Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sorting out the cellular functions of sorting nexins

A Correction to this article was published on 01 February 2003

Key Points

  • Sorting nexins (SNXs) are 400–700 amino-acid hydrophilic proteins that are characterized by the presence of a phospholipid-binding domain, the PX domain. In addition to the PX domain, SNXs have various protein–protein interaction motifs that might determine their subcellular localization or their ability to form specific complexes.

  • On the basis of common domain structures, the SNX family of proteins can be divided into three subgroups. The first group, which contains SNX1 and SNX2, has long carboxy-terminal extensions containing 1–3 coiled-coil domains that might be involved in homo- and/or hetero-oligomerization with other SNXs, as well as other protein–protein interactions. The second group is formed by SNX3 and related SNXs, which seem to have only a PX domain. The remaining SNXs, which form the third group, have a variety of protein–protein interaction, membrane targeting or G-protein regulatory sequences.

  • The structure of the PX domain of p40phox revealed a novel protein fold and mutational analysis identified several residues that are involved in stabilizing the binding of PtdIns(3)P to p40phox. Studies of the structure of the p47phox PX domain showed that SH3-domain interactions might regulate PX-domain function. Structural analysis of the PX domain of Vam7 showed that the membrane-targeting ability of the Vam7 PX domain might involve both a specific basic PtdIns-binding pocket, as well as nonspecific hydrophobic interactions between loop residues and the membrane.

  • The functions of yeast nexins are relatively well established. Vps5, the yeast homologue of SNX1 and SNX2, is important for vacuolar trafficking and carries out its function by assembling into a so-called retromer complex. Grd19, which is related to SNX3, seems to have a function in the pre-vacuolar compartment. Mvp1, the yeast homologue for SNX8, might be involved in sorting proteins in the late Golgi for delivery to the vacuole, as well as the retrieval of proteins from the pre-vacuolar endosomes to the late Golgi.

  • Mammalian SNXs are thought to be important for the sorting of proteins in the endosomal pathway but possibly also in sorting vesicles that are not derived from the plasma membrane. The challenge for future research will be to identify the specific functions of individual SNXs, and to study the cellular regulation of these molecules.

Abstract

Sorting nexins are a diverse group of cellular trafficking proteins that are unified by the presence of a phospholipid-binding motif — the PX domain. The ability of these proteins to bind specific phospholipids, as well as their propensity to form protein–protein complexes, points to a role for these proteins in membrane trafficking and protein sorting. It will be interesting to determine whether the various sorting nexins have specialized or generalized roles in protein trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein and membrane trafficking.
Figure 2: Human sorting nexins.
Figure 3: PX-domain phylogenetic tree.
Figure 4: Crystal structure of the p40phox domain.
Figure 5: SNX-PX domain alignment.
Figure 6: The functions of the sorting nexins.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Teasdale, R. D., Loci, D., Houghton, F., Karlsson, L. & Gleeson, P. A. A large family of endosome-localized proteins related to sorting nexin 1. Biochem. J. 358, 7–16 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Miaczynska, M. & Zerial, M. Mosaic organization of the endocytic pathway. Exp. Cell Res. 272, 8–14 (2002).

    CAS  PubMed  Google Scholar 

  4. Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).

    CAS  PubMed  Google Scholar 

  5. Xu, Y., Seet, L. F., Hanson, B. & Hong, W. The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem. J. 360, 513–530 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ponting, C. P. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns3-kinases: binding partners of SH3 domains? Protein Sci. 5, 2353–2357 (1996). This paper was the first to define the PX domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheever, M. L. et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biol. 3, 613–618 (2001).

    CAS  PubMed  Google Scholar 

  8. Ellson, C. D. et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nature Cell Biol. 3, 679–682 (2001).

    CAS  PubMed  Google Scholar 

  9. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biol. 3, 675–678 (2001). This paper was one of the first to show that PX domains bind phosphorylated phosphoinositides.

    CAS  PubMed  Google Scholar 

  10. Kurten, R. C., Cadena, D. L. & Gill, G. N. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 272, 1008–1110 (1996). This was the first report of a mammalian sorting nexin.

    CAS  PubMed  Google Scholar 

  11. Rothman, J. H. & Stevens, T. H. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47, 1041–1051 (1986).

    CAS  PubMed  Google Scholar 

  12. Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. J. & Stevens, T. H. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61, 1063–1074 (1990).

    CAS  PubMed  Google Scholar 

  13. Nothwehr, S. F., Conibear, E. & Stevens, T. H. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J. Cell Biol. 129, 35–46 (1995).

    CAS  PubMed  Google Scholar 

  14. Ekena, K. & Stevens, T. H. The Saccharomyces cerevisiae MVP1 gene interacts with VPS1 and is required for vacuolar protein sorting. Mol. Cell. Biol. 15, 1671–1678 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Horazdovsky, B. F. et al. A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol. Biol. Cell 8, 1529–1541 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P. & Bork, P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lupas, A. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375–382 (1996).

    CAS  PubMed  Google Scholar 

  18. Mayer, B. J. SH3 domains: complexity in moderation. J. Cell Sci. 114, 1253–1263 (2001).

    CAS  PubMed  Google Scholar 

  19. Goebl, M. & Yanagida, M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem. Sci. 16, 173–177 (1991).

    CAS  PubMed  Google Scholar 

  20. Lamb, J. R., Tugendreich, S. & Hieter, P. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem. Sci. 20, 257–259 (1995).

    CAS  PubMed  Google Scholar 

  21. Shaw, R. J., Henry, M., Solomon, F. & Jacks, T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell 9, 403–419 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsukita, S. & Yonemura, S. ERM proteins: head-to-tail regulation of actin–plasma membrane interaction. Trends Biochem. Sci. 22, 53–58 (1997).

    CAS  PubMed  Google Scholar 

  23. Hollinger, S. & Hepler, J. R. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol. Rev. 54, 527–559 (2002).

    CAS  PubMed  Google Scholar 

  24. Zheng, B. et al. RGS-PX1, a GAP for GαS and sorting nexin in vesicular trafficking. Science 294, 1939–1942 (2001).

    CAS  PubMed  Google Scholar 

  25. Ponting, C. P. & Benjamin, D. R. A novel family of Ras-binding domains. Trends Biochem. Sci. 21, 422–425. (1996)

    CAS  PubMed  Google Scholar 

  26. Shaw, G. The pleckstrin homology domain: an intriguing multifunctional protein module. Bioessays 18, 35–46 (1996).

    CAS  PubMed  Google Scholar 

  27. Harlan, J. E., Hajduk, P. J., Yoon, H. S. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168–170 (1994).

    CAS  PubMed  Google Scholar 

  28. Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    CAS  PubMed  Google Scholar 

  29. Patki, V., Lawe, D. C., Corvera, S., Virbasius, J. V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature 394, 433–434 (1998).

    CAS  PubMed  Google Scholar 

  30. Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    CAS  PubMed  Google Scholar 

  31. Lemmon, M. A. & Ferguson, K. M. Pleckstrin homology domains. Curr. Top. Microbiol. Immunol. 228, 39–74 (1998).

    CAS  PubMed  Google Scholar 

  32. Lemmon, M. A., Ferguson, K. M. & Abrams, C. S. Pleckstrin homology domains and the cytoskeleton. FEBS Lett. 513, 71–76 (2002).

    CAS  PubMed  Google Scholar 

  33. Lemmon, M. A. & Ferguson, K. M. Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. Biochem. Soc. Trans. 29, 377–384 (2001).

    CAS  PubMed  Google Scholar 

  34. Gillooly, D. J., Simonsen, A. & Stenmark, H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem. J. 355, 249–258 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ago, T. et al. The PX domain as a novel phosphoinositide-binding module. Biochem. Biophys. Res. Commun. 287, 733–738 (2001).

    CAS  PubMed  Google Scholar 

  36. Matsui, Y., Matsui, R., Akada, R. & Toh-e, A. Yeast src homology region 3 domain-binding proteins involved in bud formation. J. Cell Biol. 133, 865–878 (1996).

    CAS  PubMed  Google Scholar 

  37. Nothwehr, S. F. & Hindes, A. E. The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J. Cell Sci. 110, 1063–1072 (1997).

    CAS  PubMed  Google Scholar 

  38. Schwarz, D. G., Griffin, C. T., Schneider, E. A., Yee, D. & Magnuson, T. Genetic analysis of sorting nexins 1 and 2 reveals a redundant and essential function in mice. Mol. Biol. Cell 13, 3588–3600 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Voos, W. & Stevens, T. H. Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p. J. Cell Biol. 140, 577–590 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bravo, J. et al. The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol. Cell 8, 829–839 (2001). This paper reports the first crystal structure of a PX domain.

    CAS  PubMed  Google Scholar 

  41. Xu, Y., Hortsman, H., Seet, L., Wong, S. H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nature Cell Biol 3, 658–666 (2001).

    CAS  PubMed  Google Scholar 

  42. Xu, J., Liu, D., Gill, G. & Songyang, Z. Regulation of cytokine-independent survival kinase (CISK) by the Phox homology domain and phosphoinositides. J. Cell Biol. 154, 699–705 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Song, X. et al. Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40, 8940–8944 (2001).

    CAS  PubMed  Google Scholar 

  44. Wishart, M. J., Taylor, G. S. & Dixon, J. E. Phoxy lipids: revealing PX domains as phosphoinositide binding modules. Cell 105, 817–820 (2001).

    CAS  PubMed  Google Scholar 

  45. Hiroaki, H., Ago, T., Ito, T., Sumimoto, H. & Kohda, D. Solution structure of the PX domain, a target of the SH3 domain. Nature Struct. Biol. 8, 526–530 (2001).

    CAS  PubMed  Google Scholar 

  46. Karathanassis, D. et al. Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 21, 5057–5068 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, J., Garcia, J., Dulubova, I., Sudhof, T. C. & Rizo, J. Solution structure of the Vam7p PX domain. Biochemistry 41, 5956–5962 (2002).

    CAS  PubMed  Google Scholar 

  48. Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurten, R. C. et al. Self-assembly and binding of a sorting nexin to sorting endosomes. J. Cell Sci. 114, 1743–1756 (2001).

    CAS  PubMed  Google Scholar 

  50. Haft, C. R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Haft, C. R., de la Luz Sierra, M., Barr, V. A., Haft, D. H. & Taylor, S. I. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol. Cell. Biol. 18, 7278–7287 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mu, F. T. et al. EEA1, an early endosome-associated protein. EEA1 is a conserved α-helical peripheral membrane protein flanked by cysteine 'fingers' and contains a calmodulin-binding IQ motif. J. Biol. Chem. 270, 13503–13511 (1995).

    CAS  PubMed  Google Scholar 

  53. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    CAS  PubMed  Google Scholar 

  54. Chin, L. S., Raynor, M. C., Wei, X., Chen, H. Q. & Li, L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J. Biol. Chem. 276, 7069–7078 (2001).

    CAS  PubMed  Google Scholar 

  55. Zhong, Q. et al. Endosomal localization and function of sorting nexin 1. Proc. Natl Acad. Sci. USA 99, 6767–6772 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu, J. W. & Lemmon, M. A. All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J. Biol. Chem. 276, 44179–44184 (2001).

    CAS  PubMed  Google Scholar 

  57. Watton, S. J. & Downward, J. Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell–matrix and cell–cell interaction. Curr. Biol. 9, 433–436 (1999).

    CAS  PubMed  Google Scholar 

  58. Oatey, P. B. et al. Confocal imaging of the subcellular distribution of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1 adipocytes. Biochem. J. 344, 511–518 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cozier, G. E. et al. The PX domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 2002 Aug 26 (DOI: 10.1074/jbc.M206986200).

  60. Otsuki, T., Kajigaya, S., Ozawa, K. & Liu, J. M. SNX5, a new member of the sorting nexin family, binds to the Fanconi anemia complementation group A protein. Biochem. Biophys. Res. Commun. 265, 630–635 (1999).

    CAS  PubMed  Google Scholar 

  61. Liu, J. M., Buchwald, M., Walsh, C. E. & Young, N. S. Fanconi anemia and novel strategies for therapy. Blood 84, 3995–4007 (1994).

    CAS  PubMed  Google Scholar 

  62. Joenje, H. et al. Evidence for at least eight Fanconi anemia genes. Am. J. Hum. Genet. 61, 940–944 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Parks, W. T. et al. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-β family of receptor serine-threonine kinases. J. Biol. Chem. 276, 19332–19339 (2001).

    CAS  PubMed  Google Scholar 

  64. Ishibashi, Y. et al. Pim-1 translocates sorting nexin 6/TRAF4-associated factor 2 from cytoplasm to nucleus. FEBS Lett. 506, 33–38 (2001).

    CAS  PubMed  Google Scholar 

  65. Howard, L., Nelson, K. K., Maciewicz, R. A. & Blobel, C. P. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J. Biol. Chem. 274, 31693–31699 (1999).

    CAS  PubMed  Google Scholar 

  66. Lundmark, R. & Carlsson, S. R. The β-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2. Biochem. J. 362, 597–607 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Worby, C. A. et al. The sorting nexin, DSH3PX1, connects the axonal guidance receptor, Dscam, to the actin cytoskeleton. J. Biol. Chem. 276, 41782–41789 (2001).

    CAS  PubMed  Google Scholar 

  68. Robinson, M. S. & Bonifacino, J. S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).

    CAS  PubMed  Google Scholar 

  69. Worby, C. A. et al. Drosophila Ack targets its substrate, the sorting nexin DSH3PX1, to a protein complex involved in axonal guidance. J. Biol. Chem. 277, 9422–9428 (2002).

    CAS  PubMed  Google Scholar 

  70. Lin, Q., Lo, C. G., Cerione, R. A. & Yang, W. The Cdc42 target ACK2 interacts with sorting nexin 9 (SH3PX1) to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 277, 10134–10138 (2002).

    CAS  PubMed  Google Scholar 

  71. Schafer, D. A. Coupling actin dynamics and membrane dynamics during endocytosis. Curr. Opin. Cell Biol. 14, 76–81 (2002).

    CAS  PubMed  Google Scholar 

  72. De Vries, L., Zheng, B., Fischer, T., Elenko, E. & Farquhar, M. G. The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235–271 (2000).

    CAS  PubMed  Google Scholar 

  73. von Zastrow, M. & Mostov, K. Signal transduction. A new thread in an intricate web. Science 294, 1845–1847 (2001).

    CAS  PubMed  Google Scholar 

  74. Phillips, S. A., Barr, V. A., Haft, D. H., Taylor, S. I. & Haft, C. R. Identification and characterization of SNX15, a novel sorting nexin involved in protein trafficking. J. Biol. Chem. 276, 5074–5084 (2001).

    CAS  PubMed  Google Scholar 

  75. Barr, V. A., Phillips, S. A., Taylor, S. I. & Haft, C. R. Overexpression of a novel sorting nexin, SNX15, affects endosome morphology and protein trafficking. Traffic 1, 904–916 (2000).

    CAS  PubMed  Google Scholar 

  76. Komada, M. et al. Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett. 328, 25–29 (1993).

    CAS  PubMed  Google Scholar 

  77. Ghosh, R. N., Mallet, W. G., Soe, T. T., McGraw, T. E. & Maxfield, F. R. An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J. Cell Biol. 142, 923–936 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mallet, W. G. & Maxfield, F. R. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways. J. Cell Biol. 146, 345–359 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Florian, V., Schluter, T. & Bohnensack, R. A new member of the sorting nexin family interacts with the C-terminus of P-selectin. Biochem. Biophys. Res. Commun. 281, 1045–1050 (2001).

    CAS  PubMed  Google Scholar 

  80. Straley, K. S. & Green, S. A. Rapid transport of internalized P-selectin to late endosomes and the TGN: roles in regulating cell surface expression and recycling to secretory granules. J. Cell Biol. 151, 107–116 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stockinger, W. et al. The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. EMBO J. 21, 4259–4267 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ago, T., Nunoi, H., Ito, T. & Sumimoto, H. Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. J. Biol. Chem. 274, 33644–33653 (1999).

    CAS  PubMed  Google Scholar 

  83. Chanock, S. J., el Benna, J., Smith, R. M. & Babior, B. M. The respiratory burst oxidase. J. Biol. Chem. 269, 24519–24522 (1994).

    CAS  PubMed  Google Scholar 

  84. Noack, D. et al. Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes. Blood 97, 305–311 (2001).

    CAS  PubMed  Google Scholar 

  85. Nothwehr, S. F., Ha, S. A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell. Biol. 151, 297–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Seaman, M. N., Marcusson, E. G., Cereghino, J. L. & Emr, S. D. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol. 137, 79–92 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nothwehr, S. F., Bruinsma, P. & Strawn, L. A. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol. Biol. Cell 10, 875–890 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Reddy, J. V. & Seaman, M. N. Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol. Biol. Cell 12, 3242–3256 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Seaman, M. N. & Williams, H. P. Identification of the functional domains of yeast sorting nexins vps5p and vps17p. Mol. Biol. Cell 13, 2826–2840 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Felsenstein, J. An alternating least squares approach to inferring phylogenies from pairwise distances. Syst. Biol. 46, 101–111 (1997).

    CAS  PubMed  Google Scholar 

  91. Carson, M. Ribbons 2.0. J. Appl. Cryst. 24, 958–961 (1991).

    Google Scholar 

  92. Wang, Y., Zhou, Y., Szabo, K., Haft, C. R. & Trejo, J. Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol. Biol. Cell 13, 1965–1976 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Many thanks go to R. Holz and N. Leff for their critical reading of this manuscript, and to M. Wishart for his critical reading and help with the phylogeny study. J. Stuckey's help with the p40phox structure was much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn A. Worby.

Related links

Related links

DATABASES

Swiss-Prot

Grd19

Mvp1

p40phox

p47phox

SNX1

SNX2

SNX3

SNX4

SNX5

SNX6

SNX9

SNX13

SNX15

SNX17

Vam7

Vps5

FURTHER INFORMATION

Jack E. Dixon's laboratory

Expasy

SMART

Glossary

CLATHRIN-COATED VESICLE

A vesicle that is coated with clathrin, which is a protein able to self-assemble into triskelions (three-legged pinwheels) that coalesce with specific adaptor proteins (APs) to form a polyhedral lattice. Endocytosed vesicles are often coated with the clathrin–AP2 complex.

EARLY ENDOSOME

Irregularly shaped and mildly acidic intracellular vesicle that is formed from an endocytosed clathrin-coated vesicle.

LYSOSOME

The cellular compartment where the digestion of proteins and other materials occurs.

LATE ENDOSOME

The acidic vesicle formed from an early endosome where proteins are either sorted for transport to the trans-Golgi network or for digestion in the lysosome. They function as the precursor vesicles for mature lysosomes.

TRANS-GOLGI NETWORK

(TGN). Membranous compartment from which vesicles bud to deliver proteins and other materials to the cell surface or to the late endosomes for delivery to lysosomes.

SORTING NEXIN

(SNX). A hydrophilic protein of 400–700 amino acids that contains a PX domain in the middle or amino-terminal half of the protein and regions of predicted coiled coils in the carboxy-terminal half of the protein. It functions in the endocytosis of plasma-membrane receptors and/or the trafficking of proteins from one membrane compartment to another.

PX DOMAIN

(phox homology domain). A lipid- and protein-interaction domain that consists of 100–130 amino acids and is defined by sequences found in two components of the phagocyte NADPH oxidase (phox) complex.

COILED-COIL DOMAIN

A bundle of α-helices that are wound into a superhelix. Coiled coils were first described as the main structural element of a large class of fibrous proteins, which includes keratin, myosin and fibrinogen.

SH3 DOMAIN

(Src homology 3 domain). A protein–protein interaction domain of 60 amino acids that binds to proline-rich (Pro-X-X-Pro) sequences.

TPR DOMAIN

(tetratricopeptide repeat). This domain typically consists of 34 amino acids and probably functions as a protein–protein interaction motif. It is commonly found in proteins that aggregate in multi-protein complexes.

B41 DOMAIN

(Band 4.1 homology domain, also known as an ezrin/radixin/moesin (ERM) protein domain). This domain is commonly found in cytoskeletal-associated proteins, linking these proteins to the plasma membrane.

RGS DOMAIN

(regulator of G-protein-signalling domain). A sequence of 120 amino acids that functions as a GTPase activator that stimulates the inactivation of heterotrimeric G proteins, thereby rapidly turning off G-protein-coupled-receptor signalling pathways.

RA DOMAIN

(RasGTP effector domain). Stimulates the dissociation of GDP from Ras-related proteins, thereby allowing the binding of GTP and activation of the GTPases.

EPSIN AMINO (N)-TERMINAL HOMOLOGY DOMAIN

(ENTH). A phospholipid-binding motif with high affinity for PtdIns(4,5)P2.

PLEXTRIN-HOMOLOGY DOMAIN

(PH). A phospholipid-binding motif that interacts with many different phospholipids including PtdIns(3,4,5)P3, PtdIns(4,5)P2 and PtdIns(3,4)P2.

FYVE DOMAIN

(Fab1/YOTB/Vac1/EEA1 domain). A phospholipid-binding motif that interacts exclusively with PtdIns(3)P.

EARLY ENDOSOMAL AUTO-ANTIGEN 1

(EEA1). A FYVE-domain-containing protein that is commonly used as a marker for early endosomes. This protein is an autoantigen that is associated with subacute cutaneous systemic lupus erythematosis.

SNX-PX DOMAIN

The classification for the PX domains that are found in sorting nexins and that participate in lipid–protein and/or protein–protein interactions.

SNARE

(soluble N-ethylmaleimide-sensitive factor attachment protein receptor). SNAREs are proteins that are involved in membrane-fusion events in the secretory and endocytic pathways. SNAREs contain coiled-coil domains that form tight four-helix bundles, which are proposed to drive membranes into close apposition ready for fusion.

LYSOSOMAL TARGETING SEQUENCE

There are two types of lysosomal targeting sequences: the tyrosine-based sequence, which consists of a tyrosine residue followed by a hydrophobic (Hyd) residue three amino acids later (Tyr-X-X-Hyd), and the di-leucine repeat (LL). Usually more than one of these targeting sequences is found in proteins that are destined for the lysosome.

AP2

This adaptor protein complex is a component of clathrin-coated vesicles that are associated with the plasma membrane. The complex is heterotetrameric with two large subunits, α and β2, a medium-sized μ-subunit and a small σ-subunit. AP-50 is the Drosophila equivalent of the μ-subunit that has been implicated in cargo selection.

ENDOSOMAL RETENTION

A mechanism that traps specific proteins inside the endosomal compartment, thereby preventing recycling of the protein to the cell surface.

HRS

A FYVE-domain-containing protein that is localized to early endosomes. HRS contains a clathrin-binding motif as well as a ubiquitin-interaction motif and can therefore affect the sorting of ubiquitylated proteins into the clathrin-coated microdomains of early endosomes.

TGF-β RECEPTOR SUPERFAMILY

Receptors in this superfamily are activated by numerous peptide ligands including TGF-β, actinin/inhibin, bone morphogenetic proteins, growth and differentiation factors, glial-derived neurotrophic factor and Mullerian inhibitory substance. The receptors for this superfamily fall into two categories: type II (Ser/Thr kinases), which bind ligand, and type I, which, following recruitment and subsequent phosphorylation by the type II receptor, transduces the signal to the cell.

RECYCLING ENDOSOMES

Vesicles that are derived from early endosomes destined for fusion with the plasma membrane.

G-PROTEIN-COUPLED RECEPTORS

(GPCR). Receptors that span the seven-transmembrane domain and that, on ligand stimulation, activate small G proteins by facilitating the exchange of GDP for GTP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worby, C., Dixon, J. Sorting out the cellular functions of sorting nexins. Nat Rev Mol Cell Biol 3, 919–931 (2002). https://doi.org/10.1038/nrm974

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing