral Therapy, 9(6), 849–863.PubMed
7.
go back to reference Lewis, W., Kohler, J. J., Hosseini, S. H., Haase, C. P., Copeland, W. C., Bienstock, R. J., et al. (2006). Antiretroviral nucleosides, deoxynucleotide carrier and mitochondrial DNA: Evidence supporting the DNA pol gamma hypothesis. AIDS (London, England), 20(5), 675–684. doi:10.1097/01.aids.0000216367.23325.58. Lewis, W., Kohler, J. J., Hosseini, S. H., Haase, C. P., Copeland, W. C., Bienstock, R. J., et al. (2006). Antiretroviral nucleosides, deoxynucleotide carrier and mitochondrial DNA: Evidence supporting the DNA pol gamma hypothesis. AIDS (London, England), 20(5), 675–684. doi:10.​1097/​01.​aids.​0000216367.​23325.​58.
9.
go back to reference Lorenz, M. W., Stephan, C., Harmjanz, A., Staszewski, S., Buehler, A., Bickel, M., von Kegler, S., Ruhkamp, D., Steinmetz, H. & Sitzer, M. (2007). Both long-term HIV infection and highly active antiretroviral therapy are independent risk factors for early carotid atherosclerosis. Atherosclerosis, 196, 720–726. Lorenz, M. W., Stephan, C., Harmjanz, A., Staszewski, S., Buehler, A., Bickel, M., von Kegler, S., Ruhkamp, D., Steinmetz, H. & Sitzer, M. (2007). Both long-term HIV infection and highly active antiretroviral therapy are independent risk factors for early carotid atherosclerosis. Atherosclerosis, 196, 720–726.
10.
go back to reference Hebert, V. Y., Crenshaw, B. L., Romanoff, R. L., Ekshyyan, V. P., & Dugas, T. R. (2004). Effects of HIV drug combinations on endothelin-1 and vascular cell proliferation. Cardiovascular Toxicology, 4(2), 117–131. doi:10.1385/CT:4:2:117.PubMedCrossRef Hebert, V. Y., Crenshaw, B. L., Romanoff, R. L., Ekshyyan, V. P., & Dugas, T. R. (2004). Effects of HIV drug combinations on endothelin-1 and vascular cell proliferation. Cardiovascular Toxicology, 4(2), 117–131. doi:10.​1385/​CT:​4:​2:​117.PubMedCrossRef
11.
go back to reference Fiala, M., Murphy, T., MacDougall, J., Yang, W., Luque, A., Iruela-Arispe, L., et al. (2004). HAART drugs induce mitochondrial damage and intercellular gaps and gp120 causes apoptosis. Cardiovascular Toxicology, 4(4), 327–337. doi:10.1385/CT:4:4:327.PubMedCrossRef Fiala, M., Murphy, T., MacDougall, J., Yang, W., Luque, A., Iruela-Arispe, L., et al. (2004). HAART drugs induce mitochondrial damage and intercellular gaps and gp120 causes apoptosis. Cardiovascular Toxicology, 4(4), 327–337. doi:10.​1385/​CT:​4:​4:​327.PubMedCrossRef
12.
go back to reference Jiang, B., Hebert, V. Y., Li, Y., Mathis, J. M., Alexander, J. S. & Dugas, T. R. (2007). HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis. Toxicology and Applied Pharmacology, 224, 60–71. Jiang, B., Hebert, V. Y., Li, Y., Mathis, J. M., Alexander, J. S. & Dugas, T. R. (2007). HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis. Toxicology and Applied Pharmacology, 224, 60–71.
13.
go back to reference Sutliff, R. L., Dikalov, S., Weiss, D., Parker, J., Raidel, S., Racine, A. K., et al. (2002). Nucleoside reverse transcriptase inhibitors impair endothelium-dependent relaxation by increasing superoxide. American Journal of Physiology. Heart and Circulatory Physiology, 283(6), H2363–H2370.PubMed Sutliff, R. L., Dikalov, S., Weiss, D., Parker, J., Raidel, S., Racine, A. K., et al. (2002). Nucleoside reverse transcriptase inhibitors impair endothelium-dependent relaxation by increasing superoxide. American Journal of Physiology. Heart and Circulatory Physiology, 283(6), H2363–H2370.PubMed
15.
go back to reference Lewis, W., Day, B. J., & Copeland, W. C. (2003). Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nature Reviews. Drug Discovery, 2(10), 812–822. doi:10.1038/nrd1201.PubMedCrossRef Lewis, W., Day, B. J., & Copeland, W. C. (2003). Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nature Reviews. Drug Discovery, 2(10), 812–822. doi:10.​1038/​nrd1201.PubMedCrossRef
16.
go back to reference Furman, P. A., Fyfe, J. A., Clair, M. H., Weinhold, K., Rideout, J. L., Freeman, G. A., et al. (1986). Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proceedings of the National Academy of Sciences of the United States of America, 83(21), 8333–8337. doi:10.1073/pnas.83.21.8333.PubMedCrossRef Furman, P. A., Fyfe, J. A., Clair, M. H., Weinhold, K., Rideout, J. L., Freeman, G. A., et al. (1986). Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proceedings of the National Academy of Sciences of the United States of America, 83(21), 8333–8337. doi:10.​1073/​pnas.​83.​21.​8333.PubMedCrossRef
19.
go back to reference Komarov, A. M., Hall, J. M., & Weglicki, W. B. (2004). Azidothymidine promotes free radical generation by activated macrophages and hydrogen peroxide-iron-mediated oxidation in a cell-free system. Biochimica et Biophysica Acta, 1688(3), 257–264.PubMed Komarov, A. M., Hall, J. M., & Weglicki, W. B. (2004). Azidothymidine promotes free radical generation by activated macrophages and hydrogen peroxide-iron-mediated oxidation in a cell-free system. Biochimica et Biophysica Acta, 1688(3), 257–264.PubMed
20.
go back to reference Garcia-de-la-Asuncion, J., Gomez-Cambronero, L. G., Del Olmo, M. L., Pallardo, F. V., Sastre, J., & Vina, J. (2007). Vitamins C and E prevent AZT-induced leukopenia and loss of cellularity in bone marrow. Studies in mice. Free Radical Research, 41(3), 330–334. doi:10.1080/10715760600868537.PubMedCrossRef Garcia-de-la-Asuncion, J., Gomez-Cambronero, L. G., Del Olmo, M. L., Pallardo, F. V., Sastre, J., & Vina, J. (2007). Vitamins C and E prevent AZT-induced leukopenia and loss of cellularity in bone marrow. Studies in mice. Free Radical Research, 41(3), 330–334. doi:10.​1080/​1071576060086853​7.PubMedCrossRef
21.
go back to reference de la Asuncion, J. G., Del Olmo, M. L., Gomez-Cambronero, L. G., Sastre, J., Pallardo, F. V., & Vina, J. (2004). AZT induces oxidative damage to cardiac mitochondria: protective effect of vitamins C and E. Life Sciences, 76(1), 47–56. doi:10.1016/j.lfs.2004.06.020.PubMedCrossRef de la Asuncion, J. G., Del Olmo, M. L., Gomez-Cambronero, L. G., Sastre, J., Pallardo, F. V., & Vina, J. (2004). AZT induces oxidative damage to cardiac mitochondria: protective effect of vitamins C and E. Life Sciences, 76(1), 47–56. doi:10.​1016/​j.​lfs.​2004.​06.​020.PubMedCrossRef
26.
go back to reference Gustafson, E. A., Schinazi, R. F., & Fingeroth, J. D. (2000). Human herpesvirus 8 open reading frame 21 is a thymidine and thymidylate kinase of narrow substrate specificity that efficiently phosphorylates zidovudine but not ganciclovir. Journal of Virology, 74(2), 684–692. doi:10.1128/JVI.74.2.684-692.2000.PubMedCrossRef Gustafson, E. A., Schinazi, R. F., & Fingeroth, J. D. (2000). Human herpesvirus 8 open reading frame 21 is a thymidine and thymidylate kinase of narrow substrate specificity that efficiently phosphorylates zidovudine but not ganciclovir. Journal of Virology, 74(2), 684–692. doi:10.​1128/​JVI.​74.​2.​684-692.​2000.PubMedCrossRef
27.
go back to reference Stuyver, L. J., Lostia, S., Adams, M., Mathew, J. S., Pai, B. S., Grier, J., et al. (2002). Antiviral activities and cellular toxicities of modified 2′, 3′-dideoxy-2′, 3′-didehydrocytidine analogues. Antimicrobial Agents and Chemotherapy, 46(12), 3854–3860. doi:10.1128/AAC.46.12.3854-3860.2002.PubMedCrossRef Stuyver, L. J., Lostia, S., Adams, M., Mathew, J. S., Pai, B. S., Grier, J., et al. (2002). Antiviral activities and cellular toxicities of modified 2′, 3′-dideoxy-2′, 3′-didehydrocytidine analogues. Antimicrobial Agents and Chemotherapy, 46(12), 3854–3860. doi:10.​1128/​AAC.​46.​12.​3854-3860.​2002.PubMedCrossRef
28.
go back to reference Kakuda, T. N., Page, L. M., Anderson, P. L., Henry, K., Schacker, T. W., Rhame, F. S., et al. (2001). Pharmacological basis for concentration-controlled therapy with zidovudine, lamivudine, and indinavir. Antimicrobial Agents and Chemotherapy, 45(1), 236–242. doi:10.1128/AAC.45.1.236-242.2001.PubMedCrossRef Kakuda, T. N., Page, L. M., Anderson, P. L., Henry, K., Schacker, T. W., Rhame, F. S., et al. (2001). Pharmacological basis for concentration-controlled therapy with zidovudine, lamivudine, and indinavir. Antimicrobial Agents and Chemotherapy, 45(1), 236–242. doi:10.​1128/​AAC.​45.​1.​236-242.​2001.PubMedCrossRef
29.
go back to reference Moyer, T. P., Temesgen, Z., Enger, R., Estes, L., Charlson, J., Oliver, L., et al. (1999). Drug monitoring of antiretroviral therapy for HIV-1 infection: Method validation and results of a pilot study. Clinical Chemistry, 45(9), 1465–1476.PubMed Moyer, T. P., Temesgen, Z., Enger, R., Estes, L., Charlson, J., Oliver, L., et al. (1999). Drug monitoring of antiretroviral therapy for HIV-1 infection: Method validation and results of a pilot study. Clinical Chemistry, 45(9), 1465–1476.PubMed
30.
31.
go back to reference Robinson, K. M., Janes, M. S., Pehar, M., Monette, J. S., Ross, M. F., Hagen, T. M., et al. (2006). Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15038–15043. doi:10.1073/pnas.0601945103.PubMedCrossRef Robinson, K. M., Janes, M. S., Pehar, M., Monette, J. S., Ross, M. F., Hagen, T. M., et al. (2006). Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15038–15043. doi:10.​1073/​pnas.​0601945103.PubMedCrossRef
32.
go back to reference Rajesh, M., Mukhopadhyay, P., Batkai, S., Hasko, G., Liaudet, L., Drel, V. R., et al. (2007). Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. American Journal of Physiology. Heart and Circulatory Physiology, 293(1), H610–H619. doi:10.1152/ajpheart.00236.2007.PubMedCrossRef Rajesh, M., Mukhopadhyay, P., Batkai, S., Hasko, G., Liaudet, L., Drel, V. R., et al. (2007). Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. American Journal of Physiology. Heart and Circulatory Physiology, 293(1), H610–H619. doi:10.​1152/​ajpheart.​00236.​2007.PubMedCrossRef
33.
go back to reference Susan-Resiga, D., Bentley, A. T., Lynx, M. D., LaClair, D. D., & McKee, E. E. (2007). Zidovudine inhibits thymidine phosphorylation in the isolated perfused rat heart. Antimicrobial Agents and Chemotherapy, 51(4), 1142–1149. doi:10.1128/AAC.01227-06.PubMedCrossRef Susan-Resiga, D., Bentley, A. T., Lynx, M. D., LaClair, D. D., & McKee, E. E. (2007). Zidovudine inhibits thymidine phosphorylation in the isolated perfused rat heart. Antimicrobial Agents and Chemotherapy, 51(4), 1142–1149. doi:10.​1128/​AAC.​01227-06.PubMedCrossRef
34.
go back to reference Lynx, M. D., Bentley, A. T., & McKee, E. E. (2006). 3′-Azido-3′-deoxythymidine (AZT) inhibits thymidine phosphorylation in isolated rat liver mitochondria: a possible mechanism of AZT hepatotoxicity. Biochemical Pharmacology, 71(9), 1342–1348. doi:10.1016/j.bcp.2006.01.003.PubMedCrossRef Lynx, M. D., Bentley, A. T., & McKee, E. E. (2006). 3′-Azido-3′-deoxythymidine (AZT) inhibits thymidine phosphorylation in isolated rat liver mitochondria: a possible mechanism of AZT hepatotoxicity. Biochemical Pharmacology, 71(9), 1342–1348. doi:10.​1016/​j.​bcp.​2006.​01.​003.PubMedCrossRef
35.
36.
go back to reference McKee, E. E., Bentley, A. T., Hatch, M., Gingerich, J., & Susan-Resiga, D. (2004). Phosphorylation of thymidine and AZT in heart mitochondria: Elucidation of a novel mechanism of AZT cardiotoxicity. Cardiovascular Toxicology, 4(2), 155–167. doi:10.1385/CT:4:2:155.PubMedCrossRef McKee, E. E., Bentley, A. T., Hatch, M., Gingerich, J., & Susan-Resiga, D. (2004). Phosphorylation of thymidine and AZT in heart mitochondria: Elucidation of a novel mechanism of AZT cardiotoxicity. Cardiovascular Toxicology, 4(2), 155–167. doi:10.​1385/​CT:​4:​2:​155.PubMedCrossRef
37.
go back to reference Lund, K. C., Peterson, L. L., & Wallace, K. B. (2007). Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrobial Agents and Chemotherapy, 51(7), 2531–2539. doi:10.1128/AAC.00039-07.PubMedCrossRef Lund, K. C., Peterson, L. L., & Wallace, K. B. (2007). Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrobial Agents and Chemotherapy, 51(7), 2531–2539. doi:10.​1128/​AAC.​00039-07.PubMedCrossRef
38.
39.
go back to reference Mazzon, C., Rampazzo, C., Scaini, M. C., Gallinaro, L., Karlsson, A., Meier, C., et al. (2003). Cytosolic and mitochondrial deoxyribonucleotidases: Activity with substrate analogs, inhibitors and implications for therapy. Biochemical Pharmacology, 66(3), 471–479. doi:10.1016/S0006-2952(03)00290-9.PubMedCrossRef Mazzon, C., Rampazzo, C., Scaini, M. C., Gallinaro, L., Karlsson, A., Meier, C., et al. (2003). Cytosolic and mitochondrial deoxyribonucleotidases: Activity with substrate analogs, inhibitors and implications for therapy. Biochemical Pharmacology, 66(3), 471–479. doi:10.​1016/​S0006-2952(03)00290-9.PubMedCrossRef
40.
go back to reference Song, S., Wheeler, L. J., & Mathews, C. K. (2003). Deoxyribonucleotide pool imbalance stimulates deletions in HeLa cell mitochondrial DNA. The Journal of Biological Chemistry, 278(45), 43893–43896. doi:10.1074/jbc.C300401200.PubMedCrossRef Song, S., Wheeler, L. J., & Mathews, C. K. (2003). Deoxyribonucleotide pool imbalance stimulates deletions in HeLa cell mitochondrial DNA. The Journal of Biological Chemistry, 278(45), 43893–43896. doi:10.​1074/​jbc.​C300401200.PubMedCrossRef
41.
go back to reference Szabados, E., Fischer, G. M., Toth, K., Csete, B., Nemeti, B., Trombitas, K., et al. (1999). Role of reactive oxygen species and poly-ADP-ribose polymerase in the development of AZT-induced cardiomyopathy in rat. Free Radical Biology & Medicine, 26(3–4), 309–317. doi:10.1016/S0891-5849(98)00199-3.CrossRef Szabados, E., Fischer, G. M., Toth, K., Csete, B., Nemeti, B., Trombitas, K., et al. (1999). Role of reactive oxygen species and poly-ADP-ribose polymerase in the development of AZT-induced cardiomyopathy in rat. Free Radical Biology & Medicine, 26(3–4), 309–317. doi:10.​1016/​S0891-5849(98)00199-3.CrossRef
42.
go back to reference Yan, J. P., Ilsley, D. D., Frohlick, C., Steet, R., Hall, E. T., Kuchta, R. D., et al. (1995). 3′-Azidothymidine (zidovudine) inhibits glycosylation and dramatically alters glycosphingolipid synthesis in whole cells at clinically relevant concentrations. The Journal of Biological Chemistry, 270(39), 22836–22841. doi:10.1074/jbc.270.39.22836.PubMedCrossRef Yan, J. P., Ilsley, D. D., Frohlick, C., Steet, R., Hall, E. T., Kuchta, R. D., et al. (1995). 3′-Azidothymidine (zidovudine) inhibits glycosylation and dramatically alters glycosphingolipid synthesis in whole cells at clinically relevant concentrations. The Journal of Biological Chemistry, 270(39), 22836–22841. doi:10.​1074/​jbc.​270.​39.​22836.PubMedCrossRef
43.
go back to reference Valenti, D., Barile, M., & Passarella, S. (2000). AZT inhibition of the ADP/ATP antiport in isolated rat heart mitochondria. International Journal of Molecular Medicine, 6(1), 93–96.PubMed Valenti, D., Barile, M., & Passarella, S. (2000). AZT inhibition of the ADP/ATP antiport in isolated rat heart mitochondria. International Journal of Molecular Medicine, 6(1), 93–96.PubMed
44.
go back to reference Robins, M. J., Wood, S. G., Dalley, N. K., Herdewijn, P., Balzarini, J., & De Clercq, E. (1989). Nucleic acid related compounds. 57. Synthesis, x-ray crystal structure, lipophilic partition properties, and antiretroviral activities of anomeric 3′-azido-2′,3′-dideoxy-2,6-diaminopurine ribosides. Journal of Medicinal Chemistry, 32(8), 1763–1768. doi:10.1021/jm00128a017.PubMedCrossRef Robins, M. J., Wood, S. G., Dalley, N. K., Herdewijn, P., Balzarini, J., & De Clercq, E. (1989). Nucleic acid related compounds. 57. Synthesis, x-ray crystal structure, lipophilic partition properties, and antiretroviral activities of anomeric 3′-azido-2′,3′-dideoxy-2,6-diaminopurine ribosides. Journal of Medicinal Chemistry, 32(8), 1763–1768. doi:10.​1021/​jm00128a017.PubMedCrossRef
45.
go back to reference Cazzalini, O., Lazze, M. C., Iamele, L., Stivala, L. A., Bianchi, L., Vaghi, P., et al. (2001). Early effects of AZT on mitochondrial functions in the absence of mitochondrial DNA depletion in rat myotubes. Biochemical Pharmacology, 62(7), 893–902. doi:10.1016/S0006-2952(01)00713-4.PubMedCrossRef Cazzalini, O., Lazze, M. C., Iamele, L., Stivala, L. A., Bianchi, L., Vaghi, P., et al. (2001). Early effects of AZT on mitochondrial functions in the absence of mitochondrial DNA depletion in rat myotubes. Biochemical Pharmacology, 62(7), 893–902. doi:10.​1016/​S0006-2952(01)00713-4.PubMedCrossRef
47.
go back to reference Pearson, J. D., Carleton, J. S., & Gordon, J. L. (1980). Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. The Biochemical Journal, 190(2), 421–429.PubMed Pearson, J. D., Carleton, J. S., & Gordon, J. L. (1980). Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. The Biochemical Journal, 190(2), 421–429.PubMed
49.
go back to reference Frick, L. W., Nelson, D. J., St Clair, M. H., Furman, P. A., & Krenitsky, T. A. (1988). Effects of 3′-azido-3′-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochemical and Biophysical Research Communications, 154(1), 124–129. doi:10.1016/0006-291X(88)90659-6.PubMedCrossRef Frick, L. W., Nelson, D. J., St Clair, M. H., Furman, P. A., & Krenitsky, T. A. (1988). Effects of 3′-azido-3′-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochemical and Biophysical Research Communications, 154(1), 124–129. doi:10.​1016/​0006-291X(88)90659-6.PubMedCrossRef
50.
go back to reference Sales, S. D., Hoggard, P. G., Sunderland, D., Khoo, S., Hart, C. A., & Back, D. J. (2001). Zidovudine phosphorylation and mitochondrial toxicity in vitro. Toxicology and Applied Pharmacology, 177(1), 54–58. doi:10.1006/taap.2001.9288.PubMedCrossRef Sales, S. D., Hoggard, P. G., Sunderland, D., Khoo, S., Hart, C. A., & Back, D. J. (2001). Zidovudine phosphorylation and mitochondrial toxicity in vitro. Toxicology and Applied Pharmacology, 177(1), 54–58. doi:10.​1006/​taap.​2001.​9288.PubMedCrossRef
51.
go back to reference Ho, H. T., & Hitchcock, M. J. (1989). Cellular pharmacology of 2′, 3′-dideoxy-2′, 3′-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrobial Agents and Chemotherapy, 33(6), 844–849.PubMed Ho, H. T., & Hitchcock, M. J. (1989). Cellular pharmacology of 2′, 3′-dideoxy-2′, 3′-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrobial Agents and Chemotherapy, 33(6), 844–849.PubMed
54.
go back to reference Meng, Q., Olivero, O. A., Fasco, M. J., Bellisario, R., Kaminsky, L., Pass, K. A., et al. (2007). Plasma and cellular markers of 3′-azido-3′-dideoxythymidine (AZT) metabolism as indicators of DNA damage in cord blood mononuclear cells from infants receiving prepartum NRTIs. Environmental and Molecular Mutagenesis, 48(3–4), 307–321. doi:10.1002/em.20298.PubMedCrossRef Meng, Q., Olivero, O. A., Fasco, M. J., Bellisario, R., Kaminsky, L., Pass, K. A., et al. (2007). Plasma and cellular markers of 3′-azido-3′-dideoxythymidine (AZT) metabolism as indicators of DNA damage in cord blood mononuclear cells from infants receiving prepartum NRTIs. Environmental and Molecular Mutagenesis, 48(3–4), 307–321. doi:10.​1002/​em.​20298.PubMedCrossRef
55.
go back to reference Olivero, O. A., Shearer, G. M., Chougnet, C. A., Kovacs, A. A., Landay, A. L., Baker, R., et al. (1999). Incorporation of zidovudine into leukocyte DNA from HIV-1-positive adults and pregnant women, and cord blood from infants exposed in utero. AIDS (London, England), 13(8), 919–925. doi:10.1097/00002030-199905280-00007. Olivero, O. A., Shearer, G. M., Chougnet, C. A., Kovacs, A. A., Landay, A. L., Baker, R., et al. (1999). Incorporation of zidovudine into leukocyte DNA from HIV-1-positive adults and pregnant women, and cord blood from infants exposed in utero. AIDS (London, England), 13(8), 919–925. doi:10.​1097/​00002030-199905280-00007.
56.
go back to reference Davey, G. P., Canevari, L., & Clark, J. B. (1997). Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. Journal of Neurochemistry, 69(6), 2564–2570.PubMedCrossRef Davey, G. P., Canevari, L., & Clark, J. B. (1997). Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. Journal of Neurochemistry, 69(6), 2564–2570.PubMedCrossRef
57.
go back to reference Johnson, A. A., Ray, A. S., Hanes, J., Suo, Z., Colacino, J. M., Anderson, K. S., et al. (2001). Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. The Journal of Biological Chemistry, 276(44), 40847–40857. doi:10.1074/jbc.M106743200.PubMedCrossRef Johnson, A. A., Ray, A. S., Hanes, J., Suo, Z., Colacino, J. M., Anderson, K. S., et al. (2001). Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. The Journal of Biological Chemistry, 276(44), 40847–40857. doi:10.​1074/​jbc.​M106743200.PubMedCrossRef
58.
59.
go back to reference Martin, J. L., Brown, C. E., Matthews-Davis, N., & Reardon, J. E. (1994). Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrobial Agents and Chemotherapy, 38(12), 2743–2749.PubMed Martin, J. L., Brown, C. E., Matthews-Davis, N., & Reardon, J. E. (1994). Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrobial Agents and Chemotherapy, 38(12), 2743–2749.PubMed
Metadata
Title
Long-Term Exposure to AZT, but not d4T, Increases Endothelial Cell Oxidative Stress and Mitochondrial Dysfunction
Authors
Erik R. Kline
Leda Bassit
Brenda I. Hernandez-Santiago
Mervi A. Detorio
Bill Liang
Dean J. Kleinhenz
Erik R. Walp
Sergey Dikalov
Dean P. Jones
Raymond F. Schinazi
Roy L. Sutliff
Publication date
01-03-2009
Publisher
Humana Press Inc
Published in
Cardiovascular Toxicology / Issue 1/2009
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-008-9029-8

Other articles of this Issue 1/2009

Cardiovascular Toxicology 1/2009 Go to the issue