Skip to main content
Top
Published in: Current Treatment Options in Gastroenterology 4/2016

01-12-2016 | Motility (H Parkman and R Schey, Section Editors)

Cannabinoids and GI Disorders: Endogenous and Exogenous

Authors: Zachary Wilmer Reichenbach, M.D., Ph.D., Ron Schey, M.D., FACG

Published in: Current Treatment Options in Gastroenterology | Issue 4/2016

Login to get access

Opinion Statement

Despite the political and social controversy affiliated with it, the medical community must come to the realization that cannabinoids exist as a ubiquitous signaling system in many organ systems. Our understanding of cannabinoids and how they relate not only to homeostasis but also in disease states must be furthered through research, both clinically and in the laboratory. The identification of the cannabinoid receptors in the early 1990s have provided us with the perfect target of translational research. Already, much has been done with cannabinoids and the nervous system. Here, we explore the implications it has for the gastrointestinal tract. Most therapeutics currently on the market presently target only one aspect of the cannabinoid system. Our main purpose here is to highlight areas of research and potential avenues of discovery that the cannabinoid system has yet to reveal.
Literature
1.
go back to reference Mechoulam R. Cannabinoids as therapeutic agents. Boca Raton, Fla.: CRC Press; 1986. Mechoulam R. Cannabinoids as therapeutic agents. Boca Raton, Fla.: CRC Press; 1986.
3.
go back to reference Lutz B. Molecular biology of cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids. 2002;66:123–42.PubMedCrossRef Lutz B. Molecular biology of cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids. 2002;66:123–42.PubMedCrossRef
4.
5.
go back to reference Abood ME. Molecular biology of cannabinoid receptors. Handb Exp Pharmacol. 2005:81–115. Abood ME. Molecular biology of cannabinoid receptors. Handb Exp Pharmacol. 2005:81–115.
6.
go back to reference Howlett AC. Cannabinoid receptor signaling. Handb Exp Pharmacol. 2005:53–79. Howlett AC. Cannabinoid receptor signaling. Handb Exp Pharmacol. 2005:53–79.
7.
go back to reference Tuma RF, Steffens S. Targeting the endocannabinod system to limit myocardial and cerebral ischemic and reperfusion injury. Curr Pharm Biotechnol. 2012;13:46–58.PubMedCrossRef Tuma RF, Steffens S. Targeting the endocannabinod system to limit myocardial and cerebral ischemic and reperfusion injury. Curr Pharm Biotechnol. 2012;13:46–58.PubMedCrossRef
8.
go back to reference Pertwee RG, Ross RA. Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids. 2002;66:101–21.PubMedCrossRef Pertwee RG, Ross RA. Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids. 2002;66:101–21.PubMedCrossRef
9.
go back to reference Sánchez AJ, García-Merino A. Neuroprotective agents: cannabinoids. Clin Immunol. 2012;142:57–67.PubMedCrossRef Sánchez AJ, García-Merino A. Neuroprotective agents: cannabinoids. Clin Immunol. 2012;142:57–67.PubMedCrossRef
10.
go back to reference Herkenham M, Lynn AB, de Costa BR, Richfield EK. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res. 1991;547:267–74.PubMedCrossRef Herkenham M, Lynn AB, de Costa BR, Richfield EK. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res. 1991;547:267–74.PubMedCrossRef
11.
go back to reference Katona I, Sperlágh B, Sík A, Käfalvi A, Vizi ES, Mackie K, Freund TF. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci. 1999;19:4544–58.PubMed Katona I, Sperlágh B, Sík A, Käfalvi A, Vizi ES, Mackie K, Freund TF. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci. 1999;19:4544–58.PubMed
12.
go back to reference Hájos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci. 2000;12:3239–49.PubMedCrossRef Hájos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci. 2000;12:3239–49.PubMedCrossRef
13.
go back to reference Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008;7:438–55.PubMedCrossRef Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008;7:438–55.PubMedCrossRef
14.
go back to reference Katona I, Sperlágh B, Maglóczky Z, Sántha E, Köfalvi A, Czirják S, Mackie K, Vizi ES, Freund TF. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience. 2000;100:797–804.PubMedCrossRef Katona I, Sperlágh B, Maglóczky Z, Sántha E, Köfalvi A, Czirják S, Mackie K, Vizi ES, Freund TF. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience. 2000;100:797–804.PubMedCrossRef
15.
go back to reference Elphick MR, Egertová M. The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356:381–408.CrossRef Elphick MR, Egertová M. The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356:381–408.CrossRef
16.
go back to reference Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E, Spatz M. Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res. 2004;132:87–92.PubMedCrossRef Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E, Spatz M. Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res. 2004;132:87–92.PubMedCrossRef
17.
go back to reference Mestre L, Iñigo PM, Mecha M, Correa FG, Hernangómez-Herrero M, Loría F, Docagne F, Borrell J, Guaza C. Anandamide inhibits Theiler’s virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB(1) receptors. J Neuroinflammation. 2011;8:102.PubMedPubMedCentralCrossRef Mestre L, Iñigo PM, Mecha M, Correa FG, Hernangómez-Herrero M, Loría F, Docagne F, Borrell J, Guaza C. Anandamide inhibits Theiler’s virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB(1) receptors. J Neuroinflammation. 2011;8:102.PubMedPubMedCentralCrossRef
18.
go back to reference Liu J, Gao B, Mirshahi F, Sanyal AJ, Khanolkar AD, Makriyannis A, Kunos G. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J. 2000;346(Pt 3):835–40.PubMedPubMedCentralCrossRef Liu J, Gao B, Mirshahi F, Sanyal AJ, Khanolkar AD, Makriyannis A, Kunos G. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J. 2000;346(Pt 3):835–40.PubMedPubMedCentralCrossRef
19.
go back to reference Storr MA, Yüce B, Andrews CN, Sharkey KA. The role of the endocannabinoid system in the pathophysiology and treatment of irritable bowel syndrome. Neurogastroenterol Motil. 2008;20:857–68.PubMedCrossRef Storr MA, Yüce B, Andrews CN, Sharkey KA. The role of the endocannabinoid system in the pathophysiology and treatment of irritable bowel syndrome. Neurogastroenterol Motil. 2008;20:857–68.PubMedCrossRef
20.
go back to reference Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S. Localisation of cannabinoid CB(1) receptor immunoreactivity in the Guinea pig and rat myenteric plexus. J Comp Neurol. 2002;448:410–22.PubMedCrossRef Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S. Localisation of cannabinoid CB(1) receptor immunoreactivity in the Guinea pig and rat myenteric plexus. J Comp Neurol. 2002;448:410–22.PubMedCrossRef
21.
go back to reference Kulkarni-Narla A, Brown DR. Localization of CB1-cannabinoid receptor immunoreactivity in the porcine enteric nervous system. Cell Tissue Res. 2000;302:73–80.PubMedCrossRef Kulkarni-Narla A, Brown DR. Localization of CB1-cannabinoid receptor immunoreactivity in the porcine enteric nervous system. Cell Tissue Res. 2000;302:73–80.PubMedCrossRef
22.
go back to reference Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther. 2010;126:21–38.PubMedCrossRef Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther. 2010;126:21–38.PubMedCrossRef
23.
go back to reference Nasser Y, Bashashati M, Andrews CN. Toward modulation of the endocannabinoid system for treatment of gastrointestinal disease: FAAHster but not "higher. Neurogastroenterol Motil. 2014;26:447–54.PubMedCrossRef Nasser Y, Bashashati M, Andrews CN. Toward modulation of the endocannabinoid system for treatment of gastrointestinal disease: FAAHster but not "higher. Neurogastroenterol Motil. 2014;26:447–54.PubMedCrossRef
24.
go back to reference Bouaboula M, Rinaldi M, Carayon P, Carillon C, Delpech B, Shire D, Le Fur G, Casellas P. Cannabinoid-receptor expression in human leukocytes. Eur J Biochem. 1993;214:173–80.PubMedCrossRef Bouaboula M, Rinaldi M, Carayon P, Carillon C, Delpech B, Shire D, Le Fur G, Casellas P. Cannabinoid-receptor expression in human leukocytes. Eur J Biochem. 1993;214:173–80.PubMedCrossRef
25.
go back to reference Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.PubMedCrossRef Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.PubMedCrossRef
26.
go back to reference Färber K, Kettenmann H. Physiology of microglial cells. Brain Res Brain Res Rev. 2005;48:133–43.PubMedCrossRef Färber K, Kettenmann H. Physiology of microglial cells. Brain Res Brain Res Rev. 2005;48:133–43.PubMedCrossRef
27.
go back to reference Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071:10–23.PubMedCrossRef Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071:10–23.PubMedCrossRef
28.
go back to reference Duncan M, Mouihate A, Mackie K, Keenan CM, Buckley NE, Davison JS, Patel KD, Pittman QJ, Sharkey KA. Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats. Am J Physiol Gastrointest Liver Physiol. 2008;295:G78–87.PubMedPubMedCentralCrossRef Duncan M, Mouihate A, Mackie K, Keenan CM, Buckley NE, Davison JS, Patel KD, Pittman QJ, Sharkey KA. Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats. Am J Physiol Gastrointest Liver Physiol. 2008;295:G78–87.PubMedPubMedCentralCrossRef
29.
go back to reference Storr M, Gaffal E, Saur D, Schusdziarra V, Allescher HD. Effect of cannabinoids on neural transmission in rat gastric fundus. Can J Physiol Pharmacol. 2002;80:67–76.PubMedCrossRef Storr M, Gaffal E, Saur D, Schusdziarra V, Allescher HD. Effect of cannabinoids on neural transmission in rat gastric fundus. Can J Physiol Pharmacol. 2002;80:67–76.PubMedCrossRef
30.
go back to reference Yang H, Zhou J, Lehmann C. GPR55 - a putative "type 3" cannabinoid receptor in inflammation. J Basic Clin Physiol Pharmacol. 2016;27:297–302.PubMedCrossRef Yang H, Zhou J, Lehmann C. GPR55 - a putative "type 3" cannabinoid receptor in inflammation. J Basic Clin Physiol Pharmacol. 2016;27:297–302.PubMedCrossRef
33.
go back to reference Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.PubMedPubMedCentralCrossRef Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.PubMedPubMedCentralCrossRef
34••.
go back to reference Li K, Fichna J, Schicho R, Saur D, Bashashati M, Mackie K, Li Y, Zimmer A, Göke B, Sharkey KA, Storr M. A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. Neuropharmacology. 2013;71:255–63 Novel research exploring the role of GPR55 in affecting colonic motility. It showed that O-1602, a GPR55 agonist, was able to slow colonic motility. This is important because ligands for GPR55 may lack the central side effects of other cannabinoid agents.PubMedPubMedCentralCrossRef Li K, Fichna J, Schicho R, Saur D, Bashashati M, Mackie K, Li Y, Zimmer A, Göke B, Sharkey KA, Storr M. A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. Neuropharmacology. 2013;71:255–63 Novel research exploring the role of GPR55 in affecting colonic motility. It showed that O-1602, a GPR55 agonist, was able to slow colonic motility. This is important because ligands for GPR55 may lack the central side effects of other cannabinoid agents.PubMedPubMedCentralCrossRef
35.
go back to reference Begg M, Pacher P, Bátkai S, Osei-Hyiaman D, Offertáler L, Mo FM, Liu J, Kunos G. Evidence for novel cannabinoid receptors. Pharmacol Ther. 2005;106:133–45.PubMedCrossRef Begg M, Pacher P, Bátkai S, Osei-Hyiaman D, Offertáler L, Mo FM, Liu J, Kunos G. Evidence for novel cannabinoid receptors. Pharmacol Ther. 2005;106:133–45.PubMedCrossRef
36.
go back to reference Cluny NL, Keenan CM, Lutz B, Piomelli D, Sharkey KA. The identification of peroxisome proliferator-activated receptor alpha-independent effects of oleoylethanolamide on intestinal transit in mice. Neurogastroenterol Motil. 2009;21:420–9.PubMedCrossRef Cluny NL, Keenan CM, Lutz B, Piomelli D, Sharkey KA. The identification of peroxisome proliferator-activated receptor alpha-independent effects of oleoylethanolamide on intestinal transit in mice. Neurogastroenterol Motil. 2009;21:420–9.PubMedCrossRef
37.
go back to reference Berdyshev EV. Cannabinoid receptors and the regulation of immune response. Chem Phys Lipids. 2000;108:169–90.PubMedCrossRef Berdyshev EV. Cannabinoid receptors and the regulation of immune response. Chem Phys Lipids. 2000;108:169–90.PubMedCrossRef
38.
go back to reference Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem. 1998;71:1525–34.PubMedCrossRef Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem. 1998;71:1525–34.PubMedCrossRef
39.
go back to reference Rhee MH, Nevo I, Avidor-Reiss T, Levy R, Vogel Z. Differential superactivation of adenylyl cyclase isozymes after chronic activation of the CB(1) cannabinoid receptor. Mol Pharmacol. 2000;57:746–52.PubMed Rhee MH, Nevo I, Avidor-Reiss T, Levy R, Vogel Z. Differential superactivation of adenylyl cyclase isozymes after chronic activation of the CB(1) cannabinoid receptor. Mol Pharmacol. 2000;57:746–52.PubMed
40.
go back to reference Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron. 2006;49:67–79.PubMedCrossRef Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron. 2006;49:67–79.PubMedCrossRef
41.
go back to reference Rivest S. Cannabinoids in microglia: a new trick for immune surveillance and neuroprotection. Neuron. 2006;49:4–8.PubMedCrossRef Rivest S. Cannabinoids in microglia: a new trick for immune surveillance and neuroprotection. Neuron. 2006;49:4–8.PubMedCrossRef
42.
go back to reference Mukhopadhyay S, Shim JY, Assi AA, Norford D, Howlett AC. CB(1) cannabinoid receptor-G protein association: a possible mechanism for differential signaling. Chem Phys Lipids. 2002;121:91–109.PubMedCrossRef Mukhopadhyay S, Shim JY, Assi AA, Norford D, Howlett AC. CB(1) cannabinoid receptor-G protein association: a possible mechanism for differential signaling. Chem Phys Lipids. 2002;121:91–109.PubMedCrossRef
44.
go back to reference Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR. Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Phys. 1999;276:H2085–93. Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR. Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Phys. 1999;276:H2085–93.
45.
go back to reference Mackie K, Lai Y, Westenbroek R, Mitchell R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci. 1995;15:6552–61.PubMed Mackie K, Lai Y, Westenbroek R, Mitchell R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci. 1995;15:6552–61.PubMed
46.
go back to reference Gómez Del Pulgar T, De Ceballos ML, Guzmán M, Velasco G. Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem. 2002;277:36527–33.PubMedCrossRef Gómez Del Pulgar T, De Ceballos ML, Guzmán M, Velasco G. Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem. 2002;277:36527–33.PubMedCrossRef
47.
go back to reference Gómez del Pulgar T, Velasco G, Guzmán M. The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J. 2000;347:369–73.PubMedPubMedCentralCrossRef Gómez del Pulgar T, Velasco G, Guzmán M. The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J. 2000;347:369–73.PubMedPubMedCentralCrossRef
48.
go back to reference Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G. CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem. 2004;11:625–32.PubMedPubMedCentralCrossRef Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G. CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem. 2004;11:625–32.PubMedPubMedCentralCrossRef
49.
go back to reference Merighi S, Gessi S, Varani K, Simioni C, Fazzi D, Mirandola P, Borea PA, Cannabinoid CB. (2) receptors modulate ERK-1/2 kinase signalling and NO release in microglial cells stimulated with bacterial lipopolysaccharide. Br J Pharmacol. 2012;165:1773–88.PubMedPubMedCentralCrossRef Merighi S, Gessi S, Varani K, Simioni C, Fazzi D, Mirandola P, Borea PA, Cannabinoid CB. (2) receptors modulate ERK-1/2 kinase signalling and NO release in microglial cells stimulated with bacterial lipopolysaccharide. Br J Pharmacol. 2012;165:1773–88.PubMedPubMedCentralCrossRef
50.
go back to reference Bouaboula M, Dussossoy D, Casellas P. Regulation of peripheral cannabinoid receptor CB2 phosphorylation by the inverse agonist SR 144528. Implications for receptor biological responses. J Biol Chem. 1999;274:20397–405.PubMedCrossRef Bouaboula M, Dussossoy D, Casellas P. Regulation of peripheral cannabinoid receptor CB2 phosphorylation by the inverse agonist SR 144528. Implications for receptor biological responses. J Biol Chem. 1999;274:20397–405.PubMedCrossRef
51.
go back to reference Bouaboula M, Poinot-Chazel C, Bourrié B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas P. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J. 1995;312(Pt 2):637–41.PubMedPubMedCentralCrossRef Bouaboula M, Poinot-Chazel C, Bourrié B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas P. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J. 1995;312(Pt 2):637–41.PubMedPubMedCentralCrossRef
52.
go back to reference Di Marzo V, Petrosino S. Endocannabinoids and the regulation of their levels in health and disease. Curr Opin Lipidol. 2007;18:129–40.PubMedCrossRef Di Marzo V, Petrosino S. Endocannabinoids and the regulation of their levels in health and disease. Curr Opin Lipidol. 2007;18:129–40.PubMedCrossRef
53.
go back to reference Bifulco M, Laezza C, Valenti M, Ligresti A, Portella G, Marzo VDI. A new strategy to block tumor growth by inhibiting endocannabinoid inactivation. FASEB J. 2004;18:1606–8.PubMed Bifulco M, Laezza C, Valenti M, Ligresti A, Portella G, Marzo VDI. A new strategy to block tumor growth by inhibiting endocannabinoid inactivation. FASEB J. 2004;18:1606–8.PubMed
54.
go back to reference Vandevoorde S, Fowler CJ. Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate. Br J Pharmacol. 2005;145:885–93.PubMedPubMedCentralCrossRef Vandevoorde S, Fowler CJ. Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate. Br J Pharmacol. 2005;145:885–93.PubMedPubMedCentralCrossRef
55•.
go back to reference Nicolussi S, Gertsch J. Endocannabinoid transport revisited. Vitam Horm. 2015;98:441–85 This chapter explores the function of the EMT which is emerging as a target of pharmacological research.PubMedCrossRef Nicolussi S, Gertsch J. Endocannabinoid transport revisited. Vitam Horm. 2015;98:441–85 This chapter explores the function of the EMT which is emerging as a target of pharmacological research.PubMedCrossRef
56.
go back to reference D.A. Drossman, Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV, Gastroenterology, (2016). D.A. Drossman, Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV, Gastroenterology, (2016).
57.
go back to reference Saito YA, Schoenfeld P, Locke GR. The epidemiology of irritable bowel syndrome in North America: a systematic review. Am J Gastroenterol. 2002;97:1910–5.PubMed Saito YA, Schoenfeld P, Locke GR. The epidemiology of irritable bowel syndrome in North America: a systematic review. Am J Gastroenterol. 2002;97:1910–5.PubMed
60.
go back to reference Pinto L, Capasso R, Di Carlo G, Izzo AA. Endocannabinoids and the gut. Prostaglandins Leukot Essent Fatty Acids. 2002;66:333–41.PubMedCrossRef Pinto L, Capasso R, Di Carlo G, Izzo AA. Endocannabinoids and the gut. Prostaglandins Leukot Essent Fatty Acids. 2002;66:333–41.PubMedCrossRef
61.
go back to reference Pinto L, Izzo AA, Cascio MG, Bisogno T, Hospodar-Scott K, Brown DR, Mascolo N, Di Marzo V, Capasso F. Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology. 2002;123:227–34.PubMedCrossRef Pinto L, Izzo AA, Cascio MG, Bisogno T, Hospodar-Scott K, Brown DR, Mascolo N, Di Marzo V, Capasso F. Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology. 2002;123:227–34.PubMedCrossRef
62••.
go back to reference Abalo R, Chen C, Vera G, Fichna J, Thakur GA, López-Pérez AE, Makriyannis A, Martín-Fontelles MI, Storr M. In vitro and non-invasive in vivo effects of the cannabinoid-1 receptor agonist AM841 on gastrointestinal motor function in the rat. Neurogastroenterol Motil. 2015;27:1721–35 The article explores the use of a new mega-agonist, AM841 which was able to inhibit GI transit in a CB 1 R dependent manner at doses that did not elicit central CB 1 R side effects.PubMedCrossRef Abalo R, Chen C, Vera G, Fichna J, Thakur GA, López-Pérez AE, Makriyannis A, Martín-Fontelles MI, Storr M. In vitro and non-invasive in vivo effects of the cannabinoid-1 receptor agonist AM841 on gastrointestinal motor function in the rat. Neurogastroenterol Motil. 2015;27:1721–35 The article explores the use of a new mega-agonist, AM841 which was able to inhibit GI transit in a CB 1 R dependent manner at doses that did not elicit central CB 1 R side effects.PubMedCrossRef
63••.
go back to reference Keenan CM, Storr MA, Thakur GA, Wood JT, Wager-Miller J, Straiker A, Eno MR, Nikas SP, Bashashati M, Hu H, Mackie K, Makriyannis A, Sharkey KA. AM841, a covalent cannabinoid ligand, powerfully slows gastrointestinal motility in normal and stressed mice in a peripherally restricted manner. Br J Pharmacol. 2015;172:2406–18 Also explores the use of AM841 in slowing GI motility without central side effects. This could potentially allow for less restricted use of cannabinoid agents.PubMedPubMedCentralCrossRef Keenan CM, Storr MA, Thakur GA, Wood JT, Wager-Miller J, Straiker A, Eno MR, Nikas SP, Bashashati M, Hu H, Mackie K, Makriyannis A, Sharkey KA. AM841, a covalent cannabinoid ligand, powerfully slows gastrointestinal motility in normal and stressed mice in a peripherally restricted manner. Br J Pharmacol. 2015;172:2406–18 Also explores the use of AM841 in slowing GI motility without central side effects. This could potentially allow for less restricted use of cannabinoid agents.PubMedPubMedCentralCrossRef
64••.
go back to reference Li XH, Lin ML, Wang ZL, Wang P, Tang HH, Lin YY, Li N, Fang Q, Wang R. Central administrations of hemopressin and related peptides inhibit gastrointestinal motility in mice. Neurogastroenterol Motil. 2016;28:891–9 Explores the use of a novel group of CB 1 R agonists, hemopressin, and their ability to slow GI motility through a CB 1 R dependent manner.PubMedCrossRef Li XH, Lin ML, Wang ZL, Wang P, Tang HH, Lin YY, Li N, Fang Q, Wang R. Central administrations of hemopressin and related peptides inhibit gastrointestinal motility in mice. Neurogastroenterol Motil. 2016;28:891–9 Explores the use of a novel group of CB 1 R agonists, hemopressin, and their ability to slow GI motility through a CB 1 R dependent manner.PubMedCrossRef
65.
go back to reference Wong BS, Camilleri M, Busciglio I, Carlson P, Szarka LA, Burton D, Zinsmeister AR. Pharmacogenetic trial of a cannabinoid agonist shows reduced fasting colonic motility in patients with nonconstipated irritable bowel syndrome. Gastroenterology. 2011;141:1638–47 e1631-1637.PubMedPubMedCentralCrossRef Wong BS, Camilleri M, Busciglio I, Carlson P, Szarka LA, Burton D, Zinsmeister AR. Pharmacogenetic trial of a cannabinoid agonist shows reduced fasting colonic motility in patients with nonconstipated irritable bowel syndrome. Gastroenterology. 2011;141:1638–47 e1631-1637.PubMedPubMedCentralCrossRef
66.
go back to reference Grider JR, Mahavadi S, Li Y, Qiao LY, Kuemmerle JF, Murthy KS, Martin BR. Modulation of motor and sensory pathways of the peristaltic reflex by cannabinoids. Am J Physiol Gastrointest Liver Physiol. 2009;297:G539–49.PubMedPubMedCentralCrossRef Grider JR, Mahavadi S, Li Y, Qiao LY, Kuemmerle JF, Murthy KS, Martin BR. Modulation of motor and sensory pathways of the peristaltic reflex by cannabinoids. Am J Physiol Gastrointest Liver Physiol. 2009;297:G539–49.PubMedPubMedCentralCrossRef
67.
go back to reference Abalo R, Vera G, López-Pérez AE, Martínez-Villaluenga M, Martín-Fontelles MI. The gastrointestinal pharmacology of cannabinoids: focus on motility. Pharmacology. 2012;90:1–10.PubMedCrossRef Abalo R, Vera G, López-Pérez AE, Martínez-Villaluenga M, Martín-Fontelles MI. The gastrointestinal pharmacology of cannabinoids: focus on motility. Pharmacology. 2012;90:1–10.PubMedCrossRef
68.
go back to reference Sibaev A, Yüce B, Kemmer M, Van Nassauw L, Broedl U, Allescher HD, Göke B, Timmermans JP, Storr M. Cannabinoid-1 (CB1) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon. Am J Physiol Gastrointest Liver Physiol. 2009;296:G119–28.PubMedCrossRef Sibaev A, Yüce B, Kemmer M, Van Nassauw L, Broedl U, Allescher HD, Göke B, Timmermans JP, Storr M. Cannabinoid-1 (CB1) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon. Am J Physiol Gastrointest Liver Physiol. 2009;296:G119–28.PubMedCrossRef
69.
go back to reference Izzo AA, Fezza F, Capasso R, Bisogno T, Pinto L, Iuvone T, Esposito G, Mascolo N, Di Marzo V, Capasso F. Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol. 2001;134:563–70.PubMedPubMedCentralCrossRef Izzo AA, Fezza F, Capasso R, Bisogno T, Pinto L, Iuvone T, Esposito G, Mascolo N, Di Marzo V, Capasso F. Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol. 2001;134:563–70.PubMedPubMedCentralCrossRef
70.
go back to reference Izzo AA, Mascolo N, Pinto L, Capasso R, Capasso F. The role of cannabinoid receptors in intestinal motility, defaecation and diarrhoea in rats. Eur J Pharmacol. 1999;384:37–42.PubMedCrossRef Izzo AA, Mascolo N, Pinto L, Capasso R, Capasso F. The role of cannabinoid receptors in intestinal motility, defaecation and diarrhoea in rats. Eur J Pharmacol. 1999;384:37–42.PubMedCrossRef
71.
go back to reference Mathison R, Ho W, Pittman QJ, Davison JS, Sharkey KA. Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats. Br J Pharmacol. 2004;142:1247–54.PubMedPubMedCentralCrossRef Mathison R, Ho W, Pittman QJ, Davison JS, Sharkey KA. Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats. Br J Pharmacol. 2004;142:1247–54.PubMedPubMedCentralCrossRef
72.
go back to reference Capasso R, Matias I, Lutz B, Borrelli F, Capasso F, Marsicano G, Mascolo N, Petrosino S, Monory K, Valenti M, Di Marzo V, Izzo AA. Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology. 2005;129:941–51.PubMedCrossRef Capasso R, Matias I, Lutz B, Borrelli F, Capasso F, Marsicano G, Mascolo N, Petrosino S, Monory K, Valenti M, Di Marzo V, Izzo AA. Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology. 2005;129:941–51.PubMedCrossRef
73.
go back to reference Fichna J, Sałaga M, Stuart J, Saur D, Sobczak M, Zatorski H, Timmermans JP, Bradshaw HB, Ahn K, Storr MA. Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. Neurogastroenterol Motil. 2014;26:470–81.PubMedCrossRef Fichna J, Sałaga M, Stuart J, Saur D, Sobczak M, Zatorski H, Timmermans JP, Bradshaw HB, Ahn K, Storr MA. Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. Neurogastroenterol Motil. 2014;26:470–81.PubMedCrossRef
74.
go back to reference Zhang SC, Wang WL, Su PJ, Jiang KL, Yuan ZW. Decreased enteric fatty acid amide hydrolase activity is associated with colonic inertia in slow transit constipation. J Gastroenterol Hepatol. 2014;29:276–83.PubMedCrossRef Zhang SC, Wang WL, Su PJ, Jiang KL, Yuan ZW. Decreased enteric fatty acid amide hydrolase activity is associated with colonic inertia in slow transit constipation. J Gastroenterol Hepatol. 2014;29:276–83.PubMedCrossRef
75••.
go back to reference Bashashati M, Nasser Y, Keenan CM, Ho W, Piscitelli F, Nalli M, Mackie K, Storr MA, Di Marzo V, Sharkey KA. Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation. Br J Pharmacol. 2015;172:3099–111 In this report, the authors inhibited DAGL and found a resolution of constipation and increased motility. This occurred in a 2-AG and CB 1 R dependent fashion. DAGL remains a very novel area of drug development for the treatment of constipation.PubMedPubMedCentralCrossRef Bashashati M, Nasser Y, Keenan CM, Ho W, Piscitelli F, Nalli M, Mackie K, Storr MA, Di Marzo V, Sharkey KA. Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation. Br J Pharmacol. 2015;172:3099–111 In this report, the authors inhibited DAGL and found a resolution of constipation and increased motility. This occurred in a 2-AG and CB 1 R dependent fashion. DAGL remains a very novel area of drug development for the treatment of constipation.PubMedPubMedCentralCrossRef
76.
go back to reference T.R. Harrison, A.S. Fauci, Harrison’s principles of internal medicine, 14th ed., McGraw-Hill, Health Professions Division, New York, 1998. T.R. Harrison, A.S. Fauci, Harrison’s principles of internal medicine, 14th ed., McGraw-Hill, Health Professions Division, New York, 1998.
77.
go back to reference Kimball ES, Schneider CR, Wallace NH, Hornby PJ. Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol. 2006;291:G364–71.PubMedCrossRef Kimball ES, Schneider CR, Wallace NH, Hornby PJ. Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol. 2006;291:G364–71.PubMedCrossRef
78.
go back to reference Massa F, Marsicano G, Hermann H, Cannich A, Monory K, Cravatt BF, Ferri GL, Sibaev A, Storr M, Lutz B. The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest. 2004;113:1202–9.PubMedPubMedCentralCrossRef Massa F, Marsicano G, Hermann H, Cannich A, Monory K, Cravatt BF, Ferri GL, Sibaev A, Storr M, Lutz B. The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest. 2004;113:1202–9.PubMedPubMedCentralCrossRef
79.
go back to reference Wright KL, Duncan M, Sharkey KA. Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol. 2008;153:263–70.PubMedCrossRef Wright KL, Duncan M, Sharkey KA. Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol. 2008;153:263–70.PubMedCrossRef
80.
go back to reference Izzo AA, Pinto L, Borrelli F, Capasso R, Mascolo N, Capasso F. Central and peripheral cannabinoid modulation of gastrointestinal transit in physiological states or during the diarrhoea induced by croton oil. Br J Pharmacol. 2000;129:1627–32.PubMedPubMedCentralCrossRef Izzo AA, Pinto L, Borrelli F, Capasso R, Mascolo N, Capasso F. Central and peripheral cannabinoid modulation of gastrointestinal transit in physiological states or during the diarrhoea induced by croton oil. Br J Pharmacol. 2000;129:1627–32.PubMedPubMedCentralCrossRef
81.
go back to reference Storr MA, Keenan CM, Emmerdinger D, Zhang H, Yüce B, Sibaev A, Massa F, Buckley NE, Lutz B, Göke B, Brand S, Patel KD, Sharkey KA. Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med (Berl). 2008;86:925–36.CrossRef Storr MA, Keenan CM, Emmerdinger D, Zhang H, Yüce B, Sibaev A, Massa F, Buckley NE, Lutz B, Göke B, Brand S, Patel KD, Sharkey KA. Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med (Berl). 2008;86:925–36.CrossRef
82••.
go back to reference Sałaga M, Mokrowiecka A, Zakrzewski PK, Cygankiewicz A, Leishman E, Sobczak M, Zatorski H, Małecka-Panas E, Kordek R, Storr M, Krajewska WM, Bradshaw HB, Fichna J. Experimental colitis in mice is attenuated by changes in the levels of endocannabinoid metabolites induced by selective inhibition of fatty acid amide hydrolase (FAAH. J Crohns Colitis. 2014;8:998–1009 In this study, the authors employed PF-3845, a FAAH inhibitor, and found that it diminished colitis. Modulating cannabinoid production and degradation exist as promising avenues to capitalize on the ECS without directly utilizing a CB 1 R agonist.PubMedPubMedCentralCrossRef Sałaga M, Mokrowiecka A, Zakrzewski PK, Cygankiewicz A, Leishman E, Sobczak M, Zatorski H, Małecka-Panas E, Kordek R, Storr M, Krajewska WM, Bradshaw HB, Fichna J. Experimental colitis in mice is attenuated by changes in the levels of endocannabinoid metabolites induced by selective inhibition of fatty acid amide hydrolase (FAAH. J Crohns Colitis. 2014;8:998–1009 In this study, the authors employed PF-3845, a FAAH inhibitor, and found that it diminished colitis. Modulating cannabinoid production and degradation exist as promising avenues to capitalize on the ECS without directly utilizing a CB 1 R agonist.PubMedPubMedCentralCrossRef
83••.
go back to reference Stančić A, Jandl K, Hasenöhrl C, Reichmann F, Marsche G, Schuligoi R, Heinemann A, Storr M, Schicho R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil. 2015;27:1432–45 The exploration of GPR55 in GI disorders has only started. The authors here utilized a blockage of GPR55 and found that it reduced intestinal inflammation.PubMedPubMedCentralCrossRef Stančić A, Jandl K, Hasenöhrl C, Reichmann F, Marsche G, Schuligoi R, Heinemann A, Storr M, Schicho R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil. 2015;27:1432–45 The exploration of GPR55 in GI disorders has only started. The authors here utilized a blockage of GPR55 and found that it reduced intestinal inflammation.PubMedPubMedCentralCrossRef
84.
go back to reference Naftali T, Mechulam R, Lev LB, Konikoff FM. Cannabis for inflammatory bowel disease. Dig Dis. 2014;32:468–74.PubMedCrossRef Naftali T, Mechulam R, Lev LB, Konikoff FM. Cannabis for inflammatory bowel disease. Dig Dis. 2014;32:468–74.PubMedCrossRef
85.
go back to reference Naftali T, Bar-Lev Schleider L, Dotan I, Lansky EP, Sklerovsky Benjaminov F, Konikoff FM. Cannabis induces a clinical response in patients with Crohn’s disease: a prospective placebo-controlled study. Clin Gastroenterol Hepatol. 2013;11:1276–80 e1271.PubMedCrossRef Naftali T, Bar-Lev Schleider L, Dotan I, Lansky EP, Sklerovsky Benjaminov F, Konikoff FM. Cannabis induces a clinical response in patients with Crohn’s disease: a prospective placebo-controlled study. Clin Gastroenterol Hepatol. 2013;11:1276–80 e1271.PubMedCrossRef
86.
go back to reference Storr M, Devlin S, Kaplan GG, Panaccione R, Andrews CN. Cannabis use provides symptom relief in patients with inflammatory bowel disease but is associated with worse disease prognosis in patients with Crohn’s disease. Inflamm Bowel Dis. 2014;20:472–80.PubMedCrossRef Storr M, Devlin S, Kaplan GG, Panaccione R, Andrews CN. Cannabis use provides symptom relief in patients with inflammatory bowel disease but is associated with worse disease prognosis in patients with Crohn’s disease. Inflamm Bowel Dis. 2014;20:472–80.PubMedCrossRef
87.
go back to reference D’Argenio G, Petrosino S, Gianfrani C, Valenti M, Scaglione G, Grandone I, Nigam S, Sorrentini I, Mazzarella G, Di Marzo V. Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats. J Mol Med (Berl). 2007;85:523–30.CrossRef D’Argenio G, Petrosino S, Gianfrani C, Valenti M, Scaglione G, Grandone I, Nigam S, Sorrentini I, Mazzarella G, Di Marzo V. Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats. J Mol Med (Berl). 2007;85:523–30.CrossRef
88.
go back to reference Battista N, Di Sabatino A, Di Tommaso M, Biancheri P, Rapino C, Vidali F, Papadia C, Montana C, Pasini A, Lanzini A, Villanacci V, Corazza GR, Maccarrone M. Abnormal anandamide metabolism in celiac disease. J Nutr Biochem. 2012;23:1245–8.PubMedCrossRef Battista N, Di Sabatino A, Di Tommaso M, Biancheri P, Rapino C, Vidali F, Papadia C, Montana C, Pasini A, Lanzini A, Villanacci V, Corazza GR, Maccarrone M. Abnormal anandamide metabolism in celiac disease. J Nutr Biochem. 2012;23:1245–8.PubMedCrossRef
89.
go back to reference Sharkey KA, Darmani NA, Parker LA. Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. Eur J Pharmacol. 2014;722:134–46.PubMedCrossRef Sharkey KA, Darmani NA, Parker LA. Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. Eur J Pharmacol. 2014;722:134–46.PubMedCrossRef
90.
go back to reference Schicho R, Storr M. Targeting the endocannabinoid system for gastrointestinal diseases: future therapeutic strategies. Expert Rev Clin Pharmacol. 2010;3:193–207.PubMedCrossRef Schicho R, Storr M. Targeting the endocannabinoid system for gastrointestinal diseases: future therapeutic strategies. Expert Rev Clin Pharmacol. 2010;3:193–207.PubMedCrossRef
91.
go back to reference Darmani NA, McClanahan BA, Trinh C, Petrosino S, Valenti M, Di Marzo V. Cisplatin increases brain 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew. Neuropharmacology. 2005;49:502–13.PubMedCrossRef Darmani NA, McClanahan BA, Trinh C, Petrosino S, Valenti M, Di Marzo V. Cisplatin increases brain 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew. Neuropharmacology. 2005;49:502–13.PubMedCrossRef
92.
go back to reference Darmani NA. The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by delta(9)-tetrahydrocannabinol and other cannnabinoids. J Pharmacol Exp Ther. 2002;300:34–42.PubMedCrossRef Darmani NA. The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by delta(9)-tetrahydrocannabinol and other cannnabinoids. J Pharmacol Exp Ther. 2002;300:34–42.PubMedCrossRef
93.
go back to reference Van Sickle MD, Oland LD, Ho W, Hillard CJ, Mackie K, Davison JS, Sharkey KA. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology. 2001;121:767–74.PubMedCrossRef Van Sickle MD, Oland LD, Ho W, Hillard CJ, Mackie K, Davison JS, Sharkey KA. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology. 2001;121:767–74.PubMedCrossRef
94.
go back to reference Sharkey KA, Cristino L, Oland LD, Van Sickle MD, Starowicz K, Pittman QJ, Guglielmotti V, Davison JS, Di Marzo V. Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret. Eur J Neurosci. 2007;25:2773–82.PubMedCrossRef Sharkey KA, Cristino L, Oland LD, Van Sickle MD, Starowicz K, Pittman QJ, Guglielmotti V, Davison JS, Di Marzo V. Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret. Eur J Neurosci. 2007;25:2773–82.PubMedCrossRef
95.
go back to reference Cross-Mellor SK, Ossenkopp KP, Piomelli D, Parker LA. Effects of the FAAH inhibitor, URB597, and anandamide on lithium-induced taste reactivity responses: a measure of nausea in the rat. Psychopharmacology. 2007;190:135–43.PubMedCrossRef Cross-Mellor SK, Ossenkopp KP, Piomelli D, Parker LA. Effects of the FAAH inhibitor, URB597, and anandamide on lithium-induced taste reactivity responses: a measure of nausea in the rat. Psychopharmacology. 2007;190:135–43.PubMedCrossRef
96.
go back to reference Meiri E, Jhangiani H, Vredenburgh JJ, Barbato LM, Carter FJ, Yang HM, Baranowski V. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr Med Res Opin. 2007;23:533–43.PubMedCrossRef Meiri E, Jhangiani H, Vredenburgh JJ, Barbato LM, Carter FJ, Yang HM, Baranowski V. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr Med Res Opin. 2007;23:533–43.PubMedCrossRef
97.
go back to reference Machado Rocha FC, Stéfano SC, De Cássia Haiek R, Rosa Oliveira LM, Da Silveira DX. Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis. Eur J Cancer Care (Engl). 2008;17:431–43.CrossRef Machado Rocha FC, Stéfano SC, De Cássia Haiek R, Rosa Oliveira LM, Da Silveira DX. Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis. Eur J Cancer Care (Engl). 2008;17:431–43.CrossRef
98.
go back to reference Duran M, Pérez E, Abanades S, Vidal X, Saura C, Majem M, Arriola E, Rabanal M, Pastor A, Farré M, Rams N, Laporte JR, Capellà D. Preliminary efficacy and safety of an oromucosal standardized cannabis extract in chemotherapy-induced nausea and vomiting. Br J Clin Pharmacol. 2010;70:656–63.PubMedPubMedCentralCrossRef Duran M, Pérez E, Abanades S, Vidal X, Saura C, Majem M, Arriola E, Rabanal M, Pastor A, Farré M, Rams N, Laporte JR, Capellà D. Preliminary efficacy and safety of an oromucosal standardized cannabis extract in chemotherapy-induced nausea and vomiting. Br J Clin Pharmacol. 2010;70:656–63.PubMedPubMedCentralCrossRef
100.
go back to reference Ishaq S, Ismail S, Ghaus S. Roop-E-Zahra, K. Rostami, cannabinoid hyperemesis should be recognised as an effect of chronic cannabis abuse. Gastroenterol Hepatol Bed Bench. 2014;7:173–6.PubMedPubMedCentral Ishaq S, Ismail S, Ghaus S. Roop-E-Zahra, K. Rostami, cannabinoid hyperemesis should be recognised as an effect of chronic cannabis abuse. Gastroenterol Hepatol Bed Bench. 2014;7:173–6.PubMedPubMedCentral
101.
go back to reference Callén L, Moreno E, Barroso-Chinea P, Moreno-Delgado D, Cortés A, Mallol J, Casadó V, Lanciego JL, Franco R, Lluis C, Canela EI, McCormick PJ. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J Biol Chem. 2012;287:20851–65.PubMedPubMedCentralCrossRef Callén L, Moreno E, Barroso-Chinea P, Moreno-Delgado D, Cortés A, Mallol J, Casadó V, Lanciego JL, Franco R, Lluis C, Canela EI, McCormick PJ. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J Biol Chem. 2012;287:20851–65.PubMedPubMedCentralCrossRef
102.
go back to reference Malik Z, Baik D, Schey R. The role of cannabinoids in regulation of nausea and vomiting, and visceral pain. Curr Gastroenterol Rep. 2015;17:429.PubMedCrossRef Malik Z, Baik D, Schey R. The role of cannabinoids in regulation of nausea and vomiting, and visceral pain. Curr Gastroenterol Rep. 2015;17:429.PubMedCrossRef
103.
go back to reference Ravnefjord A, Brusberg M, Kang D, Bauer U, Larsson H, Lindström E, Martinez V. Involvement of the transient receptor potential vanilloid 1 (TRPV1) in the development of acute visceral hyperalgesia during colorectal distension in rats. Eur J Pharmacol. 2009;611:85–91.PubMedCrossRef Ravnefjord A, Brusberg M, Kang D, Bauer U, Larsson H, Lindström E, Martinez V. Involvement of the transient receptor potential vanilloid 1 (TRPV1) in the development of acute visceral hyperalgesia during colorectal distension in rats. Eur J Pharmacol. 2009;611:85–91.PubMedCrossRef
104.
go back to reference Booker L, Naidu PS, Razdan RK, Mahadevan A, Lichtman AH. Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception. Drug Alcohol Depend. 2009;105:42–7.PubMedPubMedCentralCrossRef Booker L, Naidu PS, Razdan RK, Mahadevan A, Lichtman AH. Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception. Drug Alcohol Depend. 2009;105:42–7.PubMedPubMedCentralCrossRef
105.
go back to reference Sanson M, Bueno L, Fioramonti J. Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats. Neurogastroenterol Motil. 2006;18:949–56.PubMedCrossRef Sanson M, Bueno L, Fioramonti J. Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats. Neurogastroenterol Motil. 2006;18:949–56.PubMedCrossRef
106.
go back to reference Brusberg M, Arvidsson S, Kang D, Larsson H, Lindström E, Martinez V. CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. J Neurosci. 2009;29:1554–64.PubMedCrossRef Brusberg M, Arvidsson S, Kang D, Larsson H, Lindström E, Martinez V. CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. J Neurosci. 2009;29:1554–64.PubMedCrossRef
107.
go back to reference Naidu PS, Booker L, Cravatt BF, Lichtman AH. Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J Pharmacol Exp Ther. 2009;329:48–56.PubMedCrossRef Naidu PS, Booker L, Cravatt BF, Lichtman AH. Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J Pharmacol Exp Ther. 2009;329:48–56.PubMedCrossRef
108.
go back to reference Neelakantan H, Tallarida RJ, Reichenbach ZW, Tuma RF, Ward SJ, Walker EA. Distinct interactions of cannabidiol and morphine in three nociceptive behavioral models in mice. Behav Pharmacol. 2015;26:304–14.PubMedCrossRef Neelakantan H, Tallarida RJ, Reichenbach ZW, Tuma RF, Ward SJ, Walker EA. Distinct interactions of cannabidiol and morphine in three nociceptive behavioral models in mice. Behav Pharmacol. 2015;26:304–14.PubMedCrossRef
109.
go back to reference Esfandyari T, Camilleri M, Busciglio I, Burton D, Baxter K, Zinsmeister AR. Effects of a cannabinoid receptor agonist on colonic motor and sensory functions in humans: a randomized, placebo-controlled study. Am J Physiol Gastrointest Liver Physiol. 2007;293:G137–45.PubMedCrossRef Esfandyari T, Camilleri M, Busciglio I, Burton D, Baxter K, Zinsmeister AR. Effects of a cannabinoid receptor agonist on colonic motor and sensory functions in humans: a randomized, placebo-controlled study. Am J Physiol Gastrointest Liver Physiol. 2007;293:G137–45.PubMedCrossRef
110.
go back to reference Esfandyari T, Camilleri M, Ferber I, Burton D, Baxter K, Zinsmeister AR. Effect of a cannabinoid agonist on gastrointestinal transit and postprandial satiation in healthy human subjects: a randomized, placebo-controlled study. Neurogastroenterol Motil. 2006;18:831–8.PubMedCrossRef Esfandyari T, Camilleri M, Ferber I, Burton D, Baxter K, Zinsmeister AR. Effect of a cannabinoid agonist on gastrointestinal transit and postprandial satiation in healthy human subjects: a randomized, placebo-controlled study. Neurogastroenterol Motil. 2006;18:831–8.PubMedCrossRef
111.
go back to reference Klooker TK, Leliefeld KE, Van Den Wijngaard RM, Boeckxstaens GE. The cannabinoid receptor agonist delta-9-tetrahydrocannabinol does not affect visceral sensitivity to rectal distension in healthy volunteers and IBS patients. Neurogastroenterol Motil. 2011;23:30–5 e32.PubMedCrossRef Klooker TK, Leliefeld KE, Van Den Wijngaard RM, Boeckxstaens GE. The cannabinoid receptor agonist delta-9-tetrahydrocannabinol does not affect visceral sensitivity to rectal distension in healthy volunteers and IBS patients. Neurogastroenterol Motil. 2011;23:30–5 e32.PubMedCrossRef
112.
go back to reference Park JM, Choi MG, Cho YK, Lee IS, Kim SW, Choi KY, Chung IS. Cannabinoid receptor 1 gene polymorphism and irritable bowel syndrome in the Korean population: a hypothesis-generating study. J Clin Gastroenterol. 2011;45:45–9.PubMedCrossRef Park JM, Choi MG, Cho YK, Lee IS, Kim SW, Choi KY, Chung IS. Cannabinoid receptor 1 gene polymorphism and irritable bowel syndrome in the Korean population: a hypothesis-generating study. J Clin Gastroenterol. 2011;45:45–9.PubMedCrossRef
113.
go back to reference Z. Malik, L. Bayman, J. Valestin, A. Rizvi-Toner, S. Hashmi, R. Schey, Dronabinol increases pain threshold in patients with functional chest pain: a pilot double-blind placebo-controlled trial, Dis Esophagus, (2016). Z. Malik, L. Bayman, J. Valestin, A. Rizvi-Toner, S. Hashmi, R. Schey, Dronabinol increases pain threshold in patients with functional chest pain: a pilot double-blind placebo-controlled trial, Dis Esophagus, (2016).
114.
go back to reference Reichenbach ZW, Sloan J, Rizvi-Toner A, Bayman L, Valestin J, Schey R. A 4-week pilot study with the cannabinoid receptor agonist dronabinol and its effect on metabolic parameters in a randomized trial. Clin Ther. 2015;37:2267–74.PubMedCrossRef Reichenbach ZW, Sloan J, Rizvi-Toner A, Bayman L, Valestin J, Schey R. A 4-week pilot study with the cannabinoid receptor agonist dronabinol and its effect on metabolic parameters in a randomized trial. Clin Ther. 2015;37:2267–74.PubMedCrossRef
115.
go back to reference Kikuchi A, Ohashi K, Sugie Y, Sugimoto H, Omura H. Pharmacological evaluation of a novel cannabinoid 2 (CB2) ligand, PF-03550096, in vitro and in vivo by using a rat model of visceral hypersensitivity. J Pharmacol Sci. 2008;106:219–24.PubMedCrossRef Kikuchi A, Ohashi K, Sugie Y, Sugimoto H, Omura H. Pharmacological evaluation of a novel cannabinoid 2 (CB2) ligand, PF-03550096, in vitro and in vivo by using a rat model of visceral hypersensitivity. J Pharmacol Sci. 2008;106:219–24.PubMedCrossRef
116.
go back to reference Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, Ouwehand A, Leyer G, Carcano D, Colombel JF, Ardid D, Desreumaux P. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13:35–7.PubMedCrossRef Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, Ouwehand A, Leyer G, Carcano D, Colombel JF, Ardid D, Desreumaux P. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13:35–7.PubMedCrossRef
117.
go back to reference Feng CC, Yan XJ, Chen X, Wang EM, Liu Q, Zhang LY, Chen J, Fang JY, Chen SL. Vagal anandamide signaling via cannabinoid receptor 1 contributes to luminal 5-HT modulation of visceral nociception in rats. Pain. 2014;155:1591–604.PubMedCrossRef Feng CC, Yan XJ, Chen X, Wang EM, Liu Q, Zhang LY, Chen J, Fang JY, Chen SL. Vagal anandamide signaling via cannabinoid receptor 1 contributes to luminal 5-HT modulation of visceral nociception in rats. Pain. 2014;155:1591–604.PubMedCrossRef
118.
go back to reference M. Bashashati, I. Sarosiek, R.W. McCallum, Epidemiology and mechanisms of gastroesophageal reflux disease in the elderly: a perspective, Ann N Y Acad Sci, (2016). M. Bashashati, I. Sarosiek, R.W. McCallum, Epidemiology and mechanisms of gastroesophageal reflux disease in the elderly: a perspective, Ann N Y Acad Sci, (2016).
119.
go back to reference Di Carlo G, Izzo AA. Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin Investig Drugs. 2003;12:39–49.PubMedCrossRef Di Carlo G, Izzo AA. Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin Investig Drugs. 2003;12:39–49.PubMedCrossRef
120.
go back to reference Beaumont H, Jensen J, Carlsson A, Ruth M, Lehmann A, Boeckxstaens G. Effect of delta9-tetrahydrocannabinol, a cannabinoid receptor agonist, on the triggering of transient lower oesophageal sphincter relaxations in dogs and humans. Br J Pharmacol. 2009;156:153–62.PubMedPubMedCentralCrossRef Beaumont H, Jensen J, Carlsson A, Ruth M, Lehmann A, Boeckxstaens G. Effect of delta9-tetrahydrocannabinol, a cannabinoid receptor agonist, on the triggering of transient lower oesophageal sphincter relaxations in dogs and humans. Br J Pharmacol. 2009;156:153–62.PubMedPubMedCentralCrossRef
121.
go back to reference Partosoedarso ER, Abrahams TP, Scullion RT, Moerschbaecher JM, Hornby PJ. Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol. 2003;550:149–58.PubMedPubMedCentralCrossRef Partosoedarso ER, Abrahams TP, Scullion RT, Moerschbaecher JM, Hornby PJ. Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol. 2003;550:149–58.PubMedPubMedCentralCrossRef
122.
go back to reference Lehmann A, Blackshaw LA, Brändén L, Carlsson A, Jensen J, Nygren E, Smid SD. Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology. 2002;123:1129–34.PubMedCrossRef Lehmann A, Blackshaw LA, Brändén L, Carlsson A, Jensen J, Nygren E, Smid SD. Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology. 2002;123:1129–34.PubMedCrossRef
123.
go back to reference Norrod AG, Puffenbarger RA. Genetic polymorphisms of the endocannabinoid system. Chem Biodivers. 2007;4:1926–32.PubMedCrossRef Norrod AG, Puffenbarger RA. Genetic polymorphisms of the endocannabinoid system. Chem Biodivers. 2007;4:1926–32.PubMedCrossRef
124.
go back to reference Camilleri M, Carlson P, McKinzie S, Zucchelli M, D’Amato M, Busciglio I, Burton D, Zinsmeister AR. Genetic susceptibility to inflammation and colonic transit in lower functional gastrointestinal disorders: preliminary analysis. Neurogastroenterol Motil. 2011;23:935–e398.PubMedPubMedCentralCrossRef Camilleri M, Carlson P, McKinzie S, Zucchelli M, D’Amato M, Busciglio I, Burton D, Zinsmeister AR. Genetic susceptibility to inflammation and colonic transit in lower functional gastrointestinal disorders: preliminary analysis. Neurogastroenterol Motil. 2011;23:935–e398.PubMedPubMedCentralCrossRef
125••.
go back to reference Jiang Y, Nie Y, Li Y, Zhang L. Association of cannabinoid type 1 receptor and fatty acid amide hydrolase genetic polymorphisms in Chinese patients with irritable bowel syndrome. J Gastroenterol Hepatol. 2014;29:1186–91 Studies genetic variance of the ECS in expression of IBS phenotypes. Underscores the role of the ECS in IBS manifestations.PubMedCrossRef Jiang Y, Nie Y, Li Y, Zhang L. Association of cannabinoid type 1 receptor and fatty acid amide hydrolase genetic polymorphisms in Chinese patients with irritable bowel syndrome. J Gastroenterol Hepatol. 2014;29:1186–91 Studies genetic variance of the ECS in expression of IBS phenotypes. Underscores the role of the ECS in IBS manifestations.PubMedCrossRef
Metadata
Title
Cannabinoids and GI Disorders: Endogenous and Exogenous
Authors
Zachary Wilmer Reichenbach, M.D., Ph.D.
Ron Schey, M.D., FACG
Publication date
01-12-2016
Publisher
Springer US
Published in
Current Treatment Options in Gastroenterology / Issue 4/2016
Print ISSN: 1092-8472
Electronic ISSN: 1534-309X
DOI
https://doi.org/10.1007/s11938-016-0111-1

Other articles of this Issue 4/2016

Current Treatment Options in Gastroenterology 4/2016 Go to the issue

Motility (H Parkman and R Schey, Section Editors)

Central Aspects of Nausea and Vomiting in GI Disorders