Skip to main content
Top
Published in: Current Osteoporosis Reports 4/2016

01-08-2016 | Rare Bone Disease (CB Langman and E Shore, Section Editors)

Hajdu-Cheney Syndrome, a Disease Associated with NOTCH2 Mutations

Authors: Ernesto Canalis, Stefano Zanotti

Published in: Current Osteoporosis Reports | Issue 4/2016

Login to get access

Abstract

Notch plays an important function in skeletal homeostasis, osteoblastogenesis, and osteoclastogenesis. Hajdu-Cheney syndrome (HCS) is a rare disease associated with mutations in NOTCH2 leading to the translation of a truncated NOTCH2 stable protein. As a consequence, a gain-of-NOTCH2 function is manifested. HCS is inherited as an autosomal dominant disease although sporadic cases exist. HCS is characterized by craniofacial developmental defects, including platybasia and wormian bones, osteoporosis with fractures, and acro-osteolysis. Subjects may suffer severe neurological complications, and HCS presents with cardiovascular defects and polycystic kidneys. An experimental mouse model harboring a HCSNotch2 mutation exhibits osteopenia secondary to enhanced bone resorption suggesting this as a possible mechanism for the skeletal disease. If the same mechanisms were operational in humans, anti-resorptive therapy could correct the bone loss, but not necessarily the acro-osteolysis. In conclusion, HCS is a devastating disease associated with a gain-of-NOTCH2 function resulting in diverse clinical manifestations.
Literature
1.•
go back to reference Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357(9):905–16. A review on anabolic mechanisms and treatment for osteoporosis.CrossRefPubMed Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357(9):905–16. A review on anabolic mechanisms and treatment for osteoporosis.CrossRefPubMed
3.
go back to reference Parfitt AM. The bone remodeling compartment: a circulatory function for bone lining cells. J Bone Miner Res. 2001;16(9):1583–5.CrossRefPubMed Parfitt AM. The bone remodeling compartment: a circulatory function for bone lining cells. J Bone Miner Res. 2001;16(9):1583–5.CrossRefPubMed
4.
go back to reference Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.CrossRefPubMed Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.CrossRefPubMed
5.
go back to reference Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481.PubMedPubMedCentral Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481.PubMedPubMedCentral
6.
go back to reference Martin TJ. Coupling factors: how many candidates can there be? J Bone Miner Res. 2014;29(7):1519–21.CrossRefPubMed Martin TJ. Coupling factors: how many candidates can there be? J Bone Miner Res. 2014;29(7):1519–21.CrossRefPubMed
8.•
go back to reference Canalis E. Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013;9(10):575–83. A comprehensive review of Wnt signaling in the skeleton and associated clinical disorders.CrossRefPubMed Canalis E. Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013;9(10):575–83. A comprehensive review of Wnt signaling in the skeleton and associated clinical disorders.CrossRefPubMed
9.
go back to reference Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003;24(2):218–35.CrossRefPubMed Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003;24(2):218–35.CrossRefPubMed
10.
go back to reference Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord. 2006;7(1-2):51–65.CrossRefPubMed Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord. 2006;7(1-2):51–65.CrossRefPubMed
11.
go back to reference Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492(1):1–18.CrossRefPubMed Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492(1):1–18.CrossRefPubMed
15.
go back to reference Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30(12):3071–85.CrossRefPubMedPubMedCentral Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30(12):3071–85.CrossRefPubMedPubMedCentral
16.
go back to reference Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4.CrossRefPubMed Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4.CrossRefPubMed
17.
go back to reference Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, et al. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem. 2006;281(42):31720–8.CrossRefPubMed Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, et al. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem. 2006;281(42):31720–8.CrossRefPubMed
18.
go back to reference Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41.CrossRefPubMedPubMedCentral Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41.CrossRefPubMedPubMedCentral
19.
go back to reference Zanotti S, Canalis E. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int. 2012;90(2):69–75.CrossRefPubMed Zanotti S, Canalis E. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int. 2012;90(2):69–75.CrossRefPubMed
20.
go back to reference Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009;16(5):633–47.CrossRefPubMed Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009;16(5):633–47.CrossRefPubMed
22.
23.
go back to reference Kovall RA. More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene. 2008;27(38):5099–109.CrossRefPubMed Kovall RA. More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene. 2008;27(38):5099–109.CrossRefPubMed
24.
go back to reference Nam Y, Sliz P, Song L, Aster JC, Blacklow SC. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell. 2006;124(5):973–83.CrossRefPubMed Nam Y, Sliz P, Song L, Aster JC, Blacklow SC. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell. 2006;124(5):973–83.CrossRefPubMed
25.
go back to reference Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998;393(6683):382–6.CrossRefPubMed Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998;393(6683):382–6.CrossRefPubMed
26.•
go back to reference Wilson JJ, Kovall RA. Crystal structure of the CSL-Notch-mastermind ternary complex bound to DNA. Cell. 2006;124(5):985–96. Initial report describing the structure of the Notch transcriptional complex.CrossRefPubMed Wilson JJ, Kovall RA. Crystal structure of the CSL-Notch-mastermind ternary complex bound to DNA. Cell. 2006;124(5):985–96. Initial report describing the structure of the Notch transcriptional complex.CrossRefPubMed
27.
go back to reference Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003;194(3):237–55.CrossRefPubMed Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003;194(3):237–55.CrossRefPubMed
29.
go back to reference Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, et al. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2008;283(10):6509–18.CrossRefPubMed Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, et al. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2008;283(10):6509–18.CrossRefPubMed
30.
go back to reference Dallas DJ, Genever PG, Patton AJ, Millichip MI, McKie N, Skerry TM. Localization of ADAM10 and Notch receptors in bone. Bone. 1999;25(1):9–15.CrossRefPubMed Dallas DJ, Genever PG, Patton AJ, Millichip MI, McKie N, Skerry TM. Localization of ADAM10 and Notch receptors in bone. Bone. 1999;25(1):9–15.CrossRefPubMed
31.
go back to reference Pereira RM, Delany AM, Durant D, Canalis E. Cortisol regulates the expression of Notch in osteoblasts. J Cell Biochem. 2002;85(2):252–8.CrossRefPubMed Pereira RM, Delany AM, Durant D, Canalis E. Cortisol regulates the expression of Notch in osteoblasts. J Cell Biochem. 2002;85(2):252–8.CrossRefPubMed
32.
33.
go back to reference Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008;14(3):306–14.CrossRefPubMedPubMedCentral Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008;14(3):306–14.CrossRefPubMedPubMedCentral
34.
go back to reference Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology. 2008;149(8):3890–9.CrossRefPubMedPubMedCentral Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology. 2008;149(8):3890–9.CrossRefPubMedPubMedCentral
35.
go back to reference Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, et al. RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development. 2010;137(9):1461–71.CrossRefPubMedPubMedCentral Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, et al. RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development. 2010;137(9):1461–71.CrossRefPubMedPubMedCentral
36.
go back to reference Francis JC, Radtke F, Logan MP. Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud. Dev Dyn. 2005;234(4):1006–15.CrossRefPubMed Francis JC, Radtke F, Logan MP. Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud. Dev Dyn. 2005;234(4):1006–15.CrossRefPubMed
37.
go back to reference Kageyama R, Masamizu Y, Niwa Y. Oscillator mechanism of Notch pathway in the segmentation clock. Dev Dyn. 2007;236(6):1403–9.CrossRefPubMed Kageyama R, Masamizu Y, Niwa Y. Oscillator mechanism of Notch pathway in the segmentation clock. Dev Dyn. 2007;236(6):1403–9.CrossRefPubMed
38.
go back to reference Zanotti S, Smerdel-Ramoya A, Canalis E. Hairy and enhancer of split (HES)1 is a determinant of bone mass. J Biol Chem. 2011;286(4):2648–57.CrossRefPubMed Zanotti S, Smerdel-Ramoya A, Canalis E. Hairy and enhancer of split (HES)1 is a determinant of bone mass. J Biol Chem. 2011;286(4):2648–57.CrossRefPubMed
39.
go back to reference Humphreys R, Zheng W, Prince LS, Qu X, Brown C, Loomes K, et al. Cranial neural crest ablation of Jagged1 recapitulates the craniofacial phenotype of Alagille syndrome patients. Hum Mol Genet. 2012;21(6):1374–83.CrossRefPubMed Humphreys R, Zheng W, Prince LS, Qu X, Brown C, Loomes K, et al. Cranial neural crest ablation of Jagged1 recapitulates the craniofacial phenotype of Alagille syndrome patients. Hum Mol Genet. 2012;21(6):1374–83.CrossRefPubMed
40.
go back to reference Jheon AH, Prochazkova M, Meng B, Wen T, Lim YJ, Naveau A, et al. Inhibition of notch signaling during mouse incisor renewal leads to enamel defects. J Bone Miner Res. 2016;31(1):152–62.CrossRefPubMed Jheon AH, Prochazkova M, Meng B, Wen T, Lim YJ, Naveau A, et al. Inhibition of notch signaling during mouse incisor renewal leads to enamel defects. J Bone Miner Res. 2016;31(1):152–62.CrossRefPubMed
41.•
go back to reference Hajdu N, Kauntze R. Cranio-skeletal dysplasia. Br J Radiol. 1948;21(241):42–8. Original description of Hajdu Cheney Syndrome.CrossRefPubMed Hajdu N, Kauntze R. Cranio-skeletal dysplasia. Br J Radiol. 1948;21(241):42–8. Original description of Hajdu Cheney Syndrome.CrossRefPubMed
42.•
go back to reference Cheney WD. Acro-osteolysis. Am J Roentgenol Radium Ther Nucl Med. 1965;94:595–607. Description of Hajdu Cheney as a syndrome.PubMed Cheney WD. Acro-osteolysis. Am J Roentgenol Radium Ther Nucl Med. 1965;94:595–607. Description of Hajdu Cheney as a syndrome.PubMed
44.•
go back to reference Descartes M, Rojnueangnit K, Cole L, Sutton A, Morgan SL, Patry L, et al. Hajdu-Cheney syndrome: phenotypical progression with de-novo NOTCH2 mutation. Clin Dysmorphol. 2014;23(3):88–94. Comprehensive description of clinical features of Hajdu Cheney Syndrome.CrossRefPubMed Descartes M, Rojnueangnit K, Cole L, Sutton A, Morgan SL, Patry L, et al. Hajdu-Cheney syndrome: phenotypical progression with de-novo NOTCH2 mutation. Clin Dysmorphol. 2014;23(3):88–94. Comprehensive description of clinical features of Hajdu Cheney Syndrome.CrossRefPubMed
45.
go back to reference Zanotti S, Canalis E. Notch suppresses nuclear factor of activated T cells (Nfat) transactivation and Nfatc1 expression in chondrocytes. Endocrinology. 2013;154(2):762–72.CrossRefPubMed Zanotti S, Canalis E. Notch suppresses nuclear factor of activated T cells (Nfat) transactivation and Nfatc1 expression in chondrocytes. Endocrinology. 2013;154(2):762–72.CrossRefPubMed
46.
go back to reference Sargin G, Cildag S, Senturk T. Hajdu-Cheney syndrome with ventricular septal defect. Kaohsiung J Med Sci. 2013;29(6):343–4.CrossRefPubMed Sargin G, Cildag S, Senturk T. Hajdu-Cheney syndrome with ventricular septal defect. Kaohsiung J Med Sci. 2013;29(6):343–4.CrossRefPubMed
47.
go back to reference Kaler SG, Geggel RL, Sadeghi-Nejad A. Hajdu-Cheney syndrome associated with severe cardiac valvular and conduction disease. Dysmorph Clin Genet. 1990;4:43–7. Kaler SG, Geggel RL, Sadeghi-Nejad A. Hajdu-Cheney syndrome associated with severe cardiac valvular and conduction disease. Dysmorph Clin Genet. 1990;4:43–7.
48.
go back to reference McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development. 2001;128(4):491–502.PubMed McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development. 2001;128(4):491–502.PubMed
49.
go back to reference Gray MJ, Kim CA, Bertola DR, Arantes PR, Stewart H, Simpson MA, et al. Serpentine fibula polycystic kidney syndrome is part of the phenotypic spectrum of Hajdu-Cheney syndrome. Eur J Hum Genet. 2012;20(1):122–4.CrossRefPubMed Gray MJ, Kim CA, Bertola DR, Arantes PR, Stewart H, Simpson MA, et al. Serpentine fibula polycystic kidney syndrome is part of the phenotypic spectrum of Hajdu-Cheney syndrome. Eur J Hum Genet. 2012;20(1):122–4.CrossRefPubMed
50.
go back to reference Isidor B, Le MM, Exner GU, Pichon O, Thierry G, Guiochon-Mantel A, et al. Serpentine fibula-polycystic kidney syndrome caused by truncating mutations in NOTCH2. Hum Mutat. 2011;32(11):1239–42.CrossRefPubMed Isidor B, Le MM, Exner GU, Pichon O, Thierry G, Guiochon-Mantel A, et al. Serpentine fibula-polycystic kidney syndrome caused by truncating mutations in NOTCH2. Hum Mutat. 2011;32(11):1239–42.CrossRefPubMed
51.
go back to reference Majewski F, Enders H, Ranke MB, Voit T. Serpentine fibula—polycystic kidney syndrome and Melnick-needles syndrome are different disorders. Eur J Pediatr. 1993;152(11):916–21.CrossRefPubMed Majewski F, Enders H, Ranke MB, Voit T. Serpentine fibula—polycystic kidney syndrome and Melnick-needles syndrome are different disorders. Eur J Pediatr. 1993;152(11):916–21.CrossRefPubMed
52.••
go back to reference Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S, et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet. 2011;43(4):306–8. First description of an association of NOTCH2 mutations with Hajdu Cheney Syndrome. Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S, et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet. 2011;43(4):306–8. First description of an association of NOTCH2 mutations with Hajdu Cheney Syndrome.
53.
go back to reference Majewski J, Schwartzentruber JA, Caqueret A, Patry L, Marcadier J, Fryns JP, et al. Mutations in NOTCH2 in families with Hajdu-Cheney syndrome. Hum Mutat. 2011;32(10):1114–7.CrossRefPubMed Majewski J, Schwartzentruber JA, Caqueret A, Patry L, Marcadier J, Fryns JP, et al. Mutations in NOTCH2 in families with Hajdu-Cheney syndrome. Hum Mutat. 2011;32(10):1114–7.CrossRefPubMed
54.••
go back to reference Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, et al. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011;43(4):303–5. First description of an association of NOTCH2 mutations with Hajdu Cheney Syndrome. Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, et al. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011;43(4):303–5. First description of an association of NOTCH2 mutations with Hajdu Cheney Syndrome.
55.
go back to reference Zhao W, Petit E, Gafni RI, Collins MT, Robey PG, Seton M, et al. Mutations in NOTCH2 in patients with Hajdu-Cheney syndrome. Osteoporos Int. 2013;24(8):2275–81.CrossRefPubMedPubMedCentral Zhao W, Petit E, Gafni RI, Collins MT, Robey PG, Seton M, et al. Mutations in NOTCH2 in patients with Hajdu-Cheney syndrome. Osteoporos Int. 2013;24(8):2275–81.CrossRefPubMedPubMedCentral
56.••
go back to reference Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S. Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis and bone resorption. J Biol Chem. 2016;291:1538–51. First description of a mouse model of Hajdu Cheney Syndrome.CrossRefPubMed Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S. Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis and bone resorption. J Biol Chem. 2016;291:1538–51. First description of a mouse model of Hajdu Cheney Syndrome.CrossRefPubMed
57.
go back to reference Elias AN, Pinals RS, Anderson HC, Gould LV, Streeten DH. Hereditary osteodysplasia with acro-osteolysis. (The Hajdu-Cheney syndrome). Am J Med. 1978;65(4):627–36.CrossRefPubMed Elias AN, Pinals RS, Anderson HC, Gould LV, Streeten DH. Hereditary osteodysplasia with acro-osteolysis. (The Hajdu-Cheney syndrome). Am J Med. 1978;65(4):627–36.CrossRefPubMed
58.
go back to reference Nunziata V, di GG, Ballanti P, Bonucci E. High turnover osteoporosis in acro-osteolysis (Hajdu-Cheney syndrome). J Endocrinol Invest. 1990;13(3):251–5.CrossRefPubMed Nunziata V, di GG, Ballanti P, Bonucci E. High turnover osteoporosis in acro-osteolysis (Hajdu-Cheney syndrome). J Endocrinol Invest. 1990;13(3):251–5.CrossRefPubMed
59.
go back to reference Udell J, Schumacher Jr HR, Kaplan F, Fallon MD. Idiopathic familial acroosteolysis: histomorphometric study of bone and literature review of the Hajdu-Cheney syndrome. Arthritis Rheum. 1986;29(8):1032–8.CrossRefPubMed Udell J, Schumacher Jr HR, Kaplan F, Fallon MD. Idiopathic familial acroosteolysis: histomorphometric study of bone and literature review of the Hajdu-Cheney syndrome. Arthritis Rheum. 1986;29(8):1032–8.CrossRefPubMed
60.
go back to reference Avela K, Valanne L, Helenius I, Makitie O. Hajdu-Cheney syndrome with severe dural ectasia. Am J Med Genet A. 2011;155A(3):595–8.CrossRefPubMed Avela K, Valanne L, Helenius I, Makitie O. Hajdu-Cheney syndrome with severe dural ectasia. Am J Med Genet A. 2011;155A(3):595–8.CrossRefPubMed
61.
go back to reference Blumenauer BT, Cranney AB, Goldstein R. Acro-osteolysis and osteoporosis as manifestations of the Hajdu-Cheney syndrome. Clin Exp Rheumatol. 2002;20(4):574–5.PubMed Blumenauer BT, Cranney AB, Goldstein R. Acro-osteolysis and osteoporosis as manifestations of the Hajdu-Cheney syndrome. Clin Exp Rheumatol. 2002;20(4):574–5.PubMed
62.
go back to reference Brown DM, Bradford DS, Gorlin RJ, Desnick RJ, Langer LO, Jowsey J, et al. The acro-osteolysis syndrome: morphologic and biochemical studies. J Pediatr. 1976;88(4 Pt 1):573–80.CrossRefPubMed Brown DM, Bradford DS, Gorlin RJ, Desnick RJ, Langer LO, Jowsey J, et al. The acro-osteolysis syndrome: morphologic and biochemical studies. J Pediatr. 1976;88(4 Pt 1):573–80.CrossRefPubMed
63.
go back to reference Leidig-Bruckner G, Pfeilschifter J, Penning N, Limberg B, Priemel M, Delling G, et al. Severe osteoporosis in familial Hajdu-Cheney syndrome: progression of acro-osteolysis and osteoporosis during long-term follow-up. J Bone Miner Res. 1999;14(12):2036–41.CrossRefPubMed Leidig-Bruckner G, Pfeilschifter J, Penning N, Limberg B, Priemel M, Delling G, et al. Severe osteoporosis in familial Hajdu-Cheney syndrome: progression of acro-osteolysis and osteoporosis during long-term follow-up. J Bone Miner Res. 1999;14(12):2036–41.CrossRefPubMed
64.•
go back to reference Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, et al. The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol. 2008;28(20):6402–12. Report of direct actions of Notch2 on osteoclast formation.CrossRefPubMedPubMedCentral Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, et al. The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol. 2008;28(20):6402–12. Report of direct actions of Notch2 on osteoclast formation.CrossRefPubMedPubMedCentral
65.
go back to reference Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012;209(9):1553–65.CrossRefPubMedPubMedCentral Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012;209(9):1553–65.CrossRefPubMedPubMedCentral
66.
go back to reference Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G, et al. Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci. 2009;100(5):920–6.CrossRefPubMed Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G, et al. Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci. 2009;100(5):920–6.CrossRefPubMed
67.
go back to reference Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209(9):1537–51.CrossRefPubMedPubMedCentral Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209(9):1537–51.CrossRefPubMedPubMedCentral
68.
go back to reference Hampel F, Ehrenberg S, Hojer C, Draeseke A, Marschall-Schroter G, Kuhn R, et al. CD19-independent instruction of murine marginal zone B-cell development by constitutive Notch2 signaling. Blood. 2011;118(24):6321–31.CrossRefPubMed Hampel F, Ehrenberg S, Hojer C, Draeseke A, Marschall-Schroter G, Kuhn R, et al. CD19-independent instruction of murine marginal zone B-cell development by constitutive Notch2 signaling. Blood. 2011;118(24):6321–31.CrossRefPubMed
69.
go back to reference Witt CM, Won WJ, Hurez V, Klug CA. Notch2 haploinsufficiency results in diminished B1 B cells and a severe reduction in marginal zone B cells. J Immunol. 2003;171(6):2783–8.CrossRefPubMed Witt CM, Won WJ, Hurez V, Klug CA. Notch2 haploinsufficiency results in diminished B1 B cells and a severe reduction in marginal zone B cells. J Immunol. 2003;171(6):2783–8.CrossRefPubMed
70.
go back to reference Narumi Y, Min BJ, Shimizu K, Kazukawa I, Sameshima K, Nakamura K, et al. Clinical consequences in truncating mutations in exon 34 of NOTCH2: report of six patients with Hajdu-Cheney syndrome and a patient with serpentine fibula polycystic kidney syndrome. Am J Med Genet A. 2013;161a(3):518–26.CrossRefPubMed Narumi Y, Min BJ, Shimizu K, Kazukawa I, Sameshima K, Nakamura K, et al. Clinical consequences in truncating mutations in exon 34 of NOTCH2: report of six patients with Hajdu-Cheney syndrome and a patient with serpentine fibula polycystic kidney syndrome. Am J Med Genet A. 2013;161a(3):518–26.CrossRefPubMed
71.
go back to reference Galli-Tsinopoulou A, Kyrgios I, Giza S, Giannopoulou EM, Maggana I, Laliotis N. Two-year cyclic infusion of pamidronate improves bone mass density and eliminates risk of fractures in a girl with osteoporosis due to Hajdu-Cheney syndrome. Minerva Endocrinol. 2012;37(3):283–9.PubMed Galli-Tsinopoulou A, Kyrgios I, Giza S, Giannopoulou EM, Maggana I, Laliotis N. Two-year cyclic infusion of pamidronate improves bone mass density and eliminates risk of fractures in a girl with osteoporosis due to Hajdu-Cheney syndrome. Minerva Endocrinol. 2012;37(3):283–9.PubMed
72.
go back to reference McKiernan FE. Integrated anti-remodeling and anabolic therapy for the osteoporosis of Hajdu-Cheney syndrome: 2-year follow-up. Osteoporos Int. 2008;19(3):379–80.CrossRefPubMed McKiernan FE. Integrated anti-remodeling and anabolic therapy for the osteoporosis of Hajdu-Cheney syndrome: 2-year follow-up. Osteoporos Int. 2008;19(3):379–80.CrossRefPubMed
73.
go back to reference Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, et al. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet. 2009;18(8):1464–70.CrossRefPubMedPubMedCentral Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, et al. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet. 2009;18(8):1464–70.CrossRefPubMedPubMedCentral
74.
75.
go back to reference Weber JM, Forsythe SR, Christianson CA, Frisch BJ, Gigliotti BJ, Jordan CT, et al. Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone. 2006;39(3):485–93.CrossRefPubMed Weber JM, Forsythe SR, Christianson CA, Frisch BJ, Gigliotti BJ, Jordan CT, et al. Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone. 2006;39(3):485–93.CrossRefPubMed
76.
go back to reference Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462(7270):182–8.CrossRefPubMedPubMedCentral Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462(7270):182–8.CrossRefPubMedPubMedCentral
78.
go back to reference Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464(7291):1052–7.CrossRefPubMed Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464(7291):1052–7.CrossRefPubMed
79.
go back to reference Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, et al. Chronic DLL4 blockade induces vascular neoplasms. Nature. 2010;463(7282):E6–7.CrossRefPubMed Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, et al. Chronic DLL4 blockade induces vascular neoplasms. Nature. 2010;463(7282):E6–7.CrossRefPubMed
Metadata
Title
Hajdu-Cheney Syndrome, a Disease Associated with NOTCH2 Mutations
Authors
Ernesto Canalis
Stefano Zanotti
Publication date
01-08-2016
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 4/2016
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-016-0311-6

Other articles of this Issue 4/2016

Current Osteoporosis Reports 4/2016 Go to the issue

Osteoporosis and Cancer (M Nanes and M Drake, Section Editors)

The Bone Microenvironment: a Fertile Soil for Tumor Growth

Biomechanics (M Silva and K Jepsen, Section Editors)

Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk

Muscle and Bone (L Bonewald and M Hamrick, Section Editors)

Crosstalk Between Muscle and Bone Via the Muscle-Myokine Irisin