Skip to main content
Top
Published in: Current Osteoporosis Reports 4/2018

01-08-2018 | Craniofacial Skeleton (WE Roberts, Section Editor)

Part I: Development and Physiology of the Temporomandibular Joint

Authors: David L. Stocum, W. Eugene Roberts

Published in: Current Osteoporosis Reports | Issue 4/2018

Login to get access

Abstract

Purpose of Review

Investigate the developmental physiology of the temporomandibular joint (TMJ), a unique articulation between the cranium and the mandible.

Recent Findings

Principal regulatory factors for TMJ and disc development are Indian hedgehog (IHH) and bone morphogenetic protein (BMP-2). The mechanism is closely associated with ear morphogenesis. Secondary condylar cartilage emerges as a subperiosteal blastema on the medial surface of the posterior mandible. The condylar articular surface is immunoreactive for tenascin-C, so it is a modified fibrous periosteum with an underlying proliferative zone (cambrium layer) that differentiates into fibrocartilage. The latter cushions high loads and subsequently produces endochondral bone. The TMJ is a heavily loaded joint with three cushioning layers of fibrocartilage in the disc, as well as in subarticular zones in the fossa and mandibular condyle.

Summary

The periosteal articular surface produces fibrocartilage to resist heavy loads, and has unique healing and adaptive properties for maintaining life support functions under adverse environmental conditions.
Literature
1.
go back to reference Willard VP, Zhang L, Athanasiou KA. Tissue engineering of the temporomandibular joint. Elsevier 2011. Willard VP, Zhang L, Athanasiou KA. Tissue engineering of the temporomandibular joint. Elsevier 2011.
4.
go back to reference Reichert KB. Uber die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vogeln und Saugethieren. Arch Anat Physiol Wissensch Med. 1837:120–220. Reichert KB. Uber die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vogeln und Saugethieren. Arch Anat Physiol Wissensch Med. 1837:120–220.
5.
go back to reference Gaupp E. De Reichertsche Theorie. Arch Anat Physiol Suppl. 1912:1–416. Gaupp E. De Reichertsche Theorie. Arch Anat Physiol Suppl. 1912:1–416.
6.
go back to reference Khojastepour L, Vojdani M, Forghani M. The association between condylar bone changes revealed in cone beam computed tomography and clinical dysfunction index in patients with or without temporomandibular joint disorders. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(5):600–5.CrossRefPubMed Khojastepour L, Vojdani M, Forghani M. The association between condylar bone changes revealed in cone beam computed tomography and clinical dysfunction index in patients with or without temporomandibular joint disorders. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(5):600–5.CrossRefPubMed
8.
go back to reference Blackwood HJ. Growth of the mandibular condyle of the rat studied with tritiated thymidine. Arch Oral Biol. 1966;11(5):493–500.CrossRefPubMed Blackwood HJ. Growth of the mandibular condyle of the rat studied with tritiated thymidine. Arch Oral Biol. 1966;11(5):493–500.CrossRefPubMed
9.
go back to reference Helm NB, Padala S, Beck FM, D’Atri AM, Huja SS. Short-term zoledronic acid reduces trabecular bone remodeling in dogs. Eur J Oral Sci. 2010;118(5):460–5.CrossRefPubMed Helm NB, Padala S, Beck FM, D’Atri AM, Huja SS. Short-term zoledronic acid reduces trabecular bone remodeling in dogs. Eur J Oral Sci. 2010;118(5):460–5.CrossRefPubMed
11.
go back to reference Landesberg R, Takeuchi E, Puzas JE, et al. Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch Oral Biol. 1996;41:761–7.CrossRefPubMed Landesberg R, Takeuchi E, Puzas JE, et al. Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch Oral Biol. 1996;41:761–7.CrossRefPubMed
12.
go back to reference Almarza AJ, Bean AC, Baggett LS, Athanasiou KA. Biological analysis of the porcine temporomandibular joint disc. Br J Oral Maxillofac Surg. 2006;44:124–8.CrossRefPubMed Almarza AJ, Bean AC, Baggett LS, Athanasiou KA. Biological analysis of the porcine temporomandibular joint disc. Br J Oral Maxillofac Surg. 2006;44:124–8.CrossRefPubMed
13.
go back to reference Mizoguchi I, Nakamura M, Takahashi I, Kagayama M, Mitani H. A comparison of the immunohistochemical localization of type I and type Il collagens in craniofacial cartilages of the rat. Acta Anat (Basal). 1992;144(1):59–64.CrossRef Mizoguchi I, Nakamura M, Takahashi I, Kagayama M, Mitani H. A comparison of the immunohistochemical localization of type I and type Il collagens in craniofacial cartilages of the rat. Acta Anat (Basal). 1992;144(1):59–64.CrossRef
15••.
go back to reference . Utreja A, Dyment NA, Yadav S, Villa MM, Yingcui L, Xi J, et al. Cell and matrix response of temporomandibular cartilage to mechanical loading. Osteoarthr Cartil. 2016;24(2):335–44. Transgenic mice expressing fluorescent proteins to identify areas of gene expression in the mandibular condyle have documented the cell lineage progression in response to TMJ loading. CrossRefPubMed . Utreja A, Dyment NA, Yadav S, Villa MM, Yingcui L, Xi J, et al. Cell and matrix response of temporomandibular cartilage to mechanical loading. Osteoarthr Cartil. 2016;24(2):335–44. Transgenic mice expressing fluorescent proteins to identify areas of gene expression in the mandibular condyle have documented the cell lineage progression in response to TMJ loading. CrossRefPubMed
16.
go back to reference Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, et al. Functional and structural diversity of the human Dickkopf gene family. Gene. 1999;238(2):301–13.CrossRefPubMed Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, et al. Functional and structural diversity of the human Dickkopf gene family. Gene. 1999;238(2):301–13.CrossRefPubMed
17.
go back to reference Kuboto T, Michigami T, Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab. 2009;27(3):265–71.CrossRef Kuboto T, Michigami T, Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab. 2009;27(3):265–71.CrossRef
19.
go back to reference Takahashi I. Mechano-reaction of chondrocytes in the mandibular condyle during orthopedic-orthodontic interaction. In: Ngan PW, Deguchi T, Roberts WE, editors. Orthodontic treatment of class III malocclusion. Mumbai: Bentham Books; 2014. p. 37–60. Takahashi I. Mechano-reaction of chondrocytes in the mandibular condyle during orthopedic-orthodontic interaction. In: Ngan PW, Deguchi T, Roberts WE, editors. Orthodontic treatment of class III malocclusion. Mumbai: Bentham Books; 2014. p. 37–60.
20.
go back to reference Koyama E, Saunders C, Salhab I, Decker RS, Chen I, Um H, et al. Lubricin is required for the structural integrity and post-natal maintenance of TMJ. J Dent Res. 2014;93(7):663–70.CrossRefPubMedPubMedCentral Koyama E, Saunders C, Salhab I, Decker RS, Chen I, Um H, et al. Lubricin is required for the structural integrity and post-natal maintenance of TMJ. J Dent Res. 2014;93(7):663–70.CrossRefPubMedPubMedCentral
21.
go back to reference Ito MM, Kida M. Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone. J Anat. 2000;197:659–79.CrossRefPubMedPubMedCentral Ito MM, Kida M. Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone. J Anat. 2000;197:659–79.CrossRefPubMedPubMedCentral
22.
go back to reference Badel T, Savic-Pavicin I, Zadravec D, Marotti M, Krolo I, Grbesa D. Temporomandibular joint development and functional disorders related to clinical otologic symptomatology. Acta Clin Croat. 2011;50:51–60.PubMed Badel T, Savic-Pavicin I, Zadravec D, Marotti M, Krolo I, Grbesa D. Temporomandibular joint development and functional disorders related to clinical otologic symptomatology. Acta Clin Croat. 2011;50:51–60.PubMed
23••.
go back to reference . Shibata S, Sakamoto Y, Yokohama-Tamaki T, Murakami G, Cho BH. Distribution of matrix proteins in perichondrium and periosteum during the incorporation of Meckel’s cartilage into ossifying mandible in midterm human fetuses: an immunochemical study. Anat Rec. 2014;297:1208–17. This reference documents that the articular surface of the mandibular condyle is covered with periosteum and not cartilage. CrossRef . Shibata S, Sakamoto Y, Yokohama-Tamaki T, Murakami G, Cho BH. Distribution of matrix proteins in perichondrium and periosteum during the incorporation of Meckel’s cartilage into ossifying mandible in midterm human fetuses: an immunochemical study. Anat Rec. 2014;297:1208–17. This reference documents that the articular surface of the mandibular condyle is covered with periosteum and not cartilage. CrossRef
24.
go back to reference Shibata S, Sato R, Murakami G, Fukuoka H, Rodriguez-Vazquez JF. Origin of mandibular condylar cartilage in mice, rats and humans: periosteum or separate blastema? J Oral Biosci. 2013;55:208–16.CrossRef Shibata S, Sato R, Murakami G, Fukuoka H, Rodriguez-Vazquez JF. Origin of mandibular condylar cartilage in mice, rats and humans: periosteum or separate blastema? J Oral Biosci. 2013;55:208–16.CrossRef
25.
go back to reference Liang W, Li X, Gao B, Gan H, Lin X, Liao L, et al. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods. Exp Therapeut Med. 2016;11:481–9.CrossRef Liang W, Li X, Gao B, Gan H, Lin X, Liao L, et al. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods. Exp Therapeut Med. 2016;11:481–9.CrossRef
27.
go back to reference Huang Q, Opstelten D, Samman N, Tidman H. Experimentally induced unilateral tooth loss: expression of type II collagen in temporomandibular joint cartilage. J Oral Maxillofac Surg. 2003;61:1054–60.CrossRefPubMed Huang Q, Opstelten D, Samman N, Tidman H. Experimentally induced unilateral tooth loss: expression of type II collagen in temporomandibular joint cartilage. J Oral Maxillofac Surg. 2003;61:1054–60.CrossRefPubMed
28.
go back to reference Gu Z, Jin X, Feng J, Shibata T, Hu J, Zhan J, et al. Type II collagen and aggrecan mRNA expressions in rabbit condyle following disc displacement. J Oral Rehabil. 2005;32:254–9.CrossRefPubMed Gu Z, Jin X, Feng J, Shibata T, Hu J, Zhan J, et al. Type II collagen and aggrecan mRNA expressions in rabbit condyle following disc displacement. J Oral Rehabil. 2005;32:254–9.CrossRefPubMed
29.
go back to reference Natiella JR, Burch L, Fries KM, Upton LG, Edsborg LE. Analysis of the collagen 1 and fibronectin of temporomandibular joint synovial fluid and discs. J Oral Maxillofac Surg. 2009;67:105–13.CrossRefPubMed Natiella JR, Burch L, Fries KM, Upton LG, Edsborg LE. Analysis of the collagen 1 and fibronectin of temporomandibular joint synovial fluid and discs. J Oral Maxillofac Surg. 2009;67:105–13.CrossRefPubMed
31.
go back to reference Shibata S, Suda N, Suzuki S, Fukuoka H, Yamashita Y. An in situ hybridization study of Runx2, Osterix, and Sox9 at the onset of condylar cartilage formation in fetal mouse mandible. J Anat. 2006;208:169–77.CrossRefPubMedPubMedCentral Shibata S, Suda N, Suzuki S, Fukuoka H, Yamashita Y. An in situ hybridization study of Runx2, Osterix, and Sox9 at the onset of condylar cartilage formation in fetal mouse mandible. J Anat. 2006;208:169–77.CrossRefPubMedPubMedCentral
32.
go back to reference Shibata S, Suda N, Yoda S, Fukuoka H, Ohyama K, Yamashita Y, et al. Runx2-deficient mice lack mandibular condylar cartilage and have deformed Meckel’s cartilage. Anat Embryol. 2004;208:273–80.CrossRefPubMed Shibata S, Suda N, Yoda S, Fukuoka H, Ohyama K, Yamashita Y, et al. Runx2-deficient mice lack mandibular condylar cartilage and have deformed Meckel’s cartilage. Anat Embryol. 2004;208:273–80.CrossRefPubMed
33.
go back to reference Fukuoka H, Shibata S, Suda N, Yamashita Y, Komori T. Bone morphogenetic protein rescues the lack of secondary cartilage in Runx2-deficient mice. J Anat. 2007;211:8–15.CrossRefPubMedPubMedCentral Fukuoka H, Shibata S, Suda N, Yamashita Y, Komori T. Bone morphogenetic protein rescues the lack of secondary cartilage in Runx2-deficient mice. J Anat. 2007;211:8–15.CrossRefPubMedPubMedCentral
34.
go back to reference Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273:613–22.CrossRefPubMed Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273:613–22.CrossRefPubMed
35.
go back to reference Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998;71:65–76.CrossRefPubMed Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998;71:65–76.CrossRefPubMed
36.
go back to reference Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, and Vortkamp A. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001:128:4523–4534. Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, and Vortkamp A. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001:128:4523–4534.
37••.
go back to reference . Purcell P, Joo BW, Hu JK, Tran PV, Calicchio ML, O’Connell DJ, et al. Temporomandibular joint formation requires two distinct hedgehog-dependent steps. Proc Natl Acad Sci U S A. 2009;106:18297–302. An in-depth examination of Hedgehog signaling in TMJ development. CrossRefPubMedPubMedCentral . Purcell P, Joo BW, Hu JK, Tran PV, Calicchio ML, O’Connell DJ, et al. Temporomandibular joint formation requires two distinct hedgehog-dependent steps. Proc Natl Acad Sci U S A. 2009;106:18297–302. An in-depth examination of Hedgehog signaling in TMJ development. CrossRefPubMedPubMedCentral
38.
go back to reference Shibukawa Y, Young B, Wu C, Yamada S, Long F, Pacifici M, et al. Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev Dynam. 2007;236:426–34.CrossRef Shibukawa Y, Young B, Wu C, Yamada S, Long F, Pacifici M, et al. Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev Dynam. 2007;236:426–34.CrossRef
39••.
go back to reference . Gu S, Wu W, Liu C, Yang L, Sun C, Ye W, et al. BMPR1A mediated signaling is essential for temporomandibular joint development in mice. PLoS One. 2014;9:e101000. This paper integrates information on IHH and BMP signaling in the development of the TMJ CrossRefPubMedPubMedCentral . Gu S, Wu W, Liu C, Yang L, Sun C, Ye W, et al. BMPR1A mediated signaling is essential for temporomandibular joint development in mice. PLoS One. 2014;9:e101000. This paper integrates information on IHH and BMP signaling in the development of the TMJ CrossRefPubMedPubMedCentral
40.
41.
go back to reference Gu S, Wei N, Yu L, Fei J, Chen Y. Shox2-deficiency leads to dysplasia and ankylosis of the temporomandibular joint in mice. Mech Dev. 2008;125(8):729–42.CrossRefPubMedPubMedCentral Gu S, Wei N, Yu L, Fei J, Chen Y. Shox2-deficiency leads to dysplasia and ankylosis of the temporomandibular joint in mice. Mech Dev. 2008;125(8):729–42.CrossRefPubMedPubMedCentral
42.
go back to reference Tang GH, Rabie A, Hagg U. Indian hedgehog: a mechanotransduction mediator in condylar cartilage. J Dent Res. 2004;83:434–8.CrossRefPubMed Tang GH, Rabie A, Hagg U. Indian hedgehog: a mechanotransduction mediator in condylar cartilage. J Dent Res. 2004;83:434–8.CrossRefPubMed
Metadata
Title
Part I: Development and Physiology of the Temporomandibular Joint
Authors
David L. Stocum
W. Eugene Roberts
Publication date
01-08-2018
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 4/2018
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-018-0447-7

Other articles of this Issue 4/2018

Current Osteoporosis Reports 4/2018 Go to the issue

Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)

Recent Advances and Future of Gene Therapy for Bone Regeneration

Genetics (M Johnson and S Ralston, Section Editors)

Mouse Cre Models for the Study of Bone Diseases

Rare Bone Disease (C Langman and E Shore, Section Editors)

Modeling Rare Bone Diseases in Animals

Epidemiology and Pathophysiology (F Cosman and D Shoback, Section Editors)

Current Understanding of Epidemiology, Pathophysiology, and Management of Atypical Femur Fractures