Skip to main content
Top
Published in: Current Osteoporosis Reports 1/2018

01-02-2018 | Genetics (M Johnson and S Ralston, Section Editors)

Genetics of Osteopetrosis

Authors: Eleonora Palagano, Ciro Menale, Cristina Sobacchi, Anna Villa

Published in: Current Osteoporosis Reports | Issue 1/2018

Login to get access

Abstract

Purpose of Review

The term osteopetrosis refers to a group of rare skeletal diseases sharing the hallmark of a generalized increase in bone density owing to a defect in bone resorption. Osteopetrosis is clinically and genetically heterogeneous, and a precise molecular classification is relevant for prognosis and treatment. Here, we review recent data on the pathogenesis of this disorder.

Recent Findings

Novel mutations in known genes as well as defects in new genes have been recently reported, further expanding the spectrum of molecular defects leading to osteopetrosis.

Summary

Exploitation of next-generation sequencing tools is ever spreading, facilitating differential diagnosis. Some complex phenotypes in which osteopetrosis is accompanied by additional clinical features have received a molecular classification, also involving new genes. Moreover, novel types of mutations have been recognized, which for their nature or genomic location are at high risk being neglected. Yet, the causative mutation is unknown in some patients, indicating that the genetics of osteopetrosis still deserves intense research efforts.
Literature
1.
go back to reference •• Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36. This review offered a comprehensive overview of the genetics, clinical aspects, cellular pathogenesis and treatment of osteopetrosis. PubMedCrossRef •• Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36. This review offered a comprehensive overview of the genetics, clinical aspects, cellular pathogenesis and treatment of osteopetrosis. PubMedCrossRef
2.
go back to reference Sobacchi C, Villa A, Schulz A, Kornak U. CLCN7-Related Osteopetrosis. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. 2007 Feb 12 [updated 2016 Jun 9]. Sobacchi C, Villa A, Schulz A, Kornak U. CLCN7-Related Osteopetrosis. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. 2007 Feb 12 [updated 2016 Jun 9].
3.
go back to reference Döffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277–85.PubMedCrossRef Döffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277–85.PubMedCrossRef
4.
go back to reference Dupuis-Girod S, Corradini N, Hadj-Rabia S, Fournet JC, Faivre L, Le Deist F, et al. Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics. 2002;109(6):e97.PubMedCrossRef Dupuis-Girod S, Corradini N, Hadj-Rabia S, Fournet JC, Faivre L, Le Deist F, et al. Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics. 2002;109(6):e97.PubMedCrossRef
5.
go back to reference Roberts CM, Angus JE, Leach IH, McDermott EM, Walker DA, Ravenscroft JC. A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr. 2010;169(11):1403–7.PubMedCrossRef Roberts CM, Angus JE, Leach IH, McDermott EM, Walker DA, Ravenscroft JC. A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr. 2010;169(11):1403–7.PubMedCrossRef
6.
go back to reference Carlberg VM, Lofgren SM, Mann JA, Austin JP, Nolt D, Shereck EB, et al. Hypohidrotic ectodermal dysplasia, osteopetrosis, lymphedema, and immunodeficiency in an infant with multiple opportunistic infections. Pediatr Dermatol. 2014;31(6):716–21.PubMedCrossRef Carlberg VM, Lofgren SM, Mann JA, Austin JP, Nolt D, Shereck EB, et al. Hypohidrotic ectodermal dysplasia, osteopetrosis, lymphedema, and immunodeficiency in an infant with multiple opportunistic infections. Pediatr Dermatol. 2014;31(6):716–21.PubMedCrossRef
7.
go back to reference Miot C, Imai K, Imai C, Mancini AJ, Kucuk ZY, Kawai T, et al. Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood. 2017;130(12):1456–67.PubMedCrossRef Miot C, Imai K, Imai C, Mancini AJ, Kucuk ZY, Kawai T, et al. Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood. 2017;130(12):1456–67.PubMedCrossRef
8.
go back to reference Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313(3):139–45.PubMedCrossRef Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313(3):139–45.PubMedCrossRef
9.
go back to reference Hu PY, Ernst AR, Sly WS, Venta PJ, Skaggs LA, Tashian RE. Carbonic anhydrase II deficiency: single-base deletion in exon 7 is the predominant mutation in Caribbean Hispanic patients. Am J Hum Genet. 1994;54(4):602–8.PubMedPubMedCentral Hu PY, Ernst AR, Sly WS, Venta PJ, Skaggs LA, Tashian RE. Carbonic anhydrase II deficiency: single-base deletion in exon 7 is the predominant mutation in Caribbean Hispanic patients. Am J Hum Genet. 1994;54(4):602–8.PubMedPubMedCentral
10.
go back to reference Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int. 2009;84(1):1–12.PubMedCrossRef Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int. 2009;84(1):1–12.PubMedCrossRef
11.
go back to reference Bollerslev J, Henriksen K, Nielsen MF, Brixen K, Van Hul W. Autosomal dominant osteopetrosis revisited: lessons from recent studies. Eur J Endocrinol. 2013;69(2):R39–57.CrossRef Bollerslev J, Henriksen K, Nielsen MF, Brixen K, Van Hul W. Autosomal dominant osteopetrosis revisited: lessons from recent studies. Eur J Endocrinol. 2013;69(2):R39–57.CrossRef
12.
go back to reference Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol. 2012;44(9):1422–35.PubMedCrossRef Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol. 2012;44(9):1422–35.PubMedCrossRef
13.
go back to reference Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000;25(3):343–6.PubMedCrossRef Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000;25(3):343–6.PubMedCrossRef
14.
go back to reference Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet. 2001;10(17):1767–73.PubMedCrossRef Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet. 2001;10(17):1767–73.PubMedCrossRef
15.
go back to reference Pangrazio A, Caldana ME, Lo Iacono N, Mantero S, Vezzoni P, Villa A, et al. Autosomal recessive osteopetrosis: report of 41 novel mutations in the TCIRG1 gene and diagnostic implications. Osteoporos Int. 2012;23(11):2713–8.PubMedCrossRef Pangrazio A, Caldana ME, Lo Iacono N, Mantero S, Vezzoni P, Villa A, et al. Autosomal recessive osteopetrosis: report of 41 novel mutations in the TCIRG1 gene and diagnostic implications. Osteoporos Int. 2012;23(11):2713–8.PubMedCrossRef
16.
go back to reference •• Palagano E, Blair HC, Pangrazio A, Tourkova I, Strina D, Angius A, et al. Buried in the middle but guilty: intronic mutations in the TCIRG1 gene cause human autosomal recessive osteopetrosis. J Bone Miner Res. 2015;30(10):1814–21. This manuscript highlighted the possible involvement of deep intronic mutations in disease pathogenesis, with relevant implications for WES data analysis. PubMedCrossRef •• Palagano E, Blair HC, Pangrazio A, Tourkova I, Strina D, Angius A, et al. Buried in the middle but guilty: intronic mutations in the TCIRG1 gene cause human autosomal recessive osteopetrosis. J Bone Miner Res. 2015;30(10):1814–21. This manuscript highlighted the possible involvement of deep intronic mutations in disease pathogenesis, with relevant implications for WES data analysis. PubMedCrossRef
17.
go back to reference Demir K, Nalbantoglu O, Karaer K, Korkmaz HA, Yildiz M, Tunc S, et al. Genetic diagnosis using whole exome analysis in two cases with malignant osteopetrosis of infancy. J Clin Res Pediatr Endocrinol. 2015;7(4):356–7.PubMedPubMedCentralCrossRef Demir K, Nalbantoglu O, Karaer K, Korkmaz HA, Yildiz M, Tunc S, et al. Genetic diagnosis using whole exome analysis in two cases with malignant osteopetrosis of infancy. J Clin Res Pediatr Endocrinol. 2015;7(4):356–7.PubMedPubMedCentralCrossRef
18.
go back to reference Bahr TL, Lund T, Sando NM, Orchard PJ, Miller WP. Haploidentical transplantation with post-transplant cyclophosphamide following reduced-intensity conditioning for osteopetrosis: outcomes in three children. Bone Marrow Transplant. 2016;51:1546–8.PubMedCrossRef Bahr TL, Lund T, Sando NM, Orchard PJ, Miller WP. Haploidentical transplantation with post-transplant cyclophosphamide following reduced-intensity conditioning for osteopetrosis: outcomes in three children. Bone Marrow Transplant. 2016;51:1546–8.PubMedCrossRef
19.
go back to reference •• Palagano E, Susani L, Menale C, Ramenghi U, Berger M, Uva P, et al. Synonymous mutations add a layer of complexity in the diagnosis of human osteopetrosis. J Bone Miner Res. 2017;32(1):99–105. This manuscript highlighted the possible involvement of synonymous but not silent mutations in disease pathogenesis, with relevant implications for WES data analysis. PubMedCrossRef •• Palagano E, Susani L, Menale C, Ramenghi U, Berger M, Uva P, et al. Synonymous mutations add a layer of complexity in the diagnosis of human osteopetrosis. J Bone Miner Res. 2017;32(1):99–105. This manuscript highlighted the possible involvement of synonymous but not silent mutations in disease pathogenesis, with relevant implications for WES data analysis. PubMedCrossRef
20.
go back to reference Zhang X, He J, Fu W, Wang C, Zhang Z. Novel mutations of TCIRG1 cause a malignant and mild phenotype of autosomal recessive osteopetrosis (ARO) in four Chinese families. Acta Pharmacol Sin 2017. Zhang X, He J, Fu W, Wang C, Zhang Z. Novel mutations of TCIRG1 cause a malignant and mild phenotype of autosomal recessive osteopetrosis (ARO) in four Chinese families. Acta Pharmacol Sin 2017.
21.
go back to reference Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J. 2011;30(11):2140–52.PubMedPubMedCentralCrossRef Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J. 2011;30(11):2140–52.PubMedPubMedCentralCrossRef
22.
go back to reference •• Ludwig CF, Ullrich F, Leisle L, Stauber T, Jentsch TJ. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1. J Biol Chem. 2013;288(40):28611–9. This and the previous work essentially contributed to the dissection of ClC7/Ostm1 pathophysiology. PubMedPubMedCentralCrossRef •• Ludwig CF, Ullrich F, Leisle L, Stauber T, Jentsch TJ. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1. J Biol Chem. 2013;288(40):28611–9. This and the previous work essentially contributed to the dissection of ClC7/Ostm1 pathophysiology. PubMedPubMedCentralCrossRef
23.
go back to reference Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–15.PubMedCrossRef Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–15.PubMedCrossRef
24.
go back to reference Chen X, Zhang K, Hock J, Wang C, Yu X. Enhanced but hypofunctional osteoclastogenesis in an autosomal dominant osteopetrosis type II case carrying a c.1856C>T mutation in CLCN7. Bone Res. 2016;4:16035.PubMedPubMedCentralCrossRef Chen X, Zhang K, Hock J, Wang C, Yu X. Enhanced but hypofunctional osteoclastogenesis in an autosomal dominant osteopetrosis type II case carrying a c.1856C>T mutation in CLCN7. Bone Res. 2016;4:16035.PubMedPubMedCentralCrossRef
25.
go back to reference Deng H, He D, Rong P, Xu H, Yuan L, Li L, et al. Novel CLCN7 mutation identified in a Han Chinese family with autosomal dominant osteopetrosis-2. Mol Pain 2016;12. Deng H, He D, Rong P, Xu H, Yuan L, Li L, et al. Novel CLCN7 mutation identified in a Han Chinese family with autosomal dominant osteopetrosis-2. Mol Pain 2016;12.
26.
go back to reference González-Rodríguez JD, Luis-Yanes MI, Inglés-Torres E, Arango-Sancho P, Cabrera-Sevilla JE, Duque-Fernández MR, et al. Can acetazolamide be used to treat diseases involving increased bone mineral density? Intractable Rare Dis Res. 2016;5(4):284–9.PubMedPubMedCentralCrossRef González-Rodríguez JD, Luis-Yanes MI, Inglés-Torres E, Arango-Sancho P, Cabrera-Sevilla JE, Duque-Fernández MR, et al. Can acetazolamide be used to treat diseases involving increased bone mineral density? Intractable Rare Dis Res. 2016;5(4):284–9.PubMedPubMedCentralCrossRef
27.
go back to reference Ledemazel J, Plantaz D, Pagnier A, Girard P, Lasfargue M, Hullo E, et al. Malignant infantile osteopetrosis: case report of a 5-month-old boy. Arch Pediatr. 2016;23(4):389–93.PubMedCrossRef Ledemazel J, Plantaz D, Pagnier A, Girard P, Lasfargue M, Hullo E, et al. Malignant infantile osteopetrosis: case report of a 5-month-old boy. Arch Pediatr. 2016;23(4):389–93.PubMedCrossRef
28.
go back to reference Pang Q, Chi Y, Zhao Z, Xing X, Li M, Wang O, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADO-II) and intermediate autosomal recessive osteopetrosis (IARO) in Chinese patients. Osteoporos Int. 2016;27(3):1047–55.PubMedCrossRef Pang Q, Chi Y, Zhao Z, Xing X, Li M, Wang O, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADO-II) and intermediate autosomal recessive osteopetrosis (IARO) in Chinese patients. Osteoporos Int. 2016;27(3):1047–55.PubMedCrossRef
29.
go back to reference Piret SE, Gorvin CM, Trinh A, Taylor J, Lise S, Taylor JC, et al. Autosomal dominant osteopetrosis associated with renal tubular acidosis is due to a CLCN7 mutation. Am J Med Genet A. 2016;170(11):2988–92.PubMedPubMedCentralCrossRef Piret SE, Gorvin CM, Trinh A, Taylor J, Lise S, Taylor JC, et al. Autosomal dominant osteopetrosis associated with renal tubular acidosis is due to a CLCN7 mutation. Am J Med Genet A. 2016;170(11):2988–92.PubMedPubMedCentralCrossRef
30.
go back to reference Zeng B, Li R, Hu Y, Hu B, Zhao Q, Liu H, et al. A novel mutation and a known mutation in the CLCN7 gene associated with relatively stable infantile malignant osteopetrosis in a Chinese patient. Gene. 2016;576(1 Pt 1):176–81.PubMedCrossRef Zeng B, Li R, Hu Y, Hu B, Zhao Q, Liu H, et al. A novel mutation and a known mutation in the CLCN7 gene associated with relatively stable infantile malignant osteopetrosis in a Chinese patient. Gene. 2016;576(1 Pt 1):176–81.PubMedCrossRef
31.
go back to reference Zheng H, Shao C, Zheng Y, He JW, Fu WZ, Wang C, et al. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab. 2016;34(4):440–6.PubMedCrossRef Zheng H, Shao C, Zheng Y, He JW, Fu WZ, Wang C, et al. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab. 2016;34(4):440–6.PubMedCrossRef
32.
go back to reference Okamoto N, Kohmoto T, Naruto T, Masuda K, Komori T, Imoto I. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis. Hum Genome Var. 2017;4:17036.PubMedPubMedCentralCrossRef Okamoto N, Kohmoto T, Naruto T, Masuda K, Komori T, Imoto I. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis. Hum Genome Var. 2017;4:17036.PubMedPubMedCentralCrossRef
33.
go back to reference Worby CA, Dixon JE. Sorting out the cellular functions of sorting nexins. Nat Rev Mol Cell Biol. 2002;3(12):919–31.PubMedCrossRef Worby CA, Dixon JE. Sorting out the cellular functions of sorting nexins. Nat Rev Mol Cell Biol. 2002;3(12):919–31.PubMedCrossRef
34.
go back to reference Zhou C, Wang Y, Peng J, Li C, Liu P, Shen X. SNX10 plays a critical role in MMP9 secretion via JNK-p38-ERK signaling pathway. J Cell Biochem 2017. Zhou C, Wang Y, Peng J, Li C, Liu P, Shen X. SNX10 plays a critical role in MMP9 secretion via JNK-p38-ERK signaling pathway. J Cell Biochem 2017.
35.
go back to reference Aker M, Rouvinski A, Hashavia S, Ta-Shma A, Shaag A, Zenvirt S, et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 2012;49(4):221–6.PubMedCrossRef Aker M, Rouvinski A, Hashavia S, Ta-Shma A, Shaag A, Zenvirt S, et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 2012;49(4):221–6.PubMedCrossRef
36.
go back to reference Pangrazio A, Fasth A, Sbardellati A, Orchard PJ, Kasow KA, Raza J, et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res. 2013;28(5):1041–9.PubMedCrossRef Pangrazio A, Fasth A, Sbardellati A, Orchard PJ, Kasow KA, Raza J, et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res. 2013;28(5):1041–9.PubMedCrossRef
37.
go back to reference •• Stattin EL, Henning P, Klar J, McDermott E, Stecksen-Blicks C, Sandström PE, et al. SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts. Sci Rep. 2017;7(1):3012. This work contributed to unravel the mechanism elicited by SNX10 mutation in the pathogenesis of osteopetrosis. PubMedPubMedCentralCrossRef •• Stattin EL, Henning P, Klar J, McDermott E, Stecksen-Blicks C, Sandström PE, et al. SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts. Sci Rep. 2017;7(1):3012. This work contributed to unravel the mechanism elicited by SNX10 mutation in the pathogenesis of osteopetrosis. PubMedPubMedCentralCrossRef
38.
go back to reference Amirfiroozy A, Hamidieh AA, Golchehre Z, Rezamand A, Yahyaei M, Beiranvandi F, et al. A novel mutation in SNX10 gene causes malignant infantile Osteopetrosis. Avicenna J Med Biotechnol. 2017;9(4):205–8.PubMedPubMedCentral Amirfiroozy A, Hamidieh AA, Golchehre Z, Rezamand A, Yahyaei M, Beiranvandi F, et al. A novel mutation in SNX10 gene causes malignant infantile Osteopetrosis. Avicenna J Med Biotechnol. 2017;9(4):205–8.PubMedPubMedCentral
39.
go back to reference Xu M, Stattin EL, Murphy M, Barry F. Generation of induced pluripotent stem cells (ARO-iPSC1–11) from a patient with autosomal recessive osteopetrosis harboring the c.212+1G>T mutation in SNX10 gene. Stem Cell Res. 2017;24:51–4.PubMedCrossRef Xu M, Stattin EL, Murphy M, Barry F. Generation of induced pluripotent stem cells (ARO-iPSC1–11) from a patient with autosomal recessive osteopetrosis harboring the c.212+1G>T mutation in SNX10 gene. Stem Cell Res. 2017;24:51–4.PubMedCrossRef
40.
go back to reference Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 2006;440(7081):220–3.PubMedCrossRef Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 2006;440(7081):220–3.PubMedCrossRef
41.
go back to reference Fischer T, De Vries L, Meerloo T, Farquhar MG. Promotion of Gαi3 subunit down-regulation by GIPN, a putative E3 ubiquitin ligase that interacts with RGS-GAIP. Proc Natl Acad Sci. 2003;100:8270–5.PubMedPubMedCentralCrossRef Fischer T, De Vries L, Meerloo T, Farquhar MG. Promotion of Gαi3 subunit down-regulation by GIPN, a putative E3 ubiquitin ligase that interacts with RGS-GAIP. Proc Natl Acad Sci. 2003;100:8270–5.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Pandruvada SN, Beauregard J, Benjannet S, Pata M, Lazure C, Seidah NG, et al. Role of Ostm1 cytosolic complex with kinesin 5B in intracellular dispersion and trafficking. Mol Cell Biol. 2015;36(3):507–21.PubMedCrossRef Pandruvada SN, Beauregard J, Benjannet S, Pata M, Lazure C, Seidah NG, et al. Role of Ostm1 cytosolic complex with kinesin 5B in intracellular dispersion and trafficking. Mol Cell Biol. 2015;36(3):507–21.PubMedCrossRef
44.
go back to reference Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 2003;9(4):399–406.PubMedCrossRef Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 2003;9(4):399–406.PubMedCrossRef
45.
go back to reference Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, et al. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res. 2006;21(7):1098–105.PubMedCrossRef Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, et al. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res. 2006;21(7):1098–105.PubMedCrossRef
46.
go back to reference • Shin B, Yu J, Park ES, Choi S, Yu J, Hwang JM, et al. Secretion of a truncated osteopetrosis-associated transmembrane protein 1 (OSTM1) mutant inhibits osteoclastogenesis through down-regulation of the B lymphocyte-induced maturation protein 1 (BLIMP1)-nuclear factor of activated T cells c1 (NFATc1) axis. J Biol Chem. 2014;289(52):35868–81. This work described a possible mechanism elicited by OSTM1 truncated protein products in the pathogenesis of osteopetrosis. PubMedPubMedCentralCrossRef • Shin B, Yu J, Park ES, Choi S, Yu J, Hwang JM, et al. Secretion of a truncated osteopetrosis-associated transmembrane protein 1 (OSTM1) mutant inhibits osteoclastogenesis through down-regulation of the B lymphocyte-induced maturation protein 1 (BLIMP1)-nuclear factor of activated T cells c1 (NFATc1) axis. J Biol Chem. 2014;289(52):35868–81. This work described a possible mechanism elicited by OSTM1 truncated protein products in the pathogenesis of osteopetrosis. PubMedPubMedCentralCrossRef
47.
go back to reference Ott CE, Fischer B, Schröter P, Richter R, Gupta N, Verma N, et al. Severe neuronopathic autosomal recessive osteopetrosis due to homozygous deletions affecting OSTM1. Bone. 2013;55(2):292–7.PubMedCrossRef Ott CE, Fischer B, Schröter P, Richter R, Gupta N, Verma N, et al. Severe neuronopathic autosomal recessive osteopetrosis due to homozygous deletions affecting OSTM1. Bone. 2013;55(2):292–7.PubMedCrossRef
48.
go back to reference Herebian D, Alhaddad B, Seibt A, Schwarzmayr T, Danhauser K, Klee D, et al. Coexisting variants in OSTM1 and MANEAL cause a complex neurodegenerative disorder with NBIA-like brain abnormalities. Eur J Hum Genet. 2017;25(9):1092–5.PubMedCrossRef Herebian D, Alhaddad B, Seibt A, Schwarzmayr T, Danhauser K, Klee D, et al. Coexisting variants in OSTM1 and MANEAL cause a complex neurodegenerative disorder with NBIA-like brain abnormalities. Eur J Hum Genet. 2017;25(9):1092–5.PubMedCrossRef
49.
go back to reference Fujiwara T, Ye S, Castro-Gomes T, Winchell CG, Andrews NW, Voth DE, et al. PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis. JCI Insight. 2016;1(17):e86330.PubMedPubMedCentralCrossRef Fujiwara T, Ye S, Castro-Gomes T, Winchell CG, Andrews NW, Voth DE, et al. PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis. JCI Insight. 2016;1(17):e86330.PubMedPubMedCentralCrossRef
50.
go back to reference Marwaha R, Arya SB, Jagga D, Kaur H, Tuli A, Sharma M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol. 2017;216(4):1051–70.PubMedPubMedCentralCrossRef Marwaha R, Arya SB, Jagga D, Kaur H, Tuli A, Sharma M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol. 2017;216(4):1051–70.PubMedPubMedCentralCrossRef
51.
go back to reference McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell. 2015;57(1):39–54.PubMedCrossRef McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell. 2015;57(1):39–54.PubMedCrossRef
52.
go back to reference Witwicka H, Jia H, Kutikov A, Reyes-Gutierrez P, Li X, Odgren PR. TRAFD1 (FLN29) interacts with Plekhm1 and regulates osteoclast acidification and resorption. PLoS One. 2015;10(5):e0127537.PubMedPubMedCentralCrossRef Witwicka H, Jia H, Kutikov A, Reyes-Gutierrez P, Li X, Odgren PR. TRAFD1 (FLN29) interacts with Plekhm1 and regulates osteoclast acidification and resorption. PLoS One. 2015;10(5):e0127537.PubMedPubMedCentralCrossRef
53.
go back to reference Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.PubMedPubMedCentralCrossRef Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.PubMedPubMedCentralCrossRef
54.
go back to reference Del Fattore A, Fornari R, Van Wesenbeeck L, de Freitas F, Timmermans JP, Peruzzi B, et al. A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res. 2008;23(3):380–91.PubMedCrossRef Del Fattore A, Fornari R, Van Wesenbeeck L, de Freitas F, Timmermans JP, Peruzzi B, et al. A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res. 2008;23(3):380–91.PubMedCrossRef
55.
go back to reference Bo T, Yan F, Guo J, Lin X, Zhang H, Guan Q, et al. Characterization of a relatively malignant form of osteopetrosis caused by a novel mutation in the PLEKHM1 gene. J Bone Miner Res. 2016;31(11):1979–87.PubMedCrossRef Bo T, Yan F, Guo J, Lin X, Zhang H, Guan Q, et al. Characterization of a relatively malignant form of osteopetrosis caused by a novel mutation in the PLEKHM1 gene. J Bone Miner Res. 2016;31(11):1979–87.PubMedCrossRef
57.
go back to reference Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004;24(3):272.PubMedCrossRef Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004;24(3):272.PubMedCrossRef
59.
go back to reference Pang Q, Qi X, Jiang Y, Wang O, Li M, Xing X, et al. Two novel CAII mutations causing carbonic anhydrase II deficiency syndrome in two unrelated Chinese families. Metab Brain Dis. 2015;30(4):989–97.PubMedCrossRef Pang Q, Qi X, Jiang Y, Wang O, Li M, Xing X, et al. Two novel CAII mutations causing carbonic anhydrase II deficiency syndrome in two unrelated Chinese families. Metab Brain Dis. 2015;30(4):989–97.PubMedCrossRef
60.
go back to reference Alsharidi A, Al-Hamed M, Alsuwaida A. Carbonic anhydrase II deficiency: report of a novel mutation. CEN Case Rep. 2016;5:108–12.PubMedCrossRef Alsharidi A, Al-Hamed M, Alsuwaida A. Carbonic anhydrase II deficiency: report of a novel mutation. CEN Case Rep. 2016;5:108–12.PubMedCrossRef
61.
go back to reference Rognoni E, Ruppert R, Fässler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci. 2016;129(1):17–27.PubMedCrossRef Rognoni E, Ruppert R, Fässler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci. 2016;129(1):17–27.PubMedCrossRef
62.
go back to reference Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, et al. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J Cell Biol. 2011;192(5):883–97.PubMedPubMedCentralCrossRef Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, et al. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J Cell Biol. 2011;192(5):883–97.PubMedPubMedCentralCrossRef
63.
go back to reference Crazzolara R, Maurer K, Schulze H, Zieger B, Zustin J, Schulz AS. A new mutation in the KINDLIN-3 gene ablates integrin-dependent leukocyte, platelet, and osteoclast function in a patient with leukocyte adhesion deficiency-III. Pediatr Blood Cancer. 2015;62(9):1677–9.PubMedCrossRef Crazzolara R, Maurer K, Schulze H, Zieger B, Zustin J, Schulz AS. A new mutation in the KINDLIN-3 gene ablates integrin-dependent leukocyte, platelet, and osteoclast function in a patient with leukocyte adhesion deficiency-III. Pediatr Blood Cancer. 2015;62(9):1677–9.PubMedCrossRef
64.
go back to reference Palagano E, Slatter MA, Uva P, Menale C, Villa A, Abinun M, et al. Hematopoietic stem cell transplantation corrects osteopetrosis in a child carrying a novel homozygous mutation in the FERMT3 gene. Bone. 2017;97:126–9.PubMedCrossRef Palagano E, Slatter MA, Uva P, Menale C, Villa A, Abinun M, et al. Hematopoietic stem cell transplantation corrects osteopetrosis in a child carrying a novel homozygous mutation in the FERMT3 gene. Bone. 2017;97:126–9.PubMedCrossRef
65.
go back to reference Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review). Mol Med Rep. 2015;11(5):3212–8.PubMedCrossRef Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review). Mol Med Rep. 2015;11(5):3212–8.PubMedCrossRef
66.
go back to reference •• Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–46. This work identified LGR4 as an additional receptor for the essential osteoclastogenic cytokine RANKL; the implications of these data in bone pathophysiology still have to be completely understood. PubMedCrossRef •• Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–46. This work identified LGR4 as an additional receptor for the essential osteoclastogenic cytokine RANKL; the implications of these data in bone pathophysiology still have to be completely understood. PubMedCrossRef
67.
go back to reference • Schena F, Menale C, Caci E, Diomede L, Palagano E, Recordati C, et al. Murine Rankl-/- Mesenchymal Stromal Cells display an osteogenic differentiation defect improved by a RANKL-expressing lentiviral vector. Stem Cells. 2017;35(5):1365–77. This work first described a defect in the osteoblast lineage due to RANKL absence; the implications of these data in bone pathophysiology still have to be clarified and might extend well beyond RANKL-deficient ARO. PubMedCrossRef • Schena F, Menale C, Caci E, Diomede L, Palagano E, Recordati C, et al. Murine Rankl-/- Mesenchymal Stromal Cells display an osteogenic differentiation defect improved by a RANKL-expressing lentiviral vector. Stem Cells. 2017;35(5):1365–77. This work first described a defect in the osteoblast lineage due to RANKL absence; the implications of these data in bone pathophysiology still have to be clarified and might extend well beyond RANKL-deficient ARO. PubMedCrossRef
68.
go back to reference Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39(8):960–2.PubMedCrossRef Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39(8):960–2.PubMedCrossRef
69.
go back to reference • Lo Iacono N, Pangrazio A, Abinun M, Bredius R, Zecca M, Blair HC, et al. RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease. Clin Dev Immunol. 2013;2013:412768. This work described RANKL-deficient ARO patients; to the best of our knowledge, this remains the only subgroup of ARO in which the bone defect is not corrected by HSCT. PubMedPubMedCentralCrossRef • Lo Iacono N, Pangrazio A, Abinun M, Bredius R, Zecca M, Blair HC, et al. RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease. Clin Dev Immunol. 2013;2013:412768. This work described RANKL-deficient ARO patients; to the best of our knowledge, this remains the only subgroup of ARO in which the bone defect is not corrected by HSCT. PubMedPubMedCentralCrossRef
70.
go back to reference Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008 Jul;83(1):64–76.PubMedPubMedCentralCrossRef Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008 Jul;83(1):64–76.PubMedPubMedCentralCrossRef
71.
go back to reference • Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L, et al. RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J Bone Miner Res. 2012;27(2):342–51. This work described RANK-deficient ARO patients and clearly highlighted the differences with the RANKL-dependent subgroup of osteoclast-poor ARO patients. PubMedCrossRef • Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L, et al. RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J Bone Miner Res. 2012;27(2):342–51. This work described RANK-deficient ARO patients and clearly highlighted the differences with the RANKL-dependent subgroup of osteoclast-poor ARO patients. PubMedCrossRef
72.
go back to reference Porta F, Cavagnini S, Imberti L, Sottini A, Bolda F, Beghin A, et al. Partial depletion of TCR alpha/beta+/CD19+ cells in matched unrelated transplantation of three patients with osteopetrosis. Bone Marrow Transplant. 2015;50(12):1583–5.PubMedCrossRef Porta F, Cavagnini S, Imberti L, Sottini A, Bolda F, Beghin A, et al. Partial depletion of TCR alpha/beta+/CD19+ cells in matched unrelated transplantation of three patients with osteopetrosis. Bone Marrow Transplant. 2015;50(12):1583–5.PubMedCrossRef
73.
go back to reference Natsheh J, Drozdinsky G, Simanovsky N, Lamdan R, Erlich O, Gorelik N, et al. Improved outcomes of hematopoietic stem cell transplantation in patients with infantile malignant osteopetrosis using fludarabine-based conditioning. Pediatr Blood Cancer. 2016;63(3):535–40.PubMedCrossRef Natsheh J, Drozdinsky G, Simanovsky N, Lamdan R, Erlich O, Gorelik N, et al. Improved outcomes of hematopoietic stem cell transplantation in patients with infantile malignant osteopetrosis using fludarabine-based conditioning. Pediatr Blood Cancer. 2016;63(3):535–40.PubMedCrossRef
74.
go back to reference Simanovsky N, Rozovsky K, Hiller N, Weintraub M, Stepensky P. Extending the spectrum of radiological findings in patients with severe osteopetrosis and different genetic backgrounds. Pediatr Blood Cancer. 2016;63(7):1222–6.PubMedCrossRef Simanovsky N, Rozovsky K, Hiller N, Weintraub M, Stepensky P. Extending the spectrum of radiological findings in patients with severe osteopetrosis and different genetic backgrounds. Pediatr Blood Cancer. 2016;63(7):1222–6.PubMedCrossRef
75.
go back to reference Shamriz O, Shaag A, Yaacov B, NaserEddin A, Weintraub M, Elpeleg O, et al. The use of whole exome sequencing for the diagnosis of autosomal recessive malignant infantile osteopetrosis. Clin Genet. 2017;92(1):80–5.PubMedCrossRef Shamriz O, Shaag A, Yaacov B, NaserEddin A, Weintraub M, Elpeleg O, et al. The use of whole exome sequencing for the diagnosis of autosomal recessive malignant infantile osteopetrosis. Clin Genet. 2017;92(1):80–5.PubMedCrossRef
76.
go back to reference Campeau PM, Lu JT, Sule G, Jiang MM, Bae Y, Madan S, et al. Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis. Hum Mol Genet. 2012;21(22):4904–9.PubMedPubMedCentralCrossRef Campeau PM, Lu JT, Sule G, Jiang MM, Bae Y, Madan S, et al. Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis. Hum Mol Genet. 2012;21(22):4904–9.PubMedPubMedCentralCrossRef
77.
go back to reference Turan S, Mumm S, Gottesman GS, Abali S, Baş S, Atay Z, et al. Dysosteosclerosis from a unique mutation in SLC29A3. Presented at the 7th International Conference on Children’s Bone Health 2015, Salzburg, Austria. Bone Abstracts 4:97. Turan S, Mumm S, Gottesman GS, Abali S, Baş S, Atay Z, et al. Dysosteosclerosis from a unique mutation in SLC29A3. Presented at the 7th International Conference on Children’s Bone Health 2015, Salzburg, Austria. Bone Abstracts 4:97.
78.
go back to reference Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.PubMedCrossRef Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.PubMedCrossRef
79.
go back to reference Novinec M, Lenarčič B. Cathepsin K: a unique collagenolytic cysteine peptidase. Biol Chem. 2013;394(9):1163–79.PubMedCrossRef Novinec M, Lenarčič B. Cathepsin K: a unique collagenolytic cysteine peptidase. Biol Chem. 2013;394(9):1163–79.PubMedCrossRef
81.
go back to reference Bonnet N, Brun J, Rousseau JC, Duong LT, Ferrari SL. Cathepsin K controls cortical bone formation by degrading periostin. J Bone Miner Res. 2017;32(7):1432–41.PubMedCrossRef Bonnet N, Brun J, Rousseau JC, Duong LT, Ferrari SL. Cathepsin K controls cortical bone formation by degrading periostin. J Bone Miner Res. 2017;32(7):1432–41.PubMedCrossRef
82.
go back to reference Xue Y, Cai T, Shi S, Wang W, Zhang Y, Mao T, et al. Clinical and animal research findings in pycnodysostosis and gene mutations of cathepsin K from 1996 to 2011. Orphanet J Rare Dis. 2011;6:20.PubMedPubMedCentralCrossRef Xue Y, Cai T, Shi S, Wang W, Zhang Y, Mao T, et al. Clinical and animal research findings in pycnodysostosis and gene mutations of cathepsin K from 1996 to 2011. Orphanet J Rare Dis. 2011;6:20.PubMedPubMedCentralCrossRef
83.
go back to reference Xue Y, Wang L, Xia D, Li Q, Gao S, Dong M, et al. Dental abnormalities caused by novel compound heterozygous CTSK mutations. J Dent Res. 2015;94(5):674–81.PubMedCrossRef Xue Y, Wang L, Xia D, Li Q, Gao S, Dong M, et al. Dental abnormalities caused by novel compound heterozygous CTSK mutations. J Dent Res. 2015;94(5):674–81.PubMedCrossRef
84.
go back to reference Singh A, Cuevas-Covarrubias S, Pradhan G, Gautam VK, Messina-Baas O, Gonzalez-Huerta LM, et al. Novel mutation and white matter involvement in an Indian child with pycnodysostosis. Indian J Pediatr. 2015;82(5):471–3.PubMedCrossRef Singh A, Cuevas-Covarrubias S, Pradhan G, Gautam VK, Messina-Baas O, Gonzalez-Huerta LM, et al. Novel mutation and white matter involvement in an Indian child with pycnodysostosis. Indian J Pediatr. 2015;82(5):471–3.PubMedCrossRef
85.
go back to reference Huang X, Qi X, Li M, Wang O, Jiang Y, Xing X, et al. A mutation in CTSK gene in an autosomal recessive pycnodysostosis family of Chinese origin. Calcif Tissue Int. 2015;96(5):373–8.PubMedCrossRef Huang X, Qi X, Li M, Wang O, Jiang Y, Xing X, et al. A mutation in CTSK gene in an autosomal recessive pycnodysostosis family of Chinese origin. Calcif Tissue Int. 2015;96(5):373–8.PubMedCrossRef
86.
go back to reference Araujo TF, Ribeiro EM, Arruda AP, Moreno CA, de Medeiros PF, Minillo RM, et al. Molecular analysis of the CTSK gene in a cohort of 33 Brazilian families with pycnodysostosis from a cluster in a Brazilian northeast region. Eur J Med Res. 2016;21(1):33.PubMedPubMedCentralCrossRef Araujo TF, Ribeiro EM, Arruda AP, Moreno CA, de Medeiros PF, Minillo RM, et al. Molecular analysis of the CTSK gene in a cohort of 33 Brazilian families with pycnodysostosis from a cluster in a Brazilian northeast region. Eur J Med Res. 2016;21(1):33.PubMedPubMedCentralCrossRef
87.
go back to reference Mandal K, Ray S, Saxena D, Srivastava P, Moirangthem A, Ranganath P, et al. Pycnodysostosis: mutation spectrum in five unrelated Indian children. Clin Dysmorphol. 2016;25(3):113–20.PubMedCrossRef Mandal K, Ray S, Saxena D, Srivastava P, Moirangthem A, Ranganath P, et al. Pycnodysostosis: mutation spectrum in five unrelated Indian children. Clin Dysmorphol. 2016;25(3):113–20.PubMedCrossRef
88.
go back to reference Rovira Martí P, Ullot FR. Orthopaedic disorders of pycnodysostosis: a report of five clinical cases. Int Orthop. 2016;40(11):2221–31.PubMedCrossRef Rovira Martí P, Ullot FR. Orthopaedic disorders of pycnodysostosis: a report of five clinical cases. Int Orthop. 2016;40(11):2221–31.PubMedCrossRef
89.
go back to reference Song HK, Sohn YB, Choi YJ, Chung YS, Jang JH. A case report of pycnodysostosis with atypical femur fracture diagnosed by next-generation sequencing of candidate genes. Medicine (Baltimore). 2017;96(12):e6367.CrossRef Song HK, Sohn YB, Choi YJ, Chung YS, Jang JH. A case report of pycnodysostosis with atypical femur fracture diagnosed by next-generation sequencing of candidate genes. Medicine (Baltimore). 2017;96(12):e6367.CrossRef
90.
go back to reference Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13(8):1015–24.PubMedPubMedCentralCrossRef Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13(8):1015–24.PubMedPubMedCentralCrossRef
91.
go back to reference • Weisz Hubshman M, Basel-Vanagaite L, Krauss A, Konen O, Levy Y, Garty BZ, et al. Homozygous deletion of RAG1, RAG2 and 5′ region TRAF6 causes severe immune suppression and atypical osteopetrosis. Clin Genet. 2017;91(6):902–7. This work suggested a role for TRAF6 in the pathogenesis of human osteopetrosis. PubMedCrossRef • Weisz Hubshman M, Basel-Vanagaite L, Krauss A, Konen O, Levy Y, Garty BZ, et al. Homozygous deletion of RAG1, RAG2 and 5′ region TRAF6 causes severe immune suppression and atypical osteopetrosis. Clin Genet. 2017;91(6):902–7. This work suggested a role for TRAF6 in the pathogenesis of human osteopetrosis. PubMedCrossRef
92.
go back to reference • Iida A, Xing W, Docx MFK, Nakashima T, Wang Z, Kimizuka M, et al. Identification of biallelic LRRK1 mutations in osteosclerotic metaphyseal dysplasia and evidence for locus heterogeneity. J Med Genet. 2016;53:568–74. This work suggested a possible pathogenetic role of LRRK1 recessive mutations in a peculiar form of osteopetrosis. PubMedPubMedCentralCrossRef • Iida A, Xing W, Docx MFK, Nakashima T, Wang Z, Kimizuka M, et al. Identification of biallelic LRRK1 mutations in osteosclerotic metaphyseal dysplasia and evidence for locus heterogeneity. J Med Genet. 2016;53:568–74. This work suggested a possible pathogenetic role of LRRK1 recessive mutations in a peculiar form of osteopetrosis. PubMedPubMedCentralCrossRef
95.
go back to reference Steingrímsson E, Moore KJ, Lamoreux ML, Ferré-D'Amaré AR, Burley SK, Zimring DC, et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet. 1994;8(3):256–63.PubMedCrossRef Steingrímsson E, Moore KJ, Lamoreux ML, Ferré-D'Amaré AR, Burley SK, Zimring DC, et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet. 1994;8(3):256–63.PubMedCrossRef
96.
go back to reference • George A, Zand DJ, Hufnagel RB, Sharma R, Sergeev YV, Legare JM, et al. Biallelic mutations in MITF cause coloboma, osteopetrosis, microphthalmia, macrocephaly, albinism, and deafness. Am J Hum Genet. 2016;99(6):1388–94. This work suggested a possible pathogenetic role of MITF recessive mutations in a peculiar form of osteopetrosis. PubMedPubMedCentralCrossRef • George A, Zand DJ, Hufnagel RB, Sharma R, Sergeev YV, Legare JM, et al. Biallelic mutations in MITF cause coloboma, osteopetrosis, microphthalmia, macrocephaly, albinism, and deafness. Am J Hum Genet. 2016;99(6):1388–94. This work suggested a possible pathogenetic role of MITF recessive mutations in a peculiar form of osteopetrosis. PubMedPubMedCentralCrossRef
97.
go back to reference • Frederiksen AL, Larsen MJ, Brusgaard K, Novack DV, Thii Knudsen PJ, Daa Schroder H, et al. Neonatal high bone mass with first mutation of the NF-kB complex: heterozygous de novo missense (p.Asp512Ser) RELA (Rela/p65). J Bone Miner Res. 2016;31(1):163–72. This work suggested a possible pathogenetic role of a RELA mutation in a form of neonatal High Bone Mass. PubMedCrossRef • Frederiksen AL, Larsen MJ, Brusgaard K, Novack DV, Thii Knudsen PJ, Daa Schroder H, et al. Neonatal high bone mass with first mutation of the NF-kB complex: heterozygous de novo missense (p.Asp512Ser) RELA (Rela/p65). J Bone Miner Res. 2016;31(1):163–72. This work suggested a possible pathogenetic role of a RELA mutation in a form of neonatal High Bone Mass. PubMedCrossRef
98.
go back to reference Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99(1):111–20.PubMedCrossRef Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99(1):111–20.PubMedCrossRef
99.
go back to reference • Monies D, Maddirevula S, Kurdi W, Alanazy MH, Alkhalidi H, Al-Owain M, et al. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation. Genet Med. 2017. This work suggested a possible pathogenetic role of CSF1R mutations in two ARO patients. • Monies D, Maddirevula S, Kurdi W, Alanazy MH, Alkhalidi H, Al-Owain M, et al. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation. Genet Med. 2017. This work suggested a possible pathogenetic role of CSF1R mutations in two ARO patients.
100.
go back to reference Migliaccio S, Luciani M, Taranta A, De Rossi G, Minisola S, El Hachem M, et al. Association of intermediate osteopetrosis with poikiloderma. J Bone Miner Res. 1999;14(5):834–6.PubMedCrossRef Migliaccio S, Luciani M, Taranta A, De Rossi G, Minisola S, El Hachem M, et al. Association of intermediate osteopetrosis with poikiloderma. J Bone Miner Res. 1999;14(5):834–6.PubMedCrossRef
101.
go back to reference Mroczek S, Krwawicz J, Kutner J, Lazniewski M, Kuciński I, Ginalski K, et al. C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3′ end modification. Genes Dev. 2012;26(17):1911–25.PubMedPubMedCentralCrossRef Mroczek S, Krwawicz J, Kutner J, Lazniewski M, Kuciński I, Ginalski K, et al. C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3′ end modification. Genes Dev. 2012;26(17):1911–25.PubMedPubMedCentralCrossRef
102.
go back to reference • Colombo EA, Bazan JF, Negri G, Gervasini C, Elcioglu NH, Yucelten D, et al. Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations. Orphanet J Rare Dis. 2012;7:7. This work identified C16orf57 as the gene mutated in a patient displaying osteopetrosis, poikiloderma and neutropenia. PubMedPubMedCentralCrossRef • Colombo EA, Bazan JF, Negri G, Gervasini C, Elcioglu NH, Yucelten D, et al. Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations. Orphanet J Rare Dis. 2012;7:7. This work identified C16orf57 as the gene mutated in a patient displaying osteopetrosis, poikiloderma and neutropenia. PubMedPubMedCentralCrossRef
103.
go back to reference Colombo EA, Carra S, Fontana L, Bresciani E, Cotelli F, Larizza L. A zebrafish model of Poikiloderma with neutropenia recapitulates the human syndrome hallmarks and traces back neutropenia to the myeloid progenitor. Sci Rep. 2015;5:15814.PubMedPubMedCentralCrossRef Colombo EA, Carra S, Fontana L, Bresciani E, Cotelli F, Larizza L. A zebrafish model of Poikiloderma with neutropenia recapitulates the human syndrome hallmarks and traces back neutropenia to the myeloid progenitor. Sci Rep. 2015;5:15814.PubMedPubMedCentralCrossRef
104.
go back to reference Patil P, Uechi T, Kenmochi N. Incomplete splicing of neutrophil-specific genes affects neutrophil development in a zebrafish model of poikiloderma with neutropenia. RNA Biol. 2015;12(4):426–34.PubMedPubMedCentralCrossRef Patil P, Uechi T, Kenmochi N. Incomplete splicing of neutrophil-specific genes affects neutrophil development in a zebrafish model of poikiloderma with neutropenia. RNA Biol. 2015;12(4):426–34.PubMedPubMedCentralCrossRef
106.
go back to reference Orchard PJ, Fasth AL, Le Rademacher J, He W, Boelens JJ, Horwitz EM, et al. Hematopoietic stem cell transplantation for infantile osteopetrosis. Blood. 2015;126(2):270–6.PubMedPubMedCentralCrossRef Orchard PJ, Fasth AL, Le Rademacher J, He W, Boelens JJ, Horwitz EM, et al. Hematopoietic stem cell transplantation for infantile osteopetrosis. Blood. 2015;126(2):270–6.PubMedPubMedCentralCrossRef
107.
go back to reference Chiesa R, Ruggeri A, Paviglianiti A, Zecca M, Gónzalez-Vicent M, Bordon V, et al. Outcomes after unrelated umbilical cord blood transplantation for children with Osteopetrosis. Biol Blood Marrow Transpl. 2016;22(11):1997–2002.CrossRef Chiesa R, Ruggeri A, Paviglianiti A, Zecca M, Gónzalez-Vicent M, Bordon V, et al. Outcomes after unrelated umbilical cord blood transplantation for children with Osteopetrosis. Biol Blood Marrow Transpl. 2016;22(11):1997–2002.CrossRef
108.
go back to reference Wu CC, Econs MJ, DiMeglio LA, Insogna KL, Levine MA, Orchard PJ, et al. Diagnosis and management of osteopetrosis: consensus guidelines from the Osteopetrosis Working Group. J Clin Endocrinol Metab. 2017;102(9):3111–23.PubMedCrossRef Wu CC, Econs MJ, DiMeglio LA, Insogna KL, Levine MA, Orchard PJ, et al. Diagnosis and management of osteopetrosis: consensus guidelines from the Osteopetrosis Working Group. J Clin Endocrinol Metab. 2017;102(9):3111–23.PubMedCrossRef
110.
go back to reference Frebourg T. The challenge for the next generation of medical geneticists. Hum Mutat. 2014;35(8):909–11.PubMedCrossRef Frebourg T. The challenge for the next generation of medical geneticists. Hum Mutat. 2014;35(8):909–11.PubMedCrossRef
Metadata
Title
Genetics of Osteopetrosis
Authors
Eleonora Palagano
Ciro Menale
Cristina Sobacchi
Anna Villa
Publication date
01-02-2018
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 1/2018
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-018-0415-2

Other articles of this Issue 1/2018

Current Osteoporosis Reports 1/2018 Go to the issue

Genetics (M Johnson and S Ralston, Section Editors)

Regulation of Bone Metabolism by microRNAs

Muscle and Bone (L Bonewald and M Hamrick, Section Editors)

The Role of Bone Secreted Factors in Burn-Induced Muscle Cachexia

Osteocytes (T Bellido and J Klein Nulend, Section Editors)

Solute Transport in the Bone Lacunar-Canalicular System (LCS)

Secondary Causes of Osteoporosis (S Warden, Section Editor)

Linking the Gut Microbiota to Bone Health in Anorexia Nervosa

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Diabetes and Abdominal Aortic Calcification—a Systematic Review

Skeletal Development (P Trainor and K Svoboda, Section Editors)

Exosomes in Extracellular Matrix Bone Biology