Skip to main content
Top
Published in: Current Osteoporosis Reports 5/2017

01-10-2017 | Pediatrics (L Ward and E Imel, Section Editors)

Muscle-Bone Interactions in Pediatric Bone Diseases

Authors: Louis-Nicolas Veilleux, Frank Rauch

Published in: Current Osteoporosis Reports | Issue 5/2017

Login to get access

Abstract

Purpose

Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders.

Recent Findings

When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function.

Future Directions

Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.
Literature
1.
go back to reference Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003;275:1081–101.CrossRefPubMed Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003;275:1081–101.CrossRefPubMed
2.
3.
go back to reference Hall JG. Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics, and general principles. Eur J Med Genet. 2014;57:464–72.CrossRefPubMed Hall JG. Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics, and general principles. Eur J Med Genet. 2014;57:464–72.CrossRefPubMed
4.
go back to reference Spencer HT, Bowen RE, Caputo K, Green TA, Lawrence JF. Bone mineral density and functional measures in patients with arthrogryposis. J Pediatr Orthop. 2010;30:514–8.CrossRefPubMed Spencer HT, Bowen RE, Caputo K, Green TA, Lawrence JF. Bone mineral density and functional measures in patients with arthrogryposis. J Pediatr Orthop. 2010;30:514–8.CrossRefPubMed
5.
go back to reference Simone C, Ramirez A, Bucchia M, Rinchetti P, Rideout H, Papadimitriou D, et al. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications? Cell Mol Life Sci. 2016;73:1003–20.CrossRefPubMed Simone C, Ramirez A, Bucchia M, Rinchetti P, Rideout H, Papadimitriou D, et al. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications? Cell Mol Life Sci. 2016;73:1003–20.CrossRefPubMed
6.
go back to reference Knierim E, Hirata H, Wolf NI, Morales-Gonzalez S, Schottmann G, Tanaka Y, et al. Mutations in subunits of the activating signal cointegrator 1 complex are associated with prenatal spinal muscular atrophy and congenital bone fractures. Am J Hum Genet. 2016;98:473–89.CrossRefPubMedPubMedCentral Knierim E, Hirata H, Wolf NI, Morales-Gonzalez S, Schottmann G, Tanaka Y, et al. Mutations in subunits of the activating signal cointegrator 1 complex are associated with prenatal spinal muscular atrophy and congenital bone fractures. Am J Hum Genet. 2016;98:473–89.CrossRefPubMedPubMedCentral
7.
go back to reference Moon RJ, Harvey NC, Curtis EM, de Vries F, van Staa T, Cooper C. Ethnic and geographic variations in the epidemiology of childhood fractures in the United Kingdom. Bone. 2016;85:9–14.CrossRefPubMedPubMedCentral Moon RJ, Harvey NC, Curtis EM, de Vries F, van Staa T, Cooper C. Ethnic and geographic variations in the epidemiology of childhood fractures in the United Kingdom. Bone. 2016;85:9–14.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Uddenfeldt Wort U, Nordmark E, Wagner P, Duppe H, Westbom L. Fractures in children with cerebral palsy: a total population study. Dev Med Child Neurol. 2013;55:821–6.CrossRefPubMed Uddenfeldt Wort U, Nordmark E, Wagner P, Duppe H, Westbom L. Fractures in children with cerebral palsy: a total population study. Dev Med Child Neurol. 2013;55:821–6.CrossRefPubMed
11.
go back to reference • Modlesky CM, Whitney DG, Singh H, Barbe MF, Kirby JT, Miller F. Underdevelopment of trabecular bone microarchitecture in the distal femur of nonambulatory children with cerebral palsy becomes more pronounced with distance from the growth plate. Osteoporos Int. 2015;26:505–12. This study provides MRI-based structural data that underpin the low metaphyseal femoral bone density in children with cerebral palsy. CrossRefPubMed • Modlesky CM, Whitney DG, Singh H, Barbe MF, Kirby JT, Miller F. Underdevelopment of trabecular bone microarchitecture in the distal femur of nonambulatory children with cerebral palsy becomes more pronounced with distance from the growth plate. Osteoporos Int. 2015;26:505–12. This study provides MRI-based structural data that underpin the low metaphyseal femoral bone density in children with cerebral palsy. CrossRefPubMed
12.
go back to reference Modlesky CM, Kanoff SA, Johnson DL, Subramanian P, Miller F. Evaluation of the femoral midshaft in children with cerebral palsy using magnetic resonance imaging. Osteoporos Int. 2009;20:609–15.CrossRefPubMed Modlesky CM, Kanoff SA, Johnson DL, Subramanian P, Miller F. Evaluation of the femoral midshaft in children with cerebral palsy using magnetic resonance imaging. Osteoporos Int. 2009;20:609–15.CrossRefPubMed
13.
go back to reference Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B. Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr. 2005;147:791–6.CrossRefPubMed Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B. Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr. 2005;147:791–6.CrossRefPubMed
14.
go back to reference Whitney DG, Singh H, Miller F, Barbe MF, Slade JM, Pohlig RT, et al. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy. Bone. 2017;94:90–7.CrossRefPubMed Whitney DG, Singh H, Miller F, Barbe MF, Slade JM, Pohlig RT, et al. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy. Bone. 2017;94:90–7.CrossRefPubMed
15.
go back to reference Trudel G, Payne M, Madler B, Ramachandran N, Lecompte M, Wade C, et al. Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the women international space simulation for exploration study. J Appl Physiol. 2009;107:540–8.CrossRefPubMed Trudel G, Payne M, Madler B, Ramachandran N, Lecompte M, Wade C, et al. Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the women international space simulation for exploration study. J Appl Physiol. 2009;107:540–8.CrossRefPubMed
16.
go back to reference Rantalainen T, Nikander R, Heinonen A, Cervinka T, Sievanen H, Daly RM. Differential effects of exercise on tibial shaft marrow density in young female athletes. J Clin Endocrinol Metab. 2013;98:2037–44.CrossRefPubMed Rantalainen T, Nikander R, Heinonen A, Cervinka T, Sievanen H, Daly RM. Differential effects of exercise on tibial shaft marrow density in young female athletes. J Clin Endocrinol Metab. 2013;98:2037–44.CrossRefPubMed
18.
go back to reference Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2016;5:Cd003725. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2016;5:Cd003725.
19.
go back to reference Tian C, Wong BL, Hornung L, Khoury JC, Miller L, Bange J, et al. Bone health measures in glucocorticoid-treated ambulatory boys with Duchenne muscular dystrophy. Neuromuscul Disord. 2016;26:760–7.CrossRefPubMed Tian C, Wong BL, Hornung L, Khoury JC, Miller L, Bange J, et al. Bone health measures in glucocorticoid-treated ambulatory boys with Duchenne muscular dystrophy. Neuromuscul Disord. 2016;26:760–7.CrossRefPubMed
20.
go back to reference Ma J, McMillan HJ, Karaguzel G, Goodin C, Wasson J, Matzinger MA, et al. The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos Int. 2017;28:597–608.CrossRefPubMed Ma J, McMillan HJ, Karaguzel G, Goodin C, Wasson J, Matzinger MA, et al. The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos Int. 2017;28:597–608.CrossRefPubMed
22.
go back to reference King WM, Kissel JT, Visy D, Goel PK, Matkovic V. Skeletal health in Duchenne dystrophy: bone-size and subcranial dual-energy X-ray absorptiometry analyses. Muscle Nerve. 2014;49:512–9.CrossRefPubMed King WM, Kissel JT, Visy D, Goel PK, Matkovic V. Skeletal health in Duchenne dystrophy: bone-size and subcranial dual-energy X-ray absorptiometry analyses. Muscle Nerve. 2014;49:512–9.CrossRefPubMed
23.
go back to reference Wong BL, Rybalsky I, Shellenbarger KC, Tian C, McMahon MA, Rutter MM, et al. Long-term outcome of interdisciplinary management of patients with Duchenne muscular dystrophy receiving daily glucocorticoid treatment. J Pediatr. 2017;182:296–303 e1.CrossRefPubMed Wong BL, Rybalsky I, Shellenbarger KC, Tian C, McMahon MA, Rutter MM, et al. Long-term outcome of interdisciplinary management of patients with Duchenne muscular dystrophy receiving daily glucocorticoid treatment. J Pediatr. 2017;182:296–303 e1.CrossRefPubMed
24.
go back to reference • Misof BM, Roschger P, McMillan HJ, Ma J, Klaushofer K, Rauch F, et al. Histomorphometry and bone matrix mineralization before and after bisphosphonate treatment in boys with Duchenne muscular dystrophy: a paired transiliac biopsy study. J Bone Miner Res. 2016;31:1060–9. This bone tissue study shows that bone turnover is low in boys with Duchenne muscular dystrophy but that material bone properties are largely normal. CrossRefPubMed • Misof BM, Roschger P, McMillan HJ, Ma J, Klaushofer K, Rauch F, et al. Histomorphometry and bone matrix mineralization before and after bisphosphonate treatment in boys with Duchenne muscular dystrophy: a paired transiliac biopsy study. J Bone Miner Res. 2016;31:1060–9. This bone tissue study shows that bone turnover is low in boys with Duchenne muscular dystrophy but that material bone properties are largely normal. CrossRefPubMed
25.
go back to reference Vai S, Bianchi ML, Moroni I, Mastella C, Broggi F, Morandi L, et al. Bone and spinal muscular atrophy. Bone. 2015;79:116–20.CrossRefPubMed Vai S, Bianchi ML, Moroni I, Mastella C, Broggi F, Morandi L, et al. Bone and spinal muscular atrophy. Bone. 2015;79:116–20.CrossRefPubMed
26.
go back to reference Vestergaard P, Glerup H, Steffensen BF, Rejnmark L, Rahbek J, Moseklide L. Fracture risk in patients with muscular dystrophy and spinal muscular atrophy. J Rehabil Med. 2001;33:150–5.CrossRefPubMed Vestergaard P, Glerup H, Steffensen BF, Rejnmark L, Rahbek J, Moseklide L. Fracture risk in patients with muscular dystrophy and spinal muscular atrophy. J Rehabil Med. 2001;33:150–5.CrossRefPubMed
27.
go back to reference Trinh A, Wong P, Brown J, Hennel S, Ebeling PR, Fuller PJ, et al. Fractures in spina bifida from childhood to young adulthood. Osteoporos Int. 2017;28:399–406.CrossRefPubMed Trinh A, Wong P, Brown J, Hennel S, Ebeling PR, Fuller PJ, et al. Fractures in spina bifida from childhood to young adulthood. Osteoporos Int. 2017;28:399–406.CrossRefPubMed
28.
go back to reference Dosa NP, Eckrich M, Katz DA, Turk M, Liptak GS. Incidence, prevalence, and characteristics of fractures in children, adolescents, and adults with spina bifida. J Spinal Cord Med. 2007;30(Suppl 1):S5–9.CrossRefPubMedPubMedCentral Dosa NP, Eckrich M, Katz DA, Turk M, Liptak GS. Incidence, prevalence, and characteristics of fractures in children, adolescents, and adults with spina bifida. J Spinal Cord Med. 2007;30(Suppl 1):S5–9.CrossRefPubMedPubMedCentral
29.
go back to reference • Horenstein RE, Shefelbine SJ, Mueske NM, Fisher CL, Wren TA. An approach for determining quantitative measures for bone volume and bone mass in the pediatric spina bifida population. Clin Biomech (Bristol, Avon). 2015;30:748–54. This study used CT images to study three-dimensional geometry and density along the entire tibia in children with spina bifida. Non-ambulatory children had decreased bone mass in the diaphysis and proximal and distal epiphyses compared to ambulatory and control children. CrossRefPubMedCentral • Horenstein RE, Shefelbine SJ, Mueske NM, Fisher CL, Wren TA. An approach for determining quantitative measures for bone volume and bone mass in the pediatric spina bifida population. Clin Biomech (Bristol, Avon). 2015;30:748–54. This study used CT images to study three-dimensional geometry and density along the entire tibia in children with spina bifida. Non-ambulatory children had decreased bone mass in the diaphysis and proximal and distal epiphyses compared to ambulatory and control children. CrossRefPubMedCentral
30.
go back to reference Folkestad L, Hald JD, Ersboll AK, Gram J, Hermann AP, Langdahl B, et al. Fracture rates and fracture sites in patients with osteogenesis Imperfecta: a nationwide register-based cohort study. J Bone Miner Res. 2017;32:125–34.CrossRefPubMed Folkestad L, Hald JD, Ersboll AK, Gram J, Hermann AP, Langdahl B, et al. Fracture rates and fracture sites in patients with osteogenesis Imperfecta: a nationwide register-based cohort study. J Bone Miner Res. 2017;32:125–34.CrossRefPubMed
31.
go back to reference Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int. 2016;27:3427–37.CrossRefPubMed Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int. 2016;27:3427–37.CrossRefPubMed
32.
go back to reference Ben Amor IM, Roughley P, Glorieux FH, Rauch F. Skeletal clinical characteristics of osteogenesis imperfecta caused by haploinsufficiency mutations in COL1A1. J Bone Miner Res. 2013;28:2001–7.CrossRefPubMed Ben Amor IM, Roughley P, Glorieux FH, Rauch F. Skeletal clinical characteristics of osteogenesis imperfecta caused by haploinsufficiency mutations in COL1A1. J Bone Miner Res. 2013;28:2001–7.CrossRefPubMed
33.
go back to reference Graf A, Hassani S, Krzak J, Caudill A, Flanagan A, Bajorunaite R, et al. Gait characteristics and functional assessment of children with type I osteogenesis imperfecta. J Orthop Res. 2009;27:1182–90.CrossRefPubMed Graf A, Hassani S, Krzak J, Caudill A, Flanagan A, Bajorunaite R, et al. Gait characteristics and functional assessment of children with type I osteogenesis imperfecta. J Orthop Res. 2009;27:1182–90.CrossRefPubMed
34.
go back to reference Caudill A, Flanagan A, Hassani S, Graf A, Bajorunaite R, Harris G, et al. Ankle strength and functional limitations in children and adolescents with type I osteogenesis imperfecta. Pediatr Phys Ther. 2010;22:288–95.CrossRefPubMed Caudill A, Flanagan A, Hassani S, Graf A, Bajorunaite R, Harris G, et al. Ankle strength and functional limitations in children and adolescents with type I osteogenesis imperfecta. Pediatr Phys Ther. 2010;22:288–95.CrossRefPubMed
35.
go back to reference Veilleux LN, Lemay M, Pouliot-Laforte A, Cheung MS, Glorieux FH, Rauch F. Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I. J Clin Endocrinol Metab. 2014;99:E356–62.CrossRefPubMed Veilleux LN, Lemay M, Pouliot-Laforte A, Cheung MS, Glorieux FH, Rauch F. Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I. J Clin Endocrinol Metab. 2014;99:E356–62.CrossRefPubMed
36.
go back to reference Pouliot-Laforte A, Veilleux LN, Rauch F, Lemay M. Physical activity in youth with osteogenesis imperfecta type I. J Musculoskelet Neuronal Interact. 2015;15:171–6.PubMedPubMedCentral Pouliot-Laforte A, Veilleux LN, Rauch F, Lemay M. Physical activity in youth with osteogenesis imperfecta type I. J Musculoskelet Neuronal Interact. 2015;15:171–6.PubMedPubMedCentral
37.
go back to reference Veilleux LN, Pouliot-Laforte A, Lemay M, Cheung MS, Glorieux FH, Rauch F. The functional muscle-bone unit in patients with osteogenesis imperfecta type I. Bone. 2015;79:52–7.CrossRefPubMed Veilleux LN, Pouliot-Laforte A, Lemay M, Cheung MS, Glorieux FH, Rauch F. The functional muscle-bone unit in patients with osteogenesis imperfecta type I. Bone. 2015;79:52–7.CrossRefPubMed
38.
go back to reference Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44:318–31.PubMedPubMedCentral Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44:318–31.PubMedPubMedCentral
40.
go back to reference Huijing PA. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech. 1999;32:329–45.CrossRefPubMed Huijing PA. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech. 1999;32:329–45.CrossRefPubMed
41.
go back to reference Misof K, Landis WJ, Klaushofer K, Fratzl P. Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest. 1997;100:40–5.CrossRefPubMedPubMedCentral Misof K, Landis WJ, Klaushofer K, Fratzl P. Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest. 1997;100:40–5.CrossRefPubMedPubMedCentral
42.
go back to reference Sims TJ, Miles CA, Bailey AJ, Camacho NP. Properties of collagen in OIM mouse tissues. Connect Tissue Res. 2003;44(Suppl 1):202–5.CrossRefPubMed Sims TJ, Miles CA, Bailey AJ, Camacho NP. Properties of collagen in OIM mouse tissues. Connect Tissue Res. 2003;44(Suppl 1):202–5.CrossRefPubMed
43.
go back to reference Montpetit K, Plotkin H, Rauch F, Bilodeau N, Cloutier S, Rabzel M, et al. Rapid increase in grip force after start of pamidronate therapy in children and adolescents with severe osteogenesis imperfecta. Pediatrics. 2003;111:E601–3.CrossRefPubMed Montpetit K, Plotkin H, Rauch F, Bilodeau N, Cloutier S, Rabzel M, et al. Rapid increase in grip force after start of pamidronate therapy in children and adolescents with severe osteogenesis imperfecta. Pediatrics. 2003;111:E601–3.CrossRefPubMed
44.
go back to reference Hoggarth CR, Bennett R, Daley-Yates PT. The pharmacokinetics and distribution of pamidronate for a range of doses in the mouse. Calcif Tissue Int. 1991;49:416–20.CrossRefPubMed Hoggarth CR, Bennett R, Daley-Yates PT. The pharmacokinetics and distribution of pamidronate for a range of doses in the mouse. Calcif Tissue Int. 1991;49:416–20.CrossRefPubMed
45.
go back to reference Hodges PW, Smeets RJ. Interaction between pain, movement, and physical activity: short-term benefits, long-term consequences, and targets for treatment. Clin J Pain. 2015;31:97–107.CrossRefPubMed Hodges PW, Smeets RJ. Interaction between pain, movement, and physical activity: short-term benefits, long-term consequences, and targets for treatment. Clin J Pain. 2015;31:97–107.CrossRefPubMed
46.
go back to reference •• Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, et al. Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21:1262–71. This is an experimental study demonstrating the adverse muscle effect of transforming growth factor beta released from bone. CrossRefPubMedPubMedCentral •• Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, et al. Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21:1262–71. This is an experimental study demonstrating the adverse muscle effect of transforming growth factor beta released from bone. CrossRefPubMedPubMedCentral
47.
go back to reference Imel EA, Carpenter TO. A practical clinical approach to paediatric phosphate disorders. Endocr Dev. 2015;28:134–61.CrossRefPubMed Imel EA, Carpenter TO. A practical clinical approach to paediatric phosphate disorders. Endocr Dev. 2015;28:134–61.CrossRefPubMed
48.
go back to reference Amanzadeh J, Reilly RF Jr. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol. 2006;2:136–48.CrossRefPubMed Amanzadeh J, Reilly RF Jr. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol. 2006;2:136–48.CrossRefPubMed
49.
go back to reference Singhal PC, Kumar A, Desroches L, Gibbons N, Mattana J. Prevalence and predictors of rhabdomyolysis in patients with hypophosphatemia. Am J Med. 1992;92:458–64.CrossRefPubMed Singhal PC, Kumar A, Desroches L, Gibbons N, Mattana J. Prevalence and predictors of rhabdomyolysis in patients with hypophosphatemia. Am J Med. 1992;92:458–64.CrossRefPubMed
50.
go back to reference Veilleux LN, Cheung MS, Glorieux FH, Rauch F. The muscle-bone relationship in x-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2013;98:E990–5.CrossRefPubMed Veilleux LN, Cheung MS, Glorieux FH, Rauch F. The muscle-bone relationship in x-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2013;98:E990–5.CrossRefPubMed
51.
go back to reference Thom JM, Morse CI, Birch KM, Narici MV. Triceps surae muscle power, volume, and quality in older versus younger healthy men. J Gerontol A Biol Sci Med Sci. 2005;60:1111–7.CrossRefPubMed Thom JM, Morse CI, Birch KM, Narici MV. Triceps surae muscle power, volume, and quality in older versus younger healthy men. J Gerontol A Biol Sci Med Sci. 2005;60:1111–7.CrossRefPubMed
52.
go back to reference Ducher G, Daly RM, Hill B, Eser P, Naughton GA, Gravenmaker KJ, et al. Relationship between indices of adiposity obtained by peripheral quantitative computed tomography and dual-energy X-ray absorptiometry in pre-pubertal children. Ann Hum Biol. 2009;36:705–16.CrossRefPubMed Ducher G, Daly RM, Hill B, Eser P, Naughton GA, Gravenmaker KJ, et al. Relationship between indices of adiposity obtained by peripheral quantitative computed tomography and dual-energy X-ray absorptiometry in pre-pubertal children. Ann Hum Biol. 2009;36:705–16.CrossRefPubMed
53.
go back to reference Farr JN, Funk JL, Chen Z, Lisse JR, Blew RM, Lee VR, et al. Skeletal muscle fat content is inversely associated with bone strength in young girls. J Bone Miner Res. 2011;26:2217–25.CrossRefPubMedPubMedCentral Farr JN, Funk JL, Chen Z, Lisse JR, Blew RM, Lee VR, et al. Skeletal muscle fat content is inversely associated with bone strength in young girls. J Bone Miner Res. 2011;26:2217–25.CrossRefPubMedPubMedCentral
54.
go back to reference Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000;89:104–10.PubMed Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000;89:104–10.PubMed
55.
go back to reference Finol H, De Venanzi F, Pereyra B, Alfonso C, Sanchez J. Effects of phosphorus deficiency on the ultrastructure of the rat fast twitch skeletal muscle. Interciencia. 2001;26:62–6. Finol H, De Venanzi F, Pereyra B, Alfonso C, Sanchez J. Effects of phosphorus deficiency on the ultrastructure of the rat fast twitch skeletal muscle. Interciencia. 2001;26:62–6.
56.
go back to reference Fuller TJ, Carter NW, Barcenas C, Knochel JP. Reversible changes of the muscle cell in experimental phosphorus deficiency. J Clin Invest. 1976;57:1019–24.CrossRefPubMedPubMedCentral Fuller TJ, Carter NW, Barcenas C, Knochel JP. Reversible changes of the muscle cell in experimental phosphorus deficiency. J Clin Invest. 1976;57:1019–24.CrossRefPubMedPubMedCentral
57.
go back to reference Whyte MP. Hypophosphatasia—aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12:233–46.CrossRefPubMed Whyte MP. Hypophosphatasia—aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12:233–46.CrossRefPubMed
58.
go back to reference Phillips D, Case LE, Griffin D, Hamilton K, Lara SL, Leiro B, et al. Physical therapy management of infants and children with hypophosphatasia. Mol Genet Metab. 2016;119:14–9.CrossRefPubMed Phillips D, Case LE, Griffin D, Hamilton K, Lara SL, Leiro B, et al. Physical therapy management of infants and children with hypophosphatasia. Mol Genet Metab. 2016;119:14–9.CrossRefPubMed
59.
go back to reference Weber TJ, Sawyer EK, Moseley S, Odrljin T, Kishnani PS. Burden of disease in adult patients with hypophosphatasia: results from two patient-reported surveys. Metabolism. 2016;65:1522–30.CrossRefPubMed Weber TJ, Sawyer EK, Moseley S, Odrljin T, Kishnani PS. Burden of disease in adult patients with hypophosphatasia: results from two patient-reported surveys. Metabolism. 2016;65:1522–30.CrossRefPubMed
60.
go back to reference Whyte MP, Madson KL, Phillips D, Reeves AL, McAlister WH, Yakimoski A, et al. Asfotase alfa therapy for children with hypophosphatasia. JCI Insight. 2016;1:e85971.CrossRefPubMedPubMedCentral Whyte MP, Madson KL, Phillips D, Reeves AL, McAlister WH, Yakimoski A, et al. Asfotase alfa therapy for children with hypophosphatasia. JCI Insight. 2016;1:e85971.CrossRefPubMedPubMedCentral
61.
go back to reference Janssens K, Vanhoenacker F, Bonduelle M, Verbruggen L, Van Maldergem L, Ralston S, et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J Med Genet. 2006;43:1–11.CrossRefPubMedPubMedCentral Janssens K, Vanhoenacker F, Bonduelle M, Verbruggen L, Van Maldergem L, Ralston S, et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J Med Genet. 2006;43:1–11.CrossRefPubMedPubMedCentral
62.
go back to reference Ayyavoo A, Derraik JG, Cutfield WS, Hofman PL. Elimination of pain and improvement of exercise capacity in Camurati-Engelmann disease with losartan. J Clin Endocrinol Metab. 2014;99:3978–82.CrossRefPubMed Ayyavoo A, Derraik JG, Cutfield WS, Hofman PL. Elimination of pain and improvement of exercise capacity in Camurati-Engelmann disease with losartan. J Clin Endocrinol Metab. 2014;99:3978–82.CrossRefPubMed
63.
go back to reference Simsek-Kiper PO, Dikoglu E, Campos-Xavier B, Utine GE, Bonafe L, Unger S, et al. Positive effects of an angiotensin II type 1 receptor antagonist in Camurati-Engelmann disease: a single case observation. Am J Med Genet A. 2014;164a:2667–71.CrossRefPubMed Simsek-Kiper PO, Dikoglu E, Campos-Xavier B, Utine GE, Bonafe L, Unger S, et al. Positive effects of an angiotensin II type 1 receptor antagonist in Camurati-Engelmann disease: a single case observation. Am J Med Genet A. 2014;164a:2667–71.CrossRefPubMed
64.
go back to reference Werkstetter KJ, Pozza SB, Filipiak-Pittroff B, Schatz SB, Prell C, Bufler P, et al. Long-term development of bone geometry and muscle in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011;106:988–98.CrossRefPubMed Werkstetter KJ, Pozza SB, Filipiak-Pittroff B, Schatz SB, Prell C, Bufler P, et al. Long-term development of bone geometry and muscle in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011;106:988–98.CrossRefPubMed
65.
go back to reference Lee DY, Wetzsteon RJ, Zemel BS, Shults J, Organ JM, Foster BJ, et al. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease. J Bone Miner Res. 2015;30:575–83.CrossRefPubMedPubMedCentral Lee DY, Wetzsteon RJ, Zemel BS, Shults J, Organ JM, Foster BJ, et al. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease. J Bone Miner Res. 2015;30:575–83.CrossRefPubMedPubMedCentral
66.
go back to reference Griffin LM, Thayu M, Baldassano RN, DeBoer MD, Zemel BS, Denburg MR, et al. Improvements in bone density and structure during anti-TNF-alpha therapy in pediatric Crohn’s disease. J Clin Endocrinol Metab. 2015;100:2630–9.CrossRefPubMedPubMedCentral Griffin LM, Thayu M, Baldassano RN, DeBoer MD, Zemel BS, Denburg MR, et al. Improvements in bone density and structure during anti-TNF-alpha therapy in pediatric Crohn’s disease. J Clin Endocrinol Metab. 2015;100:2630–9.CrossRefPubMedPubMedCentral
67.
go back to reference Oestreich AK, Carleton SM, Yao X, Gentry BA, Raw CE, Brown M, et al. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice. Osteoporos Int. 2016;27:161–70.CrossRefPubMed Oestreich AK, Carleton SM, Yao X, Gentry BA, Raw CE, Brown M, et al. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice. Osteoporos Int. 2016;27:161–70.CrossRefPubMed
Metadata
Title
Muscle-Bone Interactions in Pediatric Bone Diseases
Authors
Louis-Nicolas Veilleux
Frank Rauch
Publication date
01-10-2017
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 5/2017
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-017-0396-6

Other articles of this Issue 5/2017

Current Osteoporosis Reports 5/2017 Go to the issue

Cancer-induced Musculoskeletal Diseases (M Reagan and E Keller, Section Editors)

Myeloma and Bone Disease

Cancer-induced Musculoskeletal Diseases (M Reagan and E Keller, section editors)

Bone Marrow Stroma and Vascular Contributions to Myeloma Bone Homing

OSTEOCYTES (T BELLIDO AND J KLEIN-NULEND, SECTION EDITORS)

Aging, Osteocytes, and Mechanotransduction

Nutrition, Exercise and Lifestyle in Osteoporosis (S Shapses and J Lappe, Section Editors)

Effects of Excessive Dietary Phosphorus Intake on Bone Health

Pediatrics (L Ward and E Imel, Section Editors)

Skeletal Dysplasias: What Every Bone Health Clinician Needs to Know

Osteoimmunology (M Humphrey and M Nakamura, Section Editors)

Epigenetics and Bone Remodeling