Skip to main content
Top
Published in: Clinical Orthopaedics and Related Research® 5/2009

01-05-2009 | Symposium: Clubfoot: Etiology and Treatment

Mechanical Properties of Human Fetal Talus

Authors: Roza Mahmoodian, MS, Jeremi Leasure, BS, Hemanth Gadikota, MS, Franco Capaldi, PhD, Sorin Siegler, PhD

Published in: Clinical Orthopaedics and Related Research® | Issue 5/2009

Login to get access

Abstract

Mechanical characterization of human cartilage anlagen is required to effectively model congenital musculoskeletal deformities. Such modeling can effectively explore the effect of treatment procedures and potentially suggest enhanced treatment methods. Using serial MRI, we have noted shape changes of the cartilaginous hindfoot anlagen in patients with clubfoot, suggesting they are soft and deformable. We therefore determined the stress relaxation behavior of cartilage plugs obtained from third-trimester stillborn fetuses in unconfined and confined compression geometries. The material parameters determined were the aggregate modulus HA = 0.15 ± 0.07 MPa, Poisson’s ratio ν = 0.4 ± 0.06, Young’s modulus Es = 0.06 ± 0.03 MPa, and permeability coefficients k0 = 2.01 ± 0.8 × 10−14 m4 N−1 s−1 and M = 4.6 ± 1.0. As compared with adult articular cartilage, stiffness was an order of magnitude lower than the values reported in the literature, suggesting the relative softness of the tissue, and the permeability was an order of magnitude higher, indicating relative ease of flow in the tissue. Poisson’s ratio also was close to the higher end of the range reported in previous studies. Such material is expected to deform and relax to larger extents. These findings are consistent with the deformability of the cartilage anlagen during manipulation and casting for treatment of clubfoot.
Literature
1.
go back to reference Agrawal P, Atre PR, Kulkarni DS. The role of cartilage canals in the ossification of talus. Acta Anat (Basel). 1984;119:238–240.CrossRef Agrawal P, Atre PR, Kulkarni DS. The role of cartilage canals in the ossification of talus. Acta Anat (Basel). 1984;119:238–240.CrossRef
2.
go back to reference Agrawal P, Kulkarni DS, Atre PR. The participation of cartilage canals in the ossification of the human fetal calcaneum. J Anat. 1986;147:135–142.PubMed Agrawal P, Kulkarni DS, Atre PR. The participation of cartilage canals in the ossification of the human fetal calcaneum. J Anat. 1986;147:135–142.PubMed
3.
go back to reference Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am. 1982;64:88–94.PubMed Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am. 1982;64:88–94.PubMed
4.
go back to reference Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech. 1997;30:1157–1164.PubMedCrossRef Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech. 1997;30:1157–1164.PubMedCrossRef
5.
go back to reference Athanasiou KA, Niederauer GG, Schenck RC Jr. Biomechanical topography of human ankle cartilage. Ann Biomed Eng. 1995;23:697–704.PubMedCrossRef Athanasiou KA, Niederauer GG, Schenck RC Jr. Biomechanical topography of human ankle cartilage. Ann Biomed Eng. 1995;23:697–704.PubMedCrossRef
6.
go back to reference Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res. 1991;9:330–340.PubMedCrossRef Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res. 1991;9:330–340.PubMedCrossRef
7.
go back to reference Blumer MJF, Longato S, Richter E, Pérez M, Konakci K, Fritsch H. The role of cartilage canals in endochondral and perichondral bone formation: are there similarities between these two processes? J Anat. 2005;206:359–372.PubMedCrossRef Blumer MJF, Longato S, Richter E, Pérez M, Konakci K, Fritsch H. The role of cartilage canals in endochondral and perichondral bone formation: are there similarities between these two processes? J Anat. 2005;206:359–372.PubMedCrossRef
8.
go back to reference Boschetti F, Miotti C, Massi F, Colombo M. An experimental study on human articular cartilage permeability. Proceedings of the Second Joint EMBS/BMES Conference. 2002, pp. 2581–2582. Boschetti F, Miotti C, Massi F, Colombo M. An experimental study on human articular cartilage permeability. Proceedings of the Second Joint EMBS/BMES Conference. 2002, pp. 2581–2582.
9.
go back to reference Brand RA, Siegler S, Pirani S, Morrison WB, Udupa JK. Cartilage anlagen adapt in response to static deformation. Med Hypotheses. 2006;66:653–659.PubMedCrossRef Brand RA, Siegler S, Pirani S, Morrison WB, Udupa JK. Cartilage anlagen adapt in response to static deformation. Med Hypotheses. 2006;66:653–659.PubMedCrossRef
10.
go back to reference Brown TD, Singerman RJ. Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis. J Biomech. 1986;19:597–605.PubMedCrossRef Brown TD, Singerman RJ. Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis. J Biomech. 1986;19:597–605.PubMedCrossRef
11.
go back to reference Chen SS, Falcovitz YH, Schneiderman R, Maroudas A, Sah RL. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthritis Cartilage. 2001;9:561–569.PubMedCrossRef Chen SS, Falcovitz YH, Schneiderman R, Maroudas A, Sah RL. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthritis Cartilage. 2001;9:561–569.PubMedCrossRef
12.
go back to reference Cheng X, Wang Y, Qu H. Intrachondral microvasculature in the human fetal talus. Foot Ankle Int. 1997;18:335–338.PubMed Cheng X, Wang Y, Qu H. Intrachondral microvasculature in the human fetal talus. Foot Ankle Int. 1997;18:335–338.PubMed
13.
go back to reference Cheng X, Wang Y, Qu H, Jiang Y. Ossification processes and perichondral ossification groove of Ranvier: a morphological study in developing human calcaneus and talus. Foot Ankle Int. 1995;16:7–10.PubMed Cheng X, Wang Y, Qu H, Jiang Y. Ossification processes and perichondral ossification groove of Ranvier: a morphological study in developing human calcaneus and talus. Foot Ankle Int. 1995;16:7–10.PubMed
14.
go back to reference Cohen B, Lai WM, Mow VC. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng. 1998;120:491–496.PubMedCrossRef Cohen B, Lai WM, Mow VC. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng. 1998;120:491–496.PubMedCrossRef
15.
go back to reference Cummings RJ, Lovell WW. Operative treatment of congenital idiopathic club foot. J Bone Joint Surg Am. 1988;70:1108–1112.PubMed Cummings RJ, Lovell WW. Operative treatment of congenital idiopathic club foot. J Bone Joint Surg Am. 1988;70:1108–1112.PubMed
16.
go back to reference Delgado-Baeza E, Santos-Alvarez I, Epeidegui-Torre TE, Miralles-Flores C. Cartilage canals in the tarsal navicular of the human foetus and infant. Int Orthop. 1993;17:30–33.PubMedCrossRef Delgado-Baeza E, Santos-Alvarez I, Epeidegui-Torre TE, Miralles-Flores C. Cartilage canals in the tarsal navicular of the human foetus and infant. Int Orthop. 1993;17:30–33.PubMedCrossRef
17.
go back to reference Fritsch H, Brenner E, Debbage P. Ossification in the human calcaneus: a model for spatial bone development and ossification. J Anat. 2001;199:609–616.PubMedCrossRef Fritsch H, Brenner E, Debbage P. Ossification in the human calcaneus: a model for spatial bone development and ossification. J Anat. 2001;199:609–616.PubMedCrossRef
18.
go back to reference Fritsch H, Schmitt O, Eggers R. The ossification centre of the talus. Ann Anat. 1996;178:455–459.PubMed Fritsch H, Schmitt O, Eggers R. The ossification centre of the talus. Ann Anat. 1996;178:455–459.PubMed
19.
go back to reference Garcıa JJ, Altiero NJ, Haut RC. An approach for stress analysis of transversely isotropic cartilage under impact load. J Biomech Eng. 1998;120:608–613.PubMedCrossRef Garcıa JJ, Altiero NJ, Haut RC. An approach for stress analysis of transversely isotropic cartilage under impact load. J Biomech Eng. 1998;120:608–613.PubMedCrossRef
20.
go back to reference Garcıa JJ, Cortes DH. A nonlinear biphasic viscohyperelastic model for articular cartilage. J Biomech. 2006;39:2991–2998.PubMedCrossRef Garcıa JJ, Cortes DH. A nonlinear biphasic viscohyperelastic model for articular cartilage. J Biomech. 2006;39:2991–2998.PubMedCrossRef
21.
go back to reference Gleizes V, Viguier E, Féron JM, Canivet S, Lavaste F. Effects of freezing on the biomechanics of the intervertebral disc. Surg Radiol Anat. 1998;20:403–407.PubMedCrossRef Gleizes V, Viguier E, Féron JM, Canivet S, Lavaste F. Effects of freezing on the biomechanics of the intervertebral disc. Surg Radiol Anat. 1998;20:403–407.PubMedCrossRef
22.
go back to reference Grodzinsky AJ. Electromechanical and physicochemical properties of connective tissue. Crit Rev Biomed Eng. 1983;9:133–199.PubMed Grodzinsky AJ. Electromechanical and physicochemical properties of connective tissue. Crit Rev Biomed Eng. 1983;9:133–199.PubMed
23.
go back to reference Hayes WC, Keer LM, Herrmann G, Mockros LF. A mathematical analysis for indentation tests of articular cartilage. J Biomech. 1972; 5:541–551. Hayes WC, Keer LM, Herrmann G, Mockros LF. A mathematical analysis for indentation tests of articular cartilage. J Biomech. 1972; 5:541–551.
24.
go back to reference Hayes WC, Mockros LF. Viscoelastic properties of human articular cartilage. J Appl Physiol. 1971;31:562–568.PubMed Hayes WC, Mockros LF. Viscoelastic properties of human articular cartilage. J Appl Physiol. 1971;31:562–568.PubMed
25.
26.
go back to reference Irani RN, Sherman MS. The pathological anatomy of idiopathic clubfoot. Clin Orthop Relat Res. 1972;84:14–20.PubMedCrossRef Irani RN, Sherman MS. The pathological anatomy of idiopathic clubfoot. Clin Orthop Relat Res. 1972;84:14–20.PubMedCrossRef
27.
go back to reference Jurvelin JS, Arokoskib JPA, Hunzikerc EB, Helminen HJ. Topographical variation of the elastic properties of articular cartilage in the canine knee. J Biomech. 2000;33:669–675.PubMedCrossRef Jurvelin JS, Arokoskib JPA, Hunzikerc EB, Helminen HJ. Topographical variation of the elastic properties of articular cartilage in the canine knee. J Biomech. 2000;33:669–675.PubMedCrossRef
28.
go back to reference Kempson G, Spivey C, Swanson S, Freeman M. Patterns of cartilage stiffness on normal and degenerate human femoral heads. J Biomech. 1971;4:597–609.PubMedCrossRef Kempson G, Spivey C, Swanson S, Freeman M. Patterns of cartilage stiffness on normal and degenerate human femoral heads. J Biomech. 1971;4:597–609.PubMedCrossRef
29.
go back to reference Kite JH. Non-operative treatment of congenital clubfeet: a review of one hundred cases. South Med J. 1930;23:337. Kite JH. Non-operative treatment of congenital clubfeet: a review of one hundred cases. South Med J. 1930;23:337.
30.
go back to reference Kiviranta P, Rieppo J, Korhonen RK, Julkunen P, Töyräs J, Jurvelin JS. Collagen network primarily controls Poisson’s ratio of bovine articular cartilage in compression. J Orthop Res. 2006;24:690–699.PubMedCrossRef Kiviranta P, Rieppo J, Korhonen RK, Julkunen P, Töyräs J, Jurvelin JS. Collagen network primarily controls Poisson’s ratio of bovine articular cartilage in compression. J Orthop Res. 2006;24:690–699.PubMedCrossRef
31.
go back to reference Korhonen RK, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech. 2002;35:903–909.PubMedCrossRef Korhonen RK, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech. 2002;35:903–909.PubMedCrossRef
32.
33.
go back to reference Kwan MK, Lai WM, Mow VC. A finite deformation theory for cartilage and other soft hydrated connective tissues—I. Equilibrium results. J Biomech. 1990;23:145–155.PubMedCrossRef Kwan MK, Lai WM, Mow VC. A finite deformation theory for cartilage and other soft hydrated connective tissues—I. Equilibrium results. J Biomech. 1990;23:145–155.PubMedCrossRef
34.
go back to reference Lai WM, Hou JS, Mow WC. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng. 1991;113:245–258.PubMedCrossRef Lai WM, Hou JS, Mow WC. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng. 1991;113:245–258.PubMedCrossRef
35.
go back to reference Lai WM, Mow VC. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology. 1980;17:111–123.PubMed Lai WM, Mow VC. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology. 1980;17:111–123.PubMed
36.
go back to reference Lee KE, Pelker RR. Effect of freezing on histologic and biomechanical failure patterns in the rabbit capital femoral growth plate. J Orthop Res. 1985;3:514–515.PubMedCrossRef Lee KE, Pelker RR. Effect of freezing on histologic and biomechanical failure patterns in the rabbit capital femoral growth plate. J Orthop Res. 1985;3:514–515.PubMedCrossRef
37.
go back to reference Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A. Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin Biomech. 1999;14:673–682.CrossRef Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A. Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin Biomech. 1999;14:673–682.CrossRef
38.
go back to reference Lu XL, Sun DDN, Guo XE, Chen FH, Lai WM, Mow VC. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann Biomed Eng. 2004;32:370–379.PubMedCrossRef Lu XL, Sun DDN, Guo XE, Chen FH, Lai WM, Mow VC. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann Biomed Eng. 2004;32:370–379.PubMedCrossRef
39.
go back to reference Mak AF. Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology. 1986;23:371–383.PubMed Mak AF. Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology. 1986;23:371–383.PubMed
40.
go back to reference Mak AF. The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J Biomech Eng. 1986;108:123–130.PubMed Mak AF. The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J Biomech Eng. 1986;108:123–130.PubMed
41.
go back to reference Maroudas A, London, Bullough P, Oxford, Swanson SAV, Freeman MAR. The permeability of articular cartilage. J Bone Joint Surg Br. 1968;50:166–177.PubMed Maroudas A, London, Bullough P, Oxford, Swanson SAV, Freeman MAR. The permeability of articular cartilage. J Bone Joint Surg Br. 1968;50:166–177.PubMed
42.
go back to reference Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA. Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J Biomech. 1989;22:853–861.PubMedCrossRef Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA. Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J Biomech. 1989;22:853–861.PubMedCrossRef
43.
go back to reference Mow VC, Holmes MH, Lai WM. Fluid transport and mechanical properties of articular cartilage: a review. J Biomech. 1984;17:377–394.PubMedCrossRef Mow VC, Holmes MH, Lai WM. Fluid transport and mechanical properties of articular cartilage: a review. J Biomech. 1984;17:377–394.PubMedCrossRef
44.
go back to reference Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng. 1980;102:73–84.PubMedCrossRef Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng. 1980;102:73–84.PubMedCrossRef
45.
go back to reference Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchial materials and structures. Biomaterials. 1992;13:67–97.PubMedCrossRef Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchial materials and structures. Biomaterials. 1992;13:67–97.PubMedCrossRef
46.
go back to reference Parsons JR, Black J. The viscoelastic shear behavior of normal rabbit articular cartilage. J Biomech. 1977;10:21–29.PubMedCrossRef Parsons JR, Black J. The viscoelastic shear behavior of normal rabbit articular cartilage. J Biomech. 1977;10:21–29.PubMedCrossRef
47.
go back to reference Ponseti IV. Congenital Clubfoot: Fundamentals of Treatment. Oxford, UK: Oxford University Press; 1996. Ponseti IV. Congenital Clubfoot: Fundamentals of Treatment. Oxford, UK: Oxford University Press; 1996.
48.
go back to reference Ponseti IV, Smoley EN. Congenital club foot: the results of treatment. J Bone Joint Surg Am. 1963;45:261–344. Ponseti IV, Smoley EN. Congenital club foot: the results of treatment. J Bone Joint Surg Am. 1963;45:261–344.
49.
go back to reference Rieppo J, Töyräs J, Nieminen MT, Kovanen V, Hyttinen MM, Korhonen RK, Jurvelin JS, Helminena HJ. Structure-function relationships in enzymatically modified articular cartilage. Cells Tissues Organs. 2003;175:121–132.PubMedCrossRef Rieppo J, Töyräs J, Nieminen MT, Kovanen V, Hyttinen MM, Korhonen RK, Jurvelin JS, Helminena HJ. Structure-function relationships in enzymatically modified articular cartilage. Cells Tissues Organs. 2003;175:121–132.PubMedCrossRef
50.
go back to reference Rivers PA, Rosenwasser MP, Mow VC, Pawluk RJ, Strauch RJ, Sugalski MT, Ateshian GA. Osteoarthritic changes in the biochemical composition of thumb carpometacarpal joint cartilage and correlation with biomechanical properties. J Hand Surg [Am]. 2000;25:889–898. Rivers PA, Rosenwasser MP, Mow VC, Pawluk RJ, Strauch RJ, Sugalski MT, Ateshian GA. Osteoarthritic changes in the biochemical composition of thumb carpometacarpal joint cartilage and correlation with biomechanical properties. J Hand Surg [Am]. 2000;25:889–898.
51.
go back to reference Roberts S, Weightman B, Urban J, Chappell D. Mechanical and biochemical properties of human articular cartilage in osteoarthritic femoral heads and in autopsy specimens. J Bone Joint Surg Br. 1986;68:278–288.PubMed Roberts S, Weightman B, Urban J, Chappell D. Mechanical and biochemical properties of human articular cartilage in osteoarthritic femoral heads and in autopsy specimens. J Bone Joint Surg Br. 1986;68:278–288.PubMed
52.
go back to reference Soulhat J, Buschmann MD, Shirazi-Adl A. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng. 1999;121:340–347.PubMedCrossRef Soulhat J, Buschmann MD, Shirazi-Adl A. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng. 1999;121:340–347.PubMedCrossRef
53.
go back to reference Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Gordinsky AJ. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res. 2000;18:739–748.PubMedCrossRef Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Gordinsky AJ. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res. 2000;18:739–748.PubMedCrossRef
54.
go back to reference vanOsch GJVM, Blankevoort L, Kraan PMvd, Janssen B, Hekman E, Huiskes R, Berg WBvd. Laxity characteristics of normal and pathological murine knee joints in vitro. J Orthop Res. 1995;13:783–791.CrossRef vanOsch GJVM, Blankevoort L, Kraan PMvd, Janssen B, Hekman E, Huiskes R, Berg WBvd. Laxity characteristics of normal and pathological murine knee joints in vitro. J Orthop Res. 1995;13:783–791.CrossRef
55.
go back to reference Williamson AK, Chen AC, Masuda K, Thonar EJ-MA, Sah RL. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res. 2003;21:872–880.PubMedCrossRef Williamson AK, Chen AC, Masuda K, Thonar EJ-MA, Sah RL. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res. 2003;21:872–880.PubMedCrossRef
56.
go back to reference Williamson AK, Chen AC, Sah RL. Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res. 2001;19:1113–1121.PubMedCrossRef Williamson AK, Chen AC, Sah RL. Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res. 2001;19:1113–1121.PubMedCrossRef
57.
go back to reference Wilson W, Donkellar CCv, Rietgergen Bv, Ito K, Huiskes R. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech. 2004;37:357–366.PubMedCrossRef Wilson W, Donkellar CCv, Rietgergen Bv, Ito K, Huiskes R. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech. 2004;37:357–366.PubMedCrossRef
58.
go back to reference Wong M, Ponticiello M, Kovanen V, Jurvelin JS. Volumetric changes of articular cartilage during stress relaxation in unconditioned compression. J Biomech. 2000;33:1049–1054.PubMedCrossRef Wong M, Ponticiello M, Kovanen V, Jurvelin JS. Volumetric changes of articular cartilage during stress relaxation in unconditioned compression. J Biomech. 2000;33:1049–1054.PubMedCrossRef
59.
go back to reference Woo SL, Orlando CA, Camp JF, Akeson WH. Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech. 1986;19:399–404.PubMedCrossRef Woo SL, Orlando CA, Camp JF, Akeson WH. Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech. 1986;19:399–404.PubMedCrossRef
Metadata
Title
Mechanical Properties of Human Fetal Talus
Authors
Roza Mahmoodian, MS
Jeremi Leasure, BS
Hemanth Gadikota, MS
Franco Capaldi, PhD
Sorin Siegler, PhD
Publication date
01-05-2009
Publisher
Springer-Verlag
Published in
Clinical Orthopaedics and Related Research® / Issue 5/2009
Print ISSN: 0009-921X
Electronic ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-008-0693-6

Other articles of this Issue 5/2009

Clinical Orthopaedics and Related Research® 5/2009 Go to the issue

Symposium: Clubfoot: Etiology and Treatment

Beta-catenin Mediates Soft Tissue Contracture in Clubfoot