Skip to main content
Top
Published in: Current Osteoporosis Reports 3/2018

01-06-2018 | Biomechanics (G Niebur and J Wallace, Section Editors)

The Role of Matrix Composition in the Mechanical Behavior of Bone

Authors: Mustafa Unal, Amy Creecy, Jeffry S. Nyman

Published in: Current Osteoporosis Reports | Issue 3/2018

Login to get access

Abstract

Purpose of Review

While thinning of the cortices or trabeculae weakens bone, age-related changes in matrix composition also lower fracture resistance. This review summarizes how the organic matrix, mineral phase, and water compartments influence the mechanical behavior of bone, thereby identifying characteristics important to fracture risk.

Recent Findings

In the synthesis of the organic matrix, tropocollagen experiences various post-translational modifications that facilitate a highly organized fibril of collagen I with a preferred orientation giving bone extensibility and several toughening mechanisms. Being a ceramic, mineral is brittle but increases the strength of bone as its content within the organic matrix increases. With time, hydroxyapatite-like crystals experience carbonate substitutions, the consequence of which remains to be understood. Water participates in hydrogen bonding with organic matrix and in electrostatic attractions with mineral phase, thereby providing stability to collagen-mineral interface and ductility to bone.

Summary

Clinical tools sensitive to age- and disease-related changes in matrix composition that the affect mechanical behavior of bone could potentially improve fracture risk assessment.
Literature
1.
go back to reference Nyman JS, Makowski AJ. The contribution of the extracellular matrix to the fracture resistance of bone. Curr Osteoporos Rep. 2012;10(2):169–77.CrossRefPubMed Nyman JS, Makowski AJ. The contribution of the extracellular matrix to the fracture resistance of bone. Curr Osteoporos Rep. 2012;10(2):169–77.CrossRefPubMed
2.
go back to reference Nyman JS, Granke M, Singleton RC, Pharr GM. Tissue-level mechanical properties of bone contributing to fracture risk. Curr Osteoporos Rep. Springer US. 2016;14(4):138–50.CrossRef Nyman JS, Granke M, Singleton RC, Pharr GM. Tissue-level mechanical properties of bone contributing to fracture risk. Curr Osteoporos Rep. Springer US. 2016;14(4):138–50.CrossRef
3.
go back to reference McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A Meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Mineral Res. 2016;31(5):940–8.CrossRef McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A Meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Mineral Res. 2016;31(5):940–8.CrossRef
4.
go back to reference Siris ES, Chen Y-T, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.CrossRefPubMed Siris ES, Chen Y-T, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.CrossRefPubMed
5.
go back to reference Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res. 2017;181:1–14.CrossRefPubMed Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res. 2017;181:1–14.CrossRefPubMed
6.
go back to reference Sundh D, Nilsson AG, Nilsson M, Johansson L, Mellstrom D, Lorentzon M. Increased cortical porosity in women with hip fracture. J Intern Med. 2017;281(5):496–506.CrossRefPubMed Sundh D, Nilsson AG, Nilsson M, Johansson L, Mellstrom D, Lorentzon M. Increased cortical porosity in women with hip fracture. J Intern Med. 2017;281(5):496–506.CrossRefPubMed
7.
go back to reference Kral R, Osima M, Borgen TT, Vestgaard R, Richardsen E, Bjørnerem Å. Increased cortical porosity and reduced cortical thickness of the proximal femur are associated with nonvertebral fracture independent of Fracture Risk Assessment Tool and Garvan estimates in postmenopausal women. Roeder RK, Ed. PLoS One. 2017;12(9):e0185363–15.CrossRefPubMedPubMedCentral Kral R, Osima M, Borgen TT, Vestgaard R, Richardsen E, Bjørnerem Å. Increased cortical porosity and reduced cortical thickness of the proximal femur are associated with nonvertebral fracture independent of Fracture Risk Assessment Tool and Garvan estimates in postmenopausal women. Roeder RK, Ed. PLoS One. 2017;12(9):e0185363–15.CrossRefPubMedPubMedCentral
8.
go back to reference Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, et al. Individual trabecula segmentation (ITS)-based morphological analyses and micro finite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2011;27(2):263–72.CrossRef Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, et al. Individual trabecula segmentation (ITS)-based morphological analyses and micro finite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2011;27(2):263–72.CrossRef
9.
go back to reference Díez-Pérez A, Bouxsein ML, Eriksen EF, Khosla S, Nyman JS, Papapoulos S, et al. Technical note: recommendations for a standard procedure to assess cortical bone at the tissue-level in vivo using impact microindentation. Bone Rep. 2016;5:181–5.CrossRefPubMedPubMedCentral Díez-Pérez A, Bouxsein ML, Eriksen EF, Khosla S, Nyman JS, Papapoulos S, et al. Technical note: recommendations for a standard procedure to assess cortical bone at the tissue-level in vivo using impact microindentation. Bone Rep. 2016;5:181–5.CrossRefPubMedPubMedCentral
10.
go back to reference Allen MR, McNerny EM, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015;30(9):1539–50.CrossRefPubMedPubMedCentral Allen MR, McNerny EM, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015;30(9):1539–50.CrossRefPubMedPubMedCentral
11.
go back to reference Malgo F, Hamdy NAT, Papapoulos SE, Appelman-Dijkstra NM. Bone material strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of bone mineral density. J Clin Endocrinol Metab. 2015;100(5):2039–45.CrossRefPubMed Malgo F, Hamdy NAT, Papapoulos SE, Appelman-Dijkstra NM. Bone material strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of bone mineral density. J Clin Endocrinol Metab. 2015;100(5):2039–45.CrossRefPubMed
12.
go back to reference Sosa DD, Eriksen EF. Reduced bone material strength is associated with increased risk and severity of osteoporotic fractures. An impact microindentation study. Calcified Tissue Int. 2017;101(1):34–42.CrossRef Sosa DD, Eriksen EF. Reduced bone material strength is associated with increased risk and severity of osteoporotic fractures. An impact microindentation study. Calcified Tissue Int. 2017;101(1):34–42.CrossRef
13.
go back to reference • Rozental TD, Walley KC, Demissie S, Caksa S, Martinez-Betancourt A, Parker AM, et al. Bone material strength index as measured by impact microindentation in postmenopausal women with distal radius and hip fractures. J Bone Miner Res. 2017;1-22. An independent study of the micro-indentation device called the OsteoProbe found that bone material properties are compromised in patients with distal radius fractures compared to age-match subjects without history of fragility fractures. • Rozental TD, Walley KC, Demissie S, Caksa S, Martinez-Betancourt A, Parker AM, et al. Bone material strength index as measured by impact microindentation in postmenopausal women with distal radius and hip fractures. J Bone Miner Res. 2017;1-22. An independent study of the micro-indentation device called the OsteoProbe found that bone material properties are compromised in patients with distal radius fractures compared to age-match subjects without history of fragility fractures.
14.
go back to reference Rudäng R, Zoulakis M, Sundh D, Brisby H, Díez-Pérez A, Johansson L, et al. Bone material strength is associated with areal BMD but not with prevalent fractures in older women. Osteoporos Int. 2016;27(4):1585–92.CrossRefPubMed Rudäng R, Zoulakis M, Sundh D, Brisby H, Díez-Pérez A, Johansson L, et al. Bone material strength is associated with areal BMD but not with prevalent fractures in older women. Osteoporos Int. 2016;27(4):1585–92.CrossRefPubMed
15.
go back to reference Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29(4):787–95.CrossRefPubMedPubMedCentral Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29(4):787–95.CrossRefPubMedPubMedCentral
16.
go back to reference Furst JR, Bandeira LC, Fan W-W, Agarwal S, Nishiyama KK, McMahon DJ, et al. Advanced glycation end products and bone material strength in Type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2502–10.CrossRefPubMedPubMedCentral Furst JR, Bandeira LC, Fan W-W, Agarwal S, Nishiyama KK, McMahon DJ, et al. Advanced glycation end products and bone material strength in Type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2502–10.CrossRefPubMedPubMedCentral
17.
go back to reference Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellström D, Rudäng R, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res. 2017;86(9):32–10. Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellström D, Rudäng R, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res. 2017;86(9):32–10.
18.
19.
go back to reference Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. 2000;33(12):1575–83.CrossRefPubMed Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. 2000;33(12):1575–83.CrossRefPubMed
20.
go back to reference Koester KJ, Ager JW, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7(8):672–7.CrossRefPubMed Koester KJ, Ager JW, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7(8):672–7.CrossRefPubMed
21.
go back to reference Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng. 2008;130(1):011011.CrossRefPubMed Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng. 2008;130(1):011011.CrossRefPubMed
22.
go back to reference Landrigan MD, Roeder RK. Systematic error in mechanical measures of damage during four-point bending fatigue of cortical bone. J Biomech. 2009;42(9):1212–7.CrossRefPubMedPubMedCentral Landrigan MD, Roeder RK. Systematic error in mechanical measures of damage during four-point bending fatigue of cortical bone. J Biomech. 2009;42(9):1212–7.CrossRefPubMedPubMedCentral
23.
go back to reference Yeni YN, Shaffer RR, Baker KC, Dong XN, Grimm MJ, Les CM, et al. The effect of yield damage on the viscoelastic properties of cortical bone tissue as measured by dynamic mechanical analysis. J Biomed Mater Res A. 2007;82(3):530–7.CrossRefPubMed Yeni YN, Shaffer RR, Baker KC, Dong XN, Grimm MJ, Les CM, et al. The effect of yield damage on the viscoelastic properties of cortical bone tissue as measured by dynamic mechanical analysis. J Biomed Mater Res A. 2007;82(3):530–7.CrossRefPubMed
25.
go back to reference Terajima M, Perdivara I, Sricholpech M, Deguchi Y, Pleshko N, Tomer KB, et al. Glycosylation and cross-linking in bone type I collagen. J Biol Chem. 2014;289(33):22636–47.CrossRefPubMedPubMedCentral Terajima M, Perdivara I, Sricholpech M, Deguchi Y, Pleshko N, Tomer KB, et al. Glycosylation and cross-linking in bone type I collagen. J Biol Chem. 2014;289(33):22636–47.CrossRefPubMedPubMedCentral
26.
go back to reference Garnero P. The role of collagen organization on the properties of bone. Calcified Tissue Int. 2015;1–12. Garnero P. The role of collagen organization on the properties of bone. Calcified Tissue Int. 2015;1–12.
27.
go back to reference Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011;11(2):757–66.CrossRefPubMed Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011;11(2):757–66.CrossRefPubMed
28.
go back to reference • Nair AK, Gautieri A, Chang S-W, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 2013;4:1724. Using a three-dimensional, full-atomistic model of mineralized collagen fibrils, this study found that the mineral phase of bone can assume four times more stress than the collagen network while collagen predominately confers extensibility of the mineralized fibrils. CrossRefPubMedPubMedCentral • Nair AK, Gautieri A, Chang S-W, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 2013;4:1724. Using a three-dimensional, full-atomistic model of mineralized collagen fibrils, this study found that the mineral phase of bone can assume four times more stress than the collagen network while collagen predominately confers extensibility of the mineralized fibrils. CrossRefPubMedPubMedCentral
29.
go back to reference Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black AC, et al. Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone. 2014;61:191–200.CrossRefPubMedPubMedCentral Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black AC, et al. Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone. 2014;61:191–200.CrossRefPubMedPubMedCentral
30.
go back to reference Burton B, Gaspar A, Josey D, Tupy J, Grynpas MD, Willett TL. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization. Bone. 2014;61(C):71–81.CrossRefPubMed Burton B, Gaspar A, Josey D, Tupy J, Grynpas MD, Willett TL. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization. Bone. 2014;61(C):71–81.CrossRefPubMed
31.
go back to reference Eyre DR, Weis MA. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcified Tissue Int. 2013;93(4):338–47.CrossRef Eyre DR, Weis MA. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcified Tissue Int. 2013;93(4):338–47.CrossRef
32.
go back to reference Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR, Chang W, et al. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta. Cohn D, Ed. PLoS Genet. 2014;10(6):e1004465–17.CrossRefPubMedPubMedCentral Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR, Chang W, et al. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta. Cohn D, Ed. PLoS Genet. 2014;10(6):e1004465–17.CrossRefPubMedPubMedCentral
33.
go back to reference • Schrof S, Varga P, Hesse B, Schöne M, Schütz R, Masic A, et al. Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties. Acta Biomater. 2016;44(C):51–64. Using scanning acoustic microscopy to image modulus across lamellae, synchrotron micro-compute tomography to assess mineral density of osteons, and Raman spectroscopy to map Amide I over lamellae, this study found that variations in elastic properties of lamellae in human cortical bone are due to shifting orientation of collagen fibrils, not to varying mineral density. CrossRefPubMed • Schrof S, Varga P, Hesse B, Schöne M, Schütz R, Masic A, et al. Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties. Acta Biomater. 2016;44(C):51–64. Using scanning acoustic microscopy to image modulus across lamellae, synchrotron micro-compute tomography to assess mineral density of osteons, and Raman spectroscopy to map Amide I over lamellae, this study found that variations in elastic properties of lamellae in human cortical bone are due to shifting orientation of collagen fibrils, not to varying mineral density. CrossRefPubMed
34.
go back to reference Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, et al. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. Roeder RK, Ed. PLoS One. 2013;8(3):e58043.CrossRefPubMedPubMedCentral Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, et al. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. Roeder RK, Ed. PLoS One. 2013;8(3):e58043.CrossRefPubMedPubMedCentral
35.
go back to reference Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. 2006;5(1):52–5.CrossRefPubMed Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. 2006;5(1):52–5.CrossRefPubMed
36.
go back to reference Jimenez-Palomar I, Shipov A, Shahar R, Barber AH. Structural orientation dependent sub-lamellar bone mechanics. J Mech Behav Biomed Mater. Elsevier. 2015;52(C):63–71.CrossRef Jimenez-Palomar I, Shipov A, Shahar R, Barber AH. Structural orientation dependent sub-lamellar bone mechanics. J Mech Behav Biomed Mater. Elsevier. 2015;52(C):63–71.CrossRef
37.
go back to reference Makowski AJ, Uppuganti S, Wadeer SA, Whitehead JM, Rowland BJ, Granke M, et al. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Elsevier B.V. Bone. 2014;62:1–9.CrossRefPubMedPubMedCentral Makowski AJ, Uppuganti S, Wadeer SA, Whitehead JM, Rowland BJ, Granke M, et al. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Elsevier B.V. Bone. 2014;62:1–9.CrossRefPubMedPubMedCentral
38.
go back to reference Karunaratne A, Xi L, Bentley L, Sykes D, Boyde A, Esapa CT, et al. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis. Bone. The Authors. 2016;84(C):15–24. Karunaratne A, Xi L, Bentley L, Sykes D, Boyde A, Esapa CT, et al. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis. Bone. The Authors. 2016;84(C):15–24.
39.
go back to reference •• McNerny EMB, Gong B, Morris MD, Kohn DH. Bone Fracture Toughness and Strength Correlate With Collagen Cross-Link Maturity in a Dose-Controlled Lathyrism Mouse Model. J Bone Miner Res. 2015;30(3):446–55. This mouse study confirmed previous work showing the distribution of enzymatic collagen crosslinking with toxin lowers bone strength without affecting tissue mineral density, but also reported that accompanying decrease in fracture toughness was related to a decrease in the mature to immature enzymatic crosslink ratio. CrossRefPubMedCentral •• McNerny EMB, Gong B, Morris MD, Kohn DH. Bone Fracture Toughness and Strength Correlate With Collagen Cross-Link Maturity in a Dose-Controlled Lathyrism Mouse Model. J Bone Miner Res. 2015;30(3):446–55. This mouse study confirmed previous work showing the distribution of enzymatic collagen crosslinking with toxin lowers bone strength without affecting tissue mineral density, but also reported that accompanying decrease in fracture toughness was related to a decrease in the mature to immature enzymatic crosslink ratio. CrossRefPubMedCentral
40.
go back to reference Berteau J-P, Gineyts E, Pithioux M, Baron C, Boivin G, Lasaygues P, et al. Ratio between mature and immature enzymatic cross-links correlates with post-yield cortical bone behavior: an insight into greenstick fractures of the child fibula. Bone. 2015;79:190–5.CrossRefPubMed Berteau J-P, Gineyts E, Pithioux M, Baron C, Boivin G, Lasaygues P, et al. Ratio between mature and immature enzymatic cross-links correlates with post-yield cortical bone behavior: an insight into greenstick fractures of the child fibula. Bone. 2015;79:190–5.CrossRefPubMed
41.
go back to reference Uppuganti S, Granke M, Makowski AJ, Does MD, Nyman JS. Age-related changes in the fracture resistance of male Fischer F344 rat bone. Bone. 2016;83:220–32.CrossRefPubMed Uppuganti S, Granke M, Makowski AJ, Does MD, Nyman JS. Age-related changes in the fracture resistance of male Fischer F344 rat bone. Bone. 2016;83:220–32.CrossRefPubMed
42.
go back to reference Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Püschel K, Amling M, et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone. 2017;97:243–51.CrossRefPubMedPubMedCentral Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Püschel K, Amling M, et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone. 2017;97:243–51.CrossRefPubMedPubMedCentral
43.
go back to reference Karim L, Tang SY, Sroga GE, Vashishth D. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int. Springer: London. 2013;24(9):2441–7.CrossRef Karim L, Tang SY, Sroga GE, Vashishth D. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int. Springer: London. 2013;24(9):2441–7.CrossRef
44.
go back to reference Willett TL, Sutty S, Gaspar A, Avery N, Grynpas M. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone. 2013;52(2):611–22.CrossRefPubMed Willett TL, Sutty S, Gaspar A, Avery N, Grynpas M. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone. 2013;52(2):611–22.CrossRefPubMed
45.
go back to reference • Poundarik AA, Wu P-C, Evis Z, Sroga GE, Ural A, Rubin M, et al. A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater. 2015;52:120–30. Unlike previous studies incubating bovine bone in ribose, this study glycated human cortical bone and reported lower crack growth toughness, but no difference in crack initiation toughness, with less microcrack density being generated during crack propagation for ribose incubated samples than for the control samples. CrossRefPubMedPubMedCentral • Poundarik AA, Wu P-C, Evis Z, Sroga GE, Ural A, Rubin M, et al. A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater. 2015;52:120–30. Unlike previous studies incubating bovine bone in ribose, this study glycated human cortical bone and reported lower crack growth toughness, but no difference in crack initiation toughness, with less microcrack density being generated during crack propagation for ribose incubated samples than for the control samples. CrossRefPubMedPubMedCentral
46.
go back to reference Willems NMBK, Langenbach GEJ, Stoop R, Toonder den JMJ, Mulder L, Zentner A, et al. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone. Mater Sci Eng C Mater Biol Appl. 2014;42:15–21.CrossRefPubMed Willems NMBK, Langenbach GEJ, Stoop R, Toonder den JMJ, Mulder L, Zentner A, et al. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone. Mater Sci Eng C Mater Biol Appl. 2014;42:15–21.CrossRefPubMed
47.
go back to reference Rubin MR, Paschalis EP, Poundarik A, Sroga GE, McMahon DJ, Gamsjaeger S, et al. Advanced glycation endproducts and bone material properties in type 1 diabetic mice. Geoffroy V, Ed. PLoS One. Public Library of Science. 2016;11(5):e0154700.CrossRef Rubin MR, Paschalis EP, Poundarik A, Sroga GE, McMahon DJ, Gamsjaeger S, et al. Advanced glycation endproducts and bone material properties in type 1 diabetic mice. Geoffroy V, Ed. PLoS One. Public Library of Science. 2016;11(5):e0154700.CrossRef
48.
go back to reference Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. 2005;4(8):612–6.CrossRefPubMed Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. 2005;4(8):612–6.CrossRefPubMed
49.
go back to reference Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci. 2012;109(47):19178–83.CrossRefPubMedPubMedCentral Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci. 2012;109(47):19178–83.CrossRefPubMedPubMedCentral
50.
go back to reference Maruyama N, Shibata Y, Mochizuki A, Yamada A, Maki K, Inoue T, et al. Bone micro-fragility caused by the mimetic aging processes in alpha-klotho deficient mice: in situ nano-indentation assessment of dilatational bands. Biomaterials. 2015;47:62–71.CrossRefPubMed Maruyama N, Shibata Y, Mochizuki A, Yamada A, Maki K, Inoue T, et al. Bone micro-fragility caused by the mimetic aging processes in alpha-klotho deficient mice: in situ nano-indentation assessment of dilatational bands. Biomaterials. 2015;47:62–71.CrossRefPubMed
51.
go back to reference Bailey S, Karsenty G, Gundberg C, Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Sun HB, Ed. Ann New York Acad Sci. 2017;1409(1):79–84.CrossRef Bailey S, Karsenty G, Gundberg C, Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Sun HB, Ed. Ann New York Acad Sci. 2017;1409(1):79–84.CrossRef
52.
go back to reference Pasteris JD, Yoder CH, Wopenka B. Molecular water in nominally unhydrated carbonated hydroxylapatite: the key to a better understanding of bone mineral. Am Mineralogist. 2014;99(1):16–27.CrossRef Pasteris JD, Yoder CH, Wopenka B. Molecular water in nominally unhydrated carbonated hydroxylapatite: the key to a better understanding of bone mineral. Am Mineralogist. 2014;99(1):16–27.CrossRef
53.
go back to reference Stock SR. The mineral–collagen interface in bone. Springer: US; 2015;15:1–19. Stock SR. The mineral–collagen interface in bone. Springer: US; 2015;15:1–19.
54.
go back to reference Pasteris JD. A mineralogical view of apatitic biomaterials. Am Mineralogist. 2016;101(12):2594–610.CrossRef Pasteris JD. A mineralogical view of apatitic biomaterials. Am Mineralogist. 2016;101(12):2594–610.CrossRef
55.
go back to reference Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2(1):1–11.CrossRefPubMed Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2(1):1–11.CrossRefPubMed
56.
go back to reference Bala Y, Seeman E. Bone’s material constituents and their contribution to bone strength in health, disease, and treatment. Calcif Tissue Int. 2015;97(3):308–26.CrossRefPubMed Bala Y, Seeman E. Bone’s material constituents and their contribution to bone strength in health, disease, and treatment. Calcif Tissue Int. 2015;97(3):308–26.CrossRefPubMed
57.
go back to reference Almer JD, Stock SR. Micromechanical response of mineral and collagen phases in bone. J Struct Biol. 2007;157(2):365–70.CrossRefPubMed Almer JD, Stock SR. Micromechanical response of mineral and collagen phases in bone. J Struct Biol. 2007;157(2):365–70.CrossRefPubMed
58.
go back to reference Deymier-Black AC, Yuan F, Singhal A, Almer JD, Brinson LC, Dunand DC. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone. Acta Biomater. 2012;8(1):253–61.CrossRefPubMed Deymier-Black AC, Yuan F, Singhal A, Almer JD, Brinson LC, Dunand DC. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone. Acta Biomater. 2012;8(1):253–61.CrossRefPubMed
59.
go back to reference Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.CrossRefPubMed Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.CrossRefPubMed
60.
go back to reference Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporosis Int. 2017;1–17. Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporosis Int. 2017;1–17.
61.
go back to reference Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34(3):443–53.CrossRefPubMed Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34(3):443–53.CrossRefPubMed
62.
go back to reference Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MCH. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcified Tissue Int. 2010;87(5):450–60.CrossRef Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MCH. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcified Tissue Int. 2010;87(5):450–60.CrossRef
63.
go back to reference Zhang R, Gong H, Zhu D, Ma R, Fang J, Fan Y. Multi-level femoral morphology and mechanical properties of rats of different ages. Bone. 2015;76:76–87.CrossRefPubMed Zhang R, Gong H, Zhu D, Ma R, Fang J, Fan Y. Multi-level femoral morphology and mechanical properties of rats of different ages. Bone. 2015;76:76–87.CrossRefPubMed
64.
go back to reference Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the Degree of Mineralization with Osteoporosis and its Treatment. Curr Osteoporos Rep. 2014;12(3):338–50.CrossRefPubMed Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the Degree of Mineralization with Osteoporosis and its Treatment. Curr Osteoporos Rep. 2014;12(3):338–50.CrossRefPubMed
65.
go back to reference Vennin S, Desyatova A, Turner JA, Watson PA, Lappe JM, Recker RR, et al. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women. Bone. 2017;97(C):233–42.CrossRefPubMedPubMedCentral Vennin S, Desyatova A, Turner JA, Watson PA, Lappe JM, Recker RR, et al. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women. Bone. 2017;97(C):233–42.CrossRefPubMedPubMedCentral
66.
go back to reference •• Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E, et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci USA. 2017;114(33):8722–7. The study provides that the first evidence that atypical fractures associated with long-term bisphosphonate use involves an increase in the mineral-to-matrix ratio, a decrease in collagen maturity, and decrease in fracture toughness of human cortical bone. CrossRefPubMedPubMedCentral •• Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E, et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci USA. 2017;114(33):8722–7. The study provides that the first evidence that atypical fractures associated with long-term bisphosphonate use involves an increase in the mineral-to-matrix ratio, a decrease in collagen maturity, and decrease in fracture toughness of human cortical bone. CrossRefPubMedPubMedCentral
67.
go back to reference Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcified Tissue Int. 2008;82(4):263–70.CrossRef Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcified Tissue Int. 2008;82(4):263–70.CrossRef
68.
go back to reference Fratzl-Zelman N, Schmidt I, Roschger P, Glorieux FH, Klaushofer K, Fratzl P, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–8.CrossRefPubMed Fratzl-Zelman N, Schmidt I, Roschger P, Glorieux FH, Klaushofer K, Fratzl P, et al. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–8.CrossRefPubMed
69.
go back to reference Imbert L, Aurégan J-C, Pernelle K, Hoc T. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone. 2014;65:18–24.CrossRefPubMed Imbert L, Aurégan J-C, Pernelle K, Hoc T. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone. 2014;65:18–24.CrossRefPubMed
70.
go back to reference Vanleene M, Porter A, Guillot P-V, Boyde A, Oyen M, Shefelbine S. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone. 2012;50(6):1317–23.CrossRefPubMedPubMedCentral Vanleene M, Porter A, Guillot P-V, Boyde A, Oyen M, Shefelbine S. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone. 2012;50(6):1317–23.CrossRefPubMedPubMedCentral
71.
go back to reference •• Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 2014;29(6):1392–401. This study assessed bone from wild-type, +/oim, and oim/oim mice across multiple length scales, and found that the brittle bone phenotype (low fracture toughness) of one type of osteogenesis imperfecta can be explain by a reduction in the capacity of fibrils to sustain large deformation likely due to high mineralization and high AGEs. CrossRefPubMedPubMedCentral •• Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 2014;29(6):1392–401. This study assessed bone from wild-type, +/oim, and oim/oim mice across multiple length scales, and found that the brittle bone phenotype (low fracture toughness) of one type of osteogenesis imperfecta can be explain by a reduction in the capacity of fibrils to sustain large deformation likely due to high mineralization and high AGEs. CrossRefPubMedPubMedCentral
72.
go back to reference Fratzl-Zelman N, Bächinger HP, Vranka JA, Roschger P, Klaushofer K, Rauch F. Bone matrix hypermineralization in prolyl-3 hydroxylase 1 deficient mice. Bone. 2016;85:15–22.CrossRefPubMed Fratzl-Zelman N, Bächinger HP, Vranka JA, Roschger P, Klaushofer K, Rauch F. Bone matrix hypermineralization in prolyl-3 hydroxylase 1 deficient mice. Bone. 2016;85:15–22.CrossRefPubMed
73.
go back to reference Vranka JA, Pokidysheva E, Hayashi L, Zientek K, Mizuno K, Ishikawa Y, et al. Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J Biol Chem. 2010;285(22):17253–62.CrossRefPubMedPubMedCentral Vranka JA, Pokidysheva E, Hayashi L, Zientek K, Mizuno K, Ishikawa Y, et al. Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J Biol Chem. 2010;285(22):17253–62.CrossRefPubMedPubMedCentral
74.
go back to reference Bousson V, Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo J-D. Greater tissue mineralization heterogeneity in femoral neck cortex from hip-fractured females than controls. A microradiographic study. Bone. 2011;48(6):1252–9.CrossRefPubMed Bousson V, Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo J-D. Greater tissue mineralization heterogeneity in femoral neck cortex from hip-fractured females than controls. A microradiographic study. Bone. 2011;48(6):1252–9.CrossRefPubMed
75.
go back to reference Tamminen IS, Misof BM, Roschger P, Mäyränpää MK, Turunen MJ, Isaksson H, et al. Increased heterogeneity of bone matrix mineralization in pediatric patients prone to fractures: a biopsy study. J Bone Miner Res. 2014;29(5):1110–7.CrossRefPubMed Tamminen IS, Misof BM, Roschger P, Mäyränpää MK, Turunen MJ, Isaksson H, et al. Increased heterogeneity of bone matrix mineralization in pediatric patients prone to fractures: a biopsy study. J Bone Miner Res. 2014;29(5):1110–7.CrossRefPubMed
76.
go back to reference Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res. 2013;28(1):150–61.CrossRefPubMedPubMedCentral Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res. 2013;28(1):150–61.CrossRefPubMedPubMedCentral
77.
go back to reference Milovanovic P, Rakocevic Z, Djonic D, Zivkovic V, Hahn M, Nikolic S, et al. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs healthy aged controls. Exp Gerontol. 2014;55:19–28.CrossRefPubMed Milovanovic P, Rakocevic Z, Djonic D, Zivkovic V, Hahn M, Nikolic S, et al. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs healthy aged controls. Exp Gerontol. 2014;55:19–28.CrossRefPubMed
78.
go back to reference Demirtas A, Curran E, Ural A. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling. Bone. 2016;91:92–101.CrossRefPubMed Demirtas A, Curran E, Ural A. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling. Bone. 2016;91:92–101.CrossRefPubMed
79.
go back to reference • Granke M, Makowski AJ, Uppuganti S, Nyman JS. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. J Biomech. 2016;49(13):2748–55. Analyzing mineralization of single-edge notched beam specimens of human cortical bone with quantitative backscattered electron imaging, this study found that cortical porosity and cement line density were dominant predictors of fracture toughness over heterogeneity. CrossRefPubMedPubMedCentral • Granke M, Makowski AJ, Uppuganti S, Nyman JS. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. J Biomech. 2016;49(13):2748–55. Analyzing mineralization of single-edge notched beam specimens of human cortical bone with quantitative backscattered electron imaging, this study found that cortical porosity and cement line density were dominant predictors of fracture toughness over heterogeneity. CrossRefPubMedPubMedCentral
80.
go back to reference • Torres AM, Matheny JB, Keaveny TM, Taylor D, Rimnac CM, Hernandez CJ. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc Natl Acad Sci USA. 2016;201520539–6. Upon fluorescent labeling damage after 2 bouts of fatigue loading of trabecular bone, existing damage size, not local stress, dictated additional fatigue damage propagation indicating that the heterogeneity in matrix composition favors the formation damage within the center of trabeculae. • Torres AM, Matheny JB, Keaveny TM, Taylor D, Rimnac CM, Hernandez CJ. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc Natl Acad Sci USA. 2016;201520539–6. Upon fluorescent labeling damage after 2 bouts of fatigue loading of trabecular bone, existing damage size, not local stress, dictated additional fatigue damage propagation indicating that the heterogeneity in matrix composition favors the formation damage within the center of trabeculae.
81.
go back to reference Farlay D, Panczer G, Rey C, Delmas PD, Boivin G. Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab. 2010;28(4):433–45.CrossRefPubMedPubMedCentral Farlay D, Panczer G, Rey C, Delmas PD, Boivin G. Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab. 2010;28(4):433–45.CrossRefPubMedPubMedCentral
82.
go back to reference Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int. 2013;24(8):2153–66.CrossRefPubMed Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int. 2013;24(8):2153–66.CrossRefPubMed
83.
go back to reference Bi X, Patil CA, Lynch CC, Pharr GM, Mahadevan-Jansen A, Nyman JS. Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. J Biomech. 2011;44(2):297–303.CrossRefPubMed Bi X, Patil CA, Lynch CC, Pharr GM, Mahadevan-Jansen A, Nyman JS. Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. J Biomech. 2011;44(2):297–303.CrossRefPubMed
84.
go back to reference Yerramshetty JS, Akkus O. The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone. 2008;42(3):476–82.CrossRefPubMed Yerramshetty JS, Akkus O. The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone. 2008;42(3):476–82.CrossRefPubMed
85.
go back to reference Hanschin RG, Stern WB. X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone. 1995;16(4 Suppl):355S–63S.CrossRefPubMed Hanschin RG, Stern WB. X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone. 1995;16(4 Suppl):355S–63S.CrossRefPubMed
86.
go back to reference Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, et al. Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res. 2012;27(4):825–34.CrossRefPubMed Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, et al. Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res. 2012;27(4):825–34.CrossRefPubMed
87.
go back to reference Boskey A. Bone mineral crystal size. Osteoporos Int. 2003;14(Suppl 5):S16–20. Boskey A. Bone mineral crystal size. Osteoporos Int. 2003;14(Suppl 5):S16–20.
88.
go back to reference Pasteris JD, Wopenka B, Valsami-Jones E. Bone and tooth mineralization: why apatite? Elements. 2008;4(2):97–104.CrossRef Pasteris JD, Wopenka B, Valsami-Jones E. Bone and tooth mineralization: why apatite? Elements. 2008;4(2):97–104.CrossRef
89.
go back to reference Makowski AJ, Granke M, Ayala OD, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Applying full spectrum analysis to a Raman spectroscopic assessment of fracture toughness of human cortical bone. Appl Spectrosc. 2017;84(21):3702817718149. Makowski AJ, Granke M, Ayala OD, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Applying full spectrum analysis to a Raman spectroscopic assessment of fracture toughness of human cortical bone. Appl Spectrosc. 2017;84(21):3702817718149.
90.
91.
go back to reference Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res. 2015;30(7):1290–300.CrossRefPubMedPubMedCentral Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res. 2015;30(7):1290–300.CrossRefPubMedPubMedCentral
92.
go back to reference Manhard MK, Uppuganti S, Granke M, Gochberg DF, Nyman JS, Does MD. MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone. 2016;87:1–10.CrossRefPubMedPubMedCentral Manhard MK, Uppuganti S, Granke M, Gochberg DF, Nyman JS, Does MD. MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone. 2016;87:1–10.CrossRefPubMedPubMedCentral
93.
go back to reference Horch RA, Gochberg DF, Nyman JS, Does MD. Noninvasive predictors of human cortical bone mechanical properties: T2-discriminated 1H NMR compared with high resolution X-ray. PLoS One. 2011;6(1):e16359.CrossRefPubMedPubMedCentral Horch RA, Gochberg DF, Nyman JS, Does MD. Noninvasive predictors of human cortical bone mechanical properties: T2-discriminated 1H NMR compared with high resolution X-ray. PLoS One. 2011;6(1):e16359.CrossRefPubMedPubMedCentral
94.
go back to reference Bae WC, Chen PC, Chung CB, Masuda K, D'Lima D, Du J. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: Correlation with porosity and biomechanical properties. J Bone Miner Res. 2012;27(4):848–57.CrossRefPubMedPubMedCentral Bae WC, Chen PC, Chung CB, Masuda K, D'Lima D, Du J. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: Correlation with porosity and biomechanical properties. J Bone Miner Res. 2012;27(4):848–57.CrossRefPubMedPubMedCentral
95.
go back to reference Unal M, Yang S, Akkus O. Molecular spectroscopic identification of the water compartments in bone. Bone. 2014;67:228–36.CrossRefPubMed Unal M, Yang S, Akkus O. Molecular spectroscopic identification of the water compartments in bone. Bone. 2014;67:228–36.CrossRefPubMed
96.
go back to reference Unal M, Akkus O. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone. Bone. 2015;81:315–26.CrossRefPubMedPubMedCentral Unal M, Akkus O. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone. Bone. 2015;81:315–26.CrossRefPubMedPubMedCentral
97.
go back to reference Bae WC, Patil S, Biswas R, Li S, Chang EY, Statum S, et al. Magnetic resonance imaging assessed cortical porosity is highly correlated with μCT porosity. Bone. 2014;66C:56–61.CrossRef Bae WC, Patil S, Biswas R, Li S, Chang EY, Statum S, et al. Magnetic resonance imaging assessed cortical porosity is highly correlated with μCT porosity. Bone. 2014;66C:56–61.CrossRef
98.
go back to reference Wang X, Xu H, Huang Y, Gu S, Jiang JX. Coupling Effect of Water and Proteoglycans on the In Situ Toughness of Bone. J Bone Miner Res. 2016;31(5):1026–9.CrossRefPubMedPubMedCentral Wang X, Xu H, Huang Y, Gu S, Jiang JX. Coupling Effect of Water and Proteoglycans on the In Situ Toughness of Bone. J Bone Miner Res. 2016;31(5):1026–9.CrossRefPubMedPubMedCentral
99.
go back to reference Flanagan CD, Unal M, Akkus O, Rimnac CM. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage. J Mech Behav Biomed Mater. 2017;75:314–21.CrossRefPubMed Flanagan CD, Unal M, Akkus O, Rimnac CM. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage. J Mech Behav Biomed Mater. 2017;75:314–21.CrossRefPubMed
Metadata
Title
The Role of Matrix Composition in the Mechanical Behavior of Bone
Authors
Mustafa Unal
Amy Creecy
Jeffry S. Nyman
Publication date
01-06-2018
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 3/2018
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-018-0433-0

Other articles of this Issue 3/2018

Current Osteoporosis Reports 3/2018 Go to the issue

Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)

Regenerative Medicine Strategies in Biomedical Implants

Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)

Clinical Management of Osteoporotic Fractures

Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)

Bone Marrow Adipocyte Developmental Origin and Biology

Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)

Human Knee Meniscus Regeneration Strategies: a Review on Recent Advances