Skip to main content
Top
Published in: Current Treatment Options in Cardiovascular Medicine 10/2018

Open Access 01-10-2018 | Sports Cardiology (M Papadakis, Section Editor)

The “Extreme Exercise Hypothesis”: Recent Findings and Cardiovascular Health Implications

Authors: Thijs M. H. Eijsvogels, PhD, Paul D. Thompson, MD, Barry A. Franklin, PhD

Published in: Current Treatment Options in Cardiovascular Medicine | Issue 10/2018

Login to get access

Abstract

Purpose of review

The “Extreme Exercise Hypothesis” is characterized by a U-shaped or reverse J-shaped, dose-response curve between physical activity volumes and cardiovascular health outcomes. In this review, we summarize recent findings that may support or refute the “Extreme Exercise Hypothesis.” Furthermore, we discuss potential cardiovascular health implications of the cardiac anatomical, structural, contractility, and biomarker abnormalities that have been reported in some veteran endurance athletes.

Recent findings

Emerging evidence from epidemiological studies and observations in cohorts of endurance athletes suggest that potentially adverse cardiovascular manifestations may occur following high-volume and/or high-intensity long-term exercise training, which may attenuate the health benefits of a physically active lifestyle. Accelerated coronary artery calcification, exercise-induced cardiac biomarker release, myocardial fibrosis, atrial fibrillation, and even higher risk of sudden cardiac death have been reported in athletes.

Summary

There is primarily circumstantial evidence that supports the “Extreme Exercise Hypothesis.” Subclinical and atherosclerotic coronary artery disease (CAD) as well as structural cardiovascular abnormalities and arrhythmias are present in some of the most active veteran endurance athletes and need appropriate clinical follow-up to reduce the risk for adverse cardiovascular outcomes. Future studies are warranted to establish the long-term cardiovascular health effects of these findings in veteran endurance athletes.
Literature
2.
go back to reference Maessen MF, Verbeek AL, Bakker EA, et al. Lifelong exercise patterns and cardiovascular health. Mayo Clin Proc. 2016;91:745–54.CrossRefPubMed Maessen MF, Verbeek AL, Bakker EA, et al. Lifelong exercise patterns and cardiovascular health. Mayo Clin Proc. 2016;91:745–54.CrossRefPubMed
3.
go back to reference Bakker EA, Lee DC, Sui X, et al. Association of resistance exercise, independent of and combined with aerobic exercise, with the incidence of metabolic syndrome. Mayo Clin Proc. 2017;92:1214–22.CrossRefPubMed Bakker EA, Lee DC, Sui X, et al. Association of resistance exercise, independent of and combined with aerobic exercise, with the incidence of metabolic syndrome. Mayo Clin Proc. 2017;92:1214–22.CrossRefPubMed
4.
go back to reference Lear SA, Hu W, Rangarajan S et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet 2017; 390:2643–2654;CrossRef Lear SA, Hu W, Rangarajan S et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet 2017; 390:2643–2654;CrossRef
5.
go back to reference Stamatakis E, Lee IM, Bennie J et al. Does Strength-Promoting Exercise Confer Unique Health Benefits? A Pooled Analysis of Data on 11 Population Cohorts With All-Cause, Cancer, and Cardiovascular Mortality Endpoints. American journal of epidemiology 2018; 187:1102–1112;CrossRef Stamatakis E, Lee IM, Bennie J et al. Does Strength-Promoting Exercise Confer Unique Health Benefits? A Pooled Analysis of Data on 11 Population Cohorts With All-Cause, Cancer, and Cardiovascular Mortality Endpoints. American journal of epidemiology 2018; 187:1102–1112;CrossRef
7.
go back to reference Eijsvogels TM, Molossi S, Lee DC, et al. Exercise at the extremes: the amount of exercise to reduce cardiovascular events. J Am Coll Cardiol. 2016;67:316–29.CrossRefPubMed Eijsvogels TM, Molossi S, Lee DC, et al. Exercise at the extremes: the amount of exercise to reduce cardiovascular events. J Am Coll Cardiol. 2016;67:316–29.CrossRefPubMed
8.
go back to reference Williams PT, Thompson PD. Increased cardiovascular disease mortality associated with excessive exercise in heart attack survivors. Mayo Clin Proc. 2014;89:1187–94.CrossRefPubMed Williams PT, Thompson PD. Increased cardiovascular disease mortality associated with excessive exercise in heart attack survivors. Mayo Clin Proc. 2014;89:1187–94.CrossRefPubMed
9.
go back to reference •• Arem H, Moore SC, Patel A, et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015;175:959–67. A pooled cohort study that performed comprehensive assessment of the dose-response association between exercise and (cardiovascular) endpoints.CrossRefPubMedPubMedCentral •• Arem H, Moore SC, Patel A, et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015;175:959–67. A pooled cohort study that performed comprehensive assessment of the dose-response association between exercise and (cardiovascular) endpoints.CrossRefPubMedPubMedCentral
10.
go back to reference Armstrong ME, Green J, Reeves GK, et al. Frequent physical activity may not reduce vascular disease risk as much as moderate activity: large prospective study of women in the United Kingdom. Circulation. 2015;131:721–9.CrossRefPubMed Armstrong ME, Green J, Reeves GK, et al. Frequent physical activity may not reduce vascular disease risk as much as moderate activity: large prospective study of women in the United Kingdom. Circulation. 2015;131:721–9.CrossRefPubMed
11.
go back to reference Franklin BA, Billecke S. Putting the benefits and risks of aerobic exercise in perspective. Curr Sports Med Rep. 2012;11:201–8.CrossRefPubMed Franklin BA, Billecke S. Putting the benefits and risks of aerobic exercise in perspective. Curr Sports Med Rep. 2012;11:201–8.CrossRefPubMed
12.
go back to reference Breuckmann F, Mohlenkamp S, Nassenstein K, et al. Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology. 2009;251:50–7.CrossRefPubMed Breuckmann F, Mohlenkamp S, Nassenstein K, et al. Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology. 2009;251:50–7.CrossRefPubMed
13.
go back to reference Wilson M, O'Hanlon R, Prasad S, et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 2011;110:1622–6.CrossRefPubMedPubMedCentral Wilson M, O'Hanlon R, Prasad S, et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 2011;110:1622–6.CrossRefPubMedPubMedCentral
14.
go back to reference • Mohlenkamp S, Lehmann N, Breuckmann F, et al. Running: the risk of coronary events: Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008;29:1903–10. Landmark study for the development of the “Extreme Exercise hypothesis.” This German study assessed coronary artery calcification scores and prevalence of myocardial fibrosis in marathon runners.CrossRefPubMed • Mohlenkamp S, Lehmann N, Breuckmann F, et al. Running: the risk of coronary events: Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008;29:1903–10. Landmark study for the development of the “Extreme Exercise hypothesis.” This German study assessed coronary artery calcification scores and prevalence of myocardial fibrosis in marathon runners.CrossRefPubMed
15.
go back to reference Mussigbrodt A, Weber A, Mandrola J, et al. Excess of exercise increases the risk of atrial fibrillation. Scand J Med Sci Sports. 2017;27:910–7.CrossRefPubMed Mussigbrodt A, Weber A, Mandrola J, et al. Excess of exercise increases the risk of atrial fibrillation. Scand J Med Sci Sports. 2017;27:910–7.CrossRefPubMed
16.
17.
go back to reference Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44:211–21.CrossRefPubMed Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44:211–21.CrossRefPubMed
18.
go back to reference Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.CrossRefPubMed Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.CrossRefPubMed
19.
go back to reference Szostak J, Laurant P. The forgotten face of regular physical exercise: a ‘natural’ anti-atherogenic activity. Clin Sci (Lond). 2011;121:91–106.CrossRef Szostak J, Laurant P. The forgotten face of regular physical exercise: a ‘natural’ anti-atherogenic activity. Clin Sci (Lond). 2011;121:91–106.CrossRef
20.
go back to reference Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.CrossRefPubMed Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.CrossRefPubMed
21.
go back to reference •• Aengevaeren VL, Mosterd A, Braber TL, et al. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation. 2017;136:138–48. This study is the first to assess the dose-response relationship between lifelong physical activity volume and characterstics of coronary artery atherosclerosis in a cohort of 284 amateur athletes.CrossRefPubMed •• Aengevaeren VL, Mosterd A, Braber TL, et al. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation. 2017;136:138–48. This study is the first to assess the dose-response relationship between lifelong physical activity volume and characterstics of coronary artery atherosclerosis in a cohort of 284 amateur athletes.CrossRefPubMed
22.
go back to reference Hou ZH, Lu B, Gao Y et al. Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC. Cardiovascular imaging 2012; 5:990–999.PubMed Hou ZH, Lu B, Gao Y et al. Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC. Cardiovascular imaging 2012; 5:990–999.PubMed
23.
go back to reference •• Merghani A, Maestrini V, Rosmini S, et al. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation. 2017;136:126–37. The authors performed a comprehensive comparison of cardiovascular structure and function, including characteristics of coronary atery atherosclerosis, between amateur athletes and sedentary controls.CrossRefPubMed •• Merghani A, Maestrini V, Rosmini S, et al. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation. 2017;136:126–37. The authors performed a comprehensive comparison of cardiovascular structure and function, including characteristics of coronary atery atherosclerosis, between amateur athletes and sedentary controls.CrossRefPubMed
24.
go back to reference Lin J, DeLuca JR, Lu MT, et al. Extreme endurance exercise and progressive coronary artery disease. J Am Coll Cardiol. 2017;70:293–5.CrossRefPubMed Lin J, DeLuca JR, Lu MT, et al. Extreme endurance exercise and progressive coronary artery disease. J Am Coll Cardiol. 2017;70:293–5.CrossRefPubMed
25.
go back to reference Bouassida A, Latiri I, Bouassida S, et al. Parathyroid hormone and physical exercise: a brief review. J Sports Sci Med. 2006;5:367–74.PubMedPubMedCentral Bouassida A, Latiri I, Bouassida S, et al. Parathyroid hormone and physical exercise: a brief review. J Sports Sci Med. 2006;5:367–74.PubMedPubMedCentral
26.
go back to reference Farrokhyar F, Tabasinejad R, Dao D et al. Prevalence of vitamin D inadequacy in athletes: a systematic-review and meta-analysis. Sports Med (Auckland, N.Z 2015; 45:365–378.CrossRef Farrokhyar F, Tabasinejad R, Dao D et al. Prevalence of vitamin D inadequacy in athletes: a systematic-review and meta-analysis. Sports Med (Auckland, N.Z 2015; 45:365–378.CrossRef
27.
go back to reference Casoni I, Guglielmini C, Graziano L, et al. Changes of magnesium concentrations in endurance athletes. Int J Sports Med. 1990;11:234–7.CrossRefPubMed Casoni I, Guglielmini C, Graziano L, et al. Changes of magnesium concentrations in endurance athletes. Int J Sports Med. 1990;11:234–7.CrossRefPubMed
28.
go back to reference Shin S, Kim KJ, Chang HJ, et al. Impact of serum calcium and phosphate on coronary atherosclerosis detected by cardiac computed tomography. Eur Heart J. 2012;33:2873–81.CrossRefPubMed Shin S, Kim KJ, Chang HJ, et al. Impact of serum calcium and phosphate on coronary atherosclerosis detected by cardiac computed tomography. Eur Heart J. 2012;33:2873–81.CrossRefPubMed
29.
go back to reference Eijsvogels TM, Fernandez AB, Thompson PD. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol Rev. 2016;96:99–125.CrossRefPubMed Eijsvogels TM, Fernandez AB, Thompson PD. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol Rev. 2016;96:99–125.CrossRefPubMed
30.
go back to reference Hattasch R, Spethmann S, de Boer RA, et al. Galectin-3 increase in endurance athletes. Eur J Prev Cardiol. 2014;21:1192–9.CrossRefPubMed Hattasch R, Spethmann S, de Boer RA, et al. Galectin-3 increase in endurance athletes. Eur J Prev Cardiol. 2014;21:1192–9.CrossRefPubMed
31.
go back to reference Roca E, Nescolarde L, Lupon J, et al. The dynamics of cardiovascular biomarkers in non-elite marathon runners. J Cardiovasc Transl Res. 2017;10:206–8.CrossRefPubMed Roca E, Nescolarde L, Lupon J, et al. The dynamics of cardiovascular biomarkers in non-elite marathon runners. J Cardiovasc Transl Res. 2017;10:206–8.CrossRefPubMed
32.
go back to reference Hanssen H, Keithahn A, Hertel G, et al. Magnetic resonance imaging of myocardial injury and ventricular torsion after marathon running. Clin Sci. 2011;120:143–52.CrossRef Hanssen H, Keithahn A, Hertel G, et al. Magnetic resonance imaging of myocardial injury and ventricular torsion after marathon running. Clin Sci. 2011;120:143–52.CrossRef
33.
go back to reference • van de Schoor FR, Aengevaeren VL, Hopman MT, et al. Myocardial fibrosis in athletes. Mayo Clinic Proc. 2016;91:1617–31. Review paper that summarizes the indicence of myocardial fibrosis among athletic populations. Furthermore, diffuse vs. focal patterns, underlying mechanisms and clinical implications of myocardial fibrosis in athletes are discussed.CrossRef • van de Schoor FR, Aengevaeren VL, Hopman MT, et al. Myocardial fibrosis in athletes. Mayo Clinic Proc. 2016;91:1617–31. Review paper that summarizes the indicence of myocardial fibrosis among athletic populations. Furthermore, diffuse vs. focal patterns, underlying mechanisms and clinical implications of myocardial fibrosis in athletes are discussed.CrossRef
34.
go back to reference Bohm P, Schneider G, Linneweber L, et al. Right and left ventricular function and mass in male elite master athletes: a controlled contrast-enhanced cardiovascular magnetic resonance study. Circulation. 2016;133:1927–35.CrossRefPubMed Bohm P, Schneider G, Linneweber L, et al. Right and left ventricular function and mass in male elite master athletes: a controlled contrast-enhanced cardiovascular magnetic resonance study. Circulation. 2016;133:1927–35.CrossRefPubMed
36.
go back to reference Wilson M, O'Hanlon R, Prasad S, et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 2011;110:1622–6.CrossRefPubMedPubMedCentral Wilson M, O'Hanlon R, Prasad S, et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 2011;110:1622–6.CrossRefPubMedPubMedCentral
37.
go back to reference Gormeli CA, Gormeli G, Yagmur J et al. Assessment of myocardial changes in athletes with native T1 mapping and cardiac functional evaluation using 3 T MRI. The international journal of cardiovascular imaging 2016;32:975–81;CrossRefPubMed Gormeli CA, Gormeli G, Yagmur J et al. Assessment of myocardial changes in athletes with native T1 mapping and cardiac functional evaluation using 3 T MRI. The international journal of cardiovascular imaging 2016;32:975–81;CrossRefPubMed
38.
go back to reference Eijsvogels TMH, Oxborough DL, O'Hanlon R, et al. Global and regional cardiac function in lifelong endurance athletes with and without myocardial fibrosis. Eur J Sport Sci. 2017;17:1297–303.CrossRefPubMed Eijsvogels TMH, Oxborough DL, O'Hanlon R, et al. Global and regional cardiac function in lifelong endurance athletes with and without myocardial fibrosis. Eur J Sport Sci. 2017;17:1297–303.CrossRefPubMed
39.
go back to reference Qureshi WT, Alirhayim Z, Blaha MJ, et al. Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the Henry Ford Exercise Testing (FIT) project. Circulation. 2015;131:1827–34.CrossRefPubMed Qureshi WT, Alirhayim Z, Blaha MJ, et al. Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the Henry Ford Exercise Testing (FIT) project. Circulation. 2015;131:1827–34.CrossRefPubMed
40.
go back to reference Faselis C, Kokkinos P, Tsimploulis A, et al. Exercise capacity and atrial fibrillation risk in veterans: a cohort study. Mayo Clin Proc. 2016;91:558–66.CrossRefPubMed Faselis C, Kokkinos P, Tsimploulis A, et al. Exercise capacity and atrial fibrillation risk in veterans: a cohort study. Mayo Clin Proc. 2016;91:558–66.CrossRefPubMed
41.
go back to reference Mozaffarian D, Furberg CD, Psaty BM, Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. Circulation. 2008;118:800–7.CrossRefPubMedPubMedCentral Mozaffarian D, Furberg CD, Psaty BM, Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. Circulation. 2008;118:800–7.CrossRefPubMedPubMedCentral
42.
go back to reference •• Andersen K, Farahmand B, Ahlbom A, et al. Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur Heart J. 2013;34:3624–31. Important study in Swedish amateur athletes, demonstrating that cardiac arrhythmias were more prevalent in faster athletes and those that had a higher number of completed races.CrossRefPubMed •• Andersen K, Farahmand B, Ahlbom A, et al. Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur Heart J. 2013;34:3624–31. Important study in Swedish amateur athletes, demonstrating that cardiac arrhythmias were more prevalent in faster athletes and those that had a higher number of completed races.CrossRefPubMed
43.
go back to reference Abdulla J, Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2009;11:1156–9.CrossRef Abdulla J, Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2009;11:1156–9.CrossRef
44.
45.
go back to reference Calvo N, Ramos P, Montserrat S, et al. Emerging risk factors and the dose-response relationship between physical activity and lone atrial fibrillation: a prospective case-control study. Europace 2016;18:57–63.CrossRefPubMedPubMedCentral Calvo N, Ramos P, Montserrat S, et al. Emerging risk factors and the dose-response relationship between physical activity and lone atrial fibrillation: a prospective case-control study. Europace 2016;18:57–63.CrossRefPubMedPubMedCentral
46.
go back to reference Predel HG. Marathon run: cardiovascular adaptation and cardiovascular risk. Eur Heart J. 2014;35:3091–8.CrossRefPubMed Predel HG. Marathon run: cardiovascular adaptation and cardiovascular risk. Eur Heart J. 2014;35:3091–8.CrossRefPubMed
47.
go back to reference Sharma S, Merghani A, Mont L. Exercise and the heart: the good, the bad, and the ugly. Eur Heart J. 2015;36:1445–53.CrossRefPubMed Sharma S, Merghani A, Mont L. Exercise and the heart: the good, the bad, and the ugly. Eur Heart J. 2015;36:1445–53.CrossRefPubMed
48.
go back to reference Kapa S, Asirvatham SJ. A MET a day keeps arrhythmia at bay: the association between exercise or cardiorespiratory fitness and atrial fibrillation. Mayo Clin Proc. 2016;91:545–50.CrossRefPubMed Kapa S, Asirvatham SJ. A MET a day keeps arrhythmia at bay: the association between exercise or cardiorespiratory fitness and atrial fibrillation. Mayo Clin Proc. 2016;91:545–50.CrossRefPubMed
49.
go back to reference Pathak RK, Elliott A, Middeldorp ME, et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J Am Coll Cardiol. 2015;66:985–96.CrossRefPubMed Pathak RK, Elliott A, Middeldorp ME, et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J Am Coll Cardiol. 2015;66:985–96.CrossRefPubMed
50.
go back to reference Thompson PD. Physical fitness, physical activity, exercise training, and atrial fibrillation: first the good news, then the bad. J Am Coll Cardiol. 2015;66:997–9.CrossRefPubMed Thompson PD. Physical fitness, physical activity, exercise training, and atrial fibrillation: first the good news, then the bad. J Am Coll Cardiol. 2015;66:997–9.CrossRefPubMed
51.
go back to reference Thompson PD, Franklin BA, Balady GJ, et al. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115:2358–68.CrossRefPubMed Thompson PD, Franklin BA, Balady GJ, et al. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115:2358–68.CrossRefPubMed
52.
go back to reference Maron BJ, Doerer JJ, Haas TS, et al. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009;119:1085–92.CrossRefPubMed Maron BJ, Doerer JJ, Haas TS, et al. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009;119:1085–92.CrossRefPubMed
54.
go back to reference •• Landry CH, Allan KS, Connelly KA, et al. Sudden cardiac arrest during participation in competitive sports. N Engl J Med. 2017;377:1943–53. Large retrospective study to determine the prevalence of exercise-induced sudden cardiac arrest among Canadian amateur athletes aged 12 – 45 years.CrossRefPubMedPubMedCentral •• Landry CH, Allan KS, Connelly KA, et al. Sudden cardiac arrest during participation in competitive sports. N Engl J Med. 2017;377:1943–53. Large retrospective study to determine the prevalence of exercise-induced sudden cardiac arrest among Canadian amateur athletes aged 12 – 45 years.CrossRefPubMedPubMedCentral
55.
go back to reference Maron BJ, Udelson JE, Bonow RO, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132:e273–80.CrossRefPubMed Maron BJ, Udelson JE, Bonow RO, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132:e273–80.CrossRefPubMed
56.
go back to reference Bagnall RD, Weintraub RG, Ingles J, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016;374:2441–52.CrossRefPubMed Bagnall RD, Weintraub RG, Ingles J, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016;374:2441–52.CrossRefPubMed
57.
go back to reference • Lee DC, Brellenthin AG, Thompson PD et al. Running as a key lifestyle medicine for longevity. Progress in cardiovascular diseases 2017; 60:45–55. Comprehensive review that provides an overview on the cardiovascular benefits of a physically active lifestyle.CrossRefPubMed • Lee DC, Brellenthin AG, Thompson PD et al. Running as a key lifestyle medicine for longevity. Progress in cardiovascular diseases 2017; 60:45–55. Comprehensive review that provides an overview on the cardiovascular benefits of a physically active lifestyle.CrossRefPubMed
Metadata
Title
The “Extreme Exercise Hypothesis”: Recent Findings and Cardiovascular Health Implications
Authors
Thijs M. H. Eijsvogels, PhD
Paul D. Thompson, MD
Barry A. Franklin, PhD
Publication date
01-10-2018
Publisher
Springer US
Published in
Current Treatment Options in Cardiovascular Medicine / Issue 10/2018
Print ISSN: 1092-8464
Electronic ISSN: 1534-3189
DOI
https://doi.org/10.1007/s11936-018-0674-3

Other articles of this Issue 10/2018

Current Treatment Options in Cardiovascular Medicine 10/2018 Go to the issue

Sports Imaging (M Papadakis, Section Editor)

Assessment of the QT Interval in Athletes: Red Flags and Pitfalls