Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 6/2016

01-06-2016 | Movement Disorders (SH Fox, Section Editor)

Neurological Disorders Associated with Striatal Lesions: Classification and Diagnostic Approach

Authors: Davide Tonduti, Luisa Chiapparini, Isabella Moroni, Anna Ardissone, Giovanna Zorzi, Federica Zibordi, Sergio Raspante, Celeste Panteghini, Barbara Garavaglia, Nardo Nardocci

Published in: Current Neurology and Neuroscience Reports | Issue 6/2016

Login to get access

Abstract

Neostriatal abnormalities can be observed in a very large number of neurological conditions clinically dominated by the presence of movement disorders. The neuroradiological picture in some cases has been described as “bilateral striatal necrosis” (BSN). BSN represents a condition histo-pathologically defined by the involvement of the neostriata and characterized by initial swelling of putamina and caudates followed by degeneration and cellular necrosis. After the first description in 1975, numerous acquired and hereditary conditions have been associated with the presence of BSN. At the same time, a large number of disorders involving neostriata have been described as BSN, in some cases irrespective of the presence of signs of cavitation on MRI. As a consequence, the etiological spectrum and the nosographic boundaries of the syndrome have progressively become less clear. In this study, we review the clinical and radiological features of the conditions associated with MRI evidence of bilateral striatal lesions. Based on MRI findings, we have distinguished two groups of disorders: BSN and other neostriatal lesions (SL). This distinction is extremely helpful in narrowing the differential diagnosis to a small group of known conditions. The clinical picture and complementary exams will finally lead to the diagnosis. We provide an update on the etiological spectrum of BSN and propose a diagnostic flowchart for clinicians.
Literature
1.
go back to reference Roig M, Calopa M, Rovira A, Macaya A, Riudor E, Losada M. Bilateral striatal lesions in childhood. Pediatr Neurol. 1993;9:349–58.PubMedCrossRef Roig M, Calopa M, Rovira A, Macaya A, Riudor E, Losada M. Bilateral striatal lesions in childhood. Pediatr Neurol. 1993;9:349–58.PubMedCrossRef
2.
go back to reference Friede R. Developmental neuropathology. 2nd ed. Berlin Heidelberg New York London Paris Tokyo: Springer-Velag; 1989.CrossRef Friede R. Developmental neuropathology. 2nd ed. Berlin Heidelberg New York London Paris Tokyo: Springer-Velag; 1989.CrossRef
3.
go back to reference Livingston JH, Lin JP, Dale RC, Gill D, Brogan P, Munnich A, et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J Med Genet. 2014;51:76–82.PubMedCrossRef Livingston JH, Lin JP, Dale RC, Gill D, Brogan P, Munnich A, et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J Med Genet. 2014;51:76–82.PubMedCrossRef
4.
go back to reference Dale, R.C., and Brilot, F. (2012). Autoimmune basal ganglia disorders. J Child Neurol. Dale, R.C., and Brilot, F. (2012). Autoimmune basal ganglia disorders. J Child Neurol.
5.
go back to reference Goutières F, Aicardi J. Acute neurological dysfunction associated with destructive lesions of the basal ganglia in children. Ann Neurol. 1982;12:328–32.PubMedCrossRef Goutières F, Aicardi J. Acute neurological dysfunction associated with destructive lesions of the basal ganglia in children. Ann Neurol. 1982;12:328–32.PubMedCrossRef
6.
go back to reference Zambrino CA, Zorzi G, Lanzi G, Uggetti C, Egitto MG. Bilateral striatal necrosis associated with Mycoplasma pneumoniae infection in an adolescent: clinical and neuroradiologic follow up. Mov Disord. 2000;15:1023–6.PubMedCrossRef Zambrino CA, Zorzi G, Lanzi G, Uggetti C, Egitto MG. Bilateral striatal necrosis associated with Mycoplasma pneumoniae infection in an adolescent: clinical and neuroradiologic follow up. Mov Disord. 2000;15:1023–6.PubMedCrossRef
7.
go back to reference van Buiren M, Uhl M. Images in clinical medicine. Bilateral striatal necrosis associated with Mycoplasma pneumoniae infection. N Engl J Med. 2003;348:720.PubMedCrossRef van Buiren M, Uhl M. Images in clinical medicine. Bilateral striatal necrosis associated with Mycoplasma pneumoniae infection. N Engl J Med. 2003;348:720.PubMedCrossRef
8.
go back to reference Termine C, Uggetti C, Veggiotti P, Balottin U, Rossi G, Egitto MG, et al. Long-term follow-up of an adolescent who had bilateral striatal necrosis secondary to Mycoplasma pneumoniae infection. Brain Dev. 2005;27:62–5.PubMedCrossRef Termine C, Uggetti C, Veggiotti P, Balottin U, Rossi G, Egitto MG, et al. Long-term follow-up of an adolescent who had bilateral striatal necrosis secondary to Mycoplasma pneumoniae infection. Brain Dev. 2005;27:62–5.PubMedCrossRef
9.
go back to reference Sasaki M, Matsuda H, Omura I, Sugai K, Hashimoto T. Transient seizure disappearance due to bilateral striatal necrosis in a patient with intractable epilepsy. Brain Dev. 2000;22:50–5.PubMedCrossRef Sasaki M, Matsuda H, Omura I, Sugai K, Hashimoto T. Transient seizure disappearance due to bilateral striatal necrosis in a patient with intractable epilepsy. Brain Dev. 2000;22:50–5.PubMedCrossRef
10.
go back to reference Larsen PD, Crisp D. Acute bilateral striatal necrosis associated with Mycoplasma pneumoniae infection. Pediatr Infect Dis J. 1996;15:1124–6.PubMedCrossRef Larsen PD, Crisp D. Acute bilateral striatal necrosis associated with Mycoplasma pneumoniae infection. Pediatr Infect Dis J. 1996;15:1124–6.PubMedCrossRef
11.
go back to reference Green C, Riley DE. Treatment of dystonia in striatal necrosis caused by Mycoplasma pneumoniae. Pediatr Neurol. 2002;26:318–20.PubMedCrossRef Green C, Riley DE. Treatment of dystonia in striatal necrosis caused by Mycoplasma pneumoniae. Pediatr Neurol. 2002;26:318–20.PubMedCrossRef
12.
go back to reference Coon EA, Patterson MC. Teaching neuroimages: call it as you see it: evolution of bilateral striatal necrosis. Neurology. 2012;78:e123.PubMedCrossRef Coon EA, Patterson MC. Teaching neuroimages: call it as you see it: evolution of bilateral striatal necrosis. Neurology. 2012;78:e123.PubMedCrossRef
13.
go back to reference Brandel JP, Vidailhet M, Noseda G, Harpey JP, Agid Y. Mycoplasma pneumoniae postinfectious encephalomyelitis with bilateral striatal necrosis. Mov Disord. 1996;11:333–6.PubMedCrossRef Brandel JP, Vidailhet M, Noseda G, Harpey JP, Agid Y. Mycoplasma pneumoniae postinfectious encephalomyelitis with bilateral striatal necrosis. Mov Disord. 1996;11:333–6.PubMedCrossRef
14.
go back to reference Dale RC, Church AJ, Benton S, Surtees RA, Lees A, Thompson EJ, et al. Post-streptococcal autoimmune dystonia with isolated bilateral striatal necrosis. Dev Med Child Neurol. 2002;44:485–9.PubMedCrossRef Dale RC, Church AJ, Benton S, Surtees RA, Lees A, Thompson EJ, et al. Post-streptococcal autoimmune dystonia with isolated bilateral striatal necrosis. Dev Med Child Neurol. 2002;44:485–9.PubMedCrossRef
15.
go back to reference Karagulle Kendi AT, Krenzel C, Ott FW, Brace JR, Norberg SK, Kieffer SA. Poststreptococcal dystonia with bilateral striatal enlargement: MR imaging and spectroscopic findings. AJNR Am J Neuroradiol. 2008;29:1276–8.PubMedCrossRef Karagulle Kendi AT, Krenzel C, Ott FW, Brace JR, Norberg SK, Kieffer SA. Poststreptococcal dystonia with bilateral striatal enlargement: MR imaging and spectroscopic findings. AJNR Am J Neuroradiol. 2008;29:1276–8.PubMedCrossRef
16.
go back to reference Dale RC, Church AJ, Cardoso F, Goddard E, Cox TC, Chong WK, et al. Poststreptococcal acute disseminated encephalomyelitis with basal ganglia involvement and auto-reactive antibasal ganglia antibodies. Ann Neurol. 2001;50:588–95.PubMedCrossRef Dale RC, Church AJ, Cardoso F, Goddard E, Cox TC, Chong WK, et al. Poststreptococcal acute disseminated encephalomyelitis with basal ganglia involvement and auto-reactive antibasal ganglia antibodies. Ann Neurol. 2001;50:588–95.PubMedCrossRef
17.
go back to reference Voudris KA, Skardoutsou A, Hasiotou M, Theodoropoulos B, Vagiakou EA. Long-term findings on brain magnetic resonance imaging in acute encephalopathy with bilateral striatal necrosis associated with measles. J Child Neurol. 2002;17:776–7.PubMedCrossRef Voudris KA, Skardoutsou A, Hasiotou M, Theodoropoulos B, Vagiakou EA. Long-term findings on brain magnetic resonance imaging in acute encephalopathy with bilateral striatal necrosis associated with measles. J Child Neurol. 2002;17:776–7.PubMedCrossRef
18.
go back to reference Colamaria V, Plouin P, Dulac O, Cesaro G, Dalla Bernardina B. Kojewnikow’s epilepsia partialis continua: two cases associated with striatal necrosis. Neurophysiol Clin. 1988;18:525–30.PubMedCrossRef Colamaria V, Plouin P, Dulac O, Cesaro G, Dalla Bernardina B. Kojewnikow’s epilepsia partialis continua: two cases associated with striatal necrosis. Neurophysiol Clin. 1988;18:525–30.PubMedCrossRef
19.
go back to reference Cambonie G, Houdon L, Rivier F, Bongrand AF, Echenne B. Infantile bilateral striatal necrosis following measles. Brain Dev. 2000;22:221–3.PubMedCrossRef Cambonie G, Houdon L, Rivier F, Bongrand AF, Echenne B. Infantile bilateral striatal necrosis following measles. Brain Dev. 2000;22:221–3.PubMedCrossRef
20.
go back to reference Murakami A, Morimoto M, Adachi S, Ishimaru Y, Sugimoto T. Infantile bilateral striatal necrosis associated with human herpes virus-6 (HHV-6) infection. Brain Dev. 2005;27:527–30.PubMedCrossRef Murakami A, Morimoto M, Adachi S, Ishimaru Y, Sugimoto T. Infantile bilateral striatal necrosis associated with human herpes virus-6 (HHV-6) infection. Brain Dev. 2005;27:527–30.PubMedCrossRef
21.
go back to reference Mordekar S, Jaspan T, Sharrard M, Morton R, Whitehouse WP. Acute bilateral striatal necrosis with rotavirus gastroenteritis and inborn metabolic predisposition. Dev Med Child Neurol. 2005;47:415–8.PubMedCrossRef Mordekar S, Jaspan T, Sharrard M, Morton R, Whitehouse WP. Acute bilateral striatal necrosis with rotavirus gastroenteritis and inborn metabolic predisposition. Dev Med Child Neurol. 2005;47:415–8.PubMedCrossRef
22.
go back to reference Yamamoto K, Chiba HO, Ishitobi M, Nakagawa H, Ogawa T, Ishii K. Acute encephalopathy with bilateral striatal necrosis: favourable response to corticosteroid therapy. Eur J Paediatr Neurol. 1997;1:41–5.PubMedCrossRef Yamamoto K, Chiba HO, Ishitobi M, Nakagawa H, Ogawa T, Ishii K. Acute encephalopathy with bilateral striatal necrosis: favourable response to corticosteroid therapy. Eur J Paediatr Neurol. 1997;1:41–5.PubMedCrossRef
23.•
go back to reference Tabarki B, Al-Shafi S, Al-Shahwan S, Azmat Z, Al-Hashem A, Al-Adwani N, et al. Biotin-responsive basal ganglia disease revisited: clinical, radiologic, and genetic findings. Neurology. 2013;80:261–7. Neurology 80, 261–267. Tabarki et al. review the clinical and radiological features of 10 new and 14 published SLC19A3 mutated patients. They underline the importance to consider this disorder in case of unexplained encephalopathy with typical neuroimaging features because a therapeutic trial can be lifesaving. They recommend that the medical community open the dialog to consider formally discontinuing the nosology “biotin basal ganglia disease” and to adopt the use of the term “biotin-thiamine responsive basal ganglia disease associated with SLC19A3 mutation.”.PubMedCrossRef Tabarki B, Al-Shafi S, Al-Shahwan S, Azmat Z, Al-Hashem A, Al-Adwani N, et al. Biotin-responsive basal ganglia disease revisited: clinical, radiologic, and genetic findings. Neurology. 2013;80:261–7. Neurology 80, 261–267. Tabarki et al. review the clinical and radiological features of 10 new and 14 published SLC19A3 mutated patients. They underline the importance to consider this disorder in case of unexplained encephalopathy with typical neuroimaging features because a therapeutic trial can be lifesaving. They recommend that the medical community open the dialog to consider formally discontinuing the nosology “biotin basal ganglia disease” and to adopt the use of the term “biotin-thiamine responsive basal ganglia disease associated with SLC19A3 mutation.”.PubMedCrossRef
24.
go back to reference Carrozzo R, Dionisi-Vici C, Steuerwald U, Lucioli S, Deodato F, Di Giandomenico S, et al. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain. 2007;130:862–74.PubMedCrossRef Carrozzo R, Dionisi-Vici C, Steuerwald U, Lucioli S, Deodato F, Di Giandomenico S, et al. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain. 2007;130:862–74.PubMedCrossRef
25.
go back to reference Pigeon N, Campeau PM, Cyr D, Lemieux B, Clarke JT. Clinical heterogeneity in ethylmalonic encephalopathy. J Child Neurol. 2009;24:991–6.PubMedCrossRef Pigeon N, Campeau PM, Cyr D, Lemieux B, Clarke JT. Clinical heterogeneity in ethylmalonic encephalopathy. J Child Neurol. 2009;24:991–6.PubMedCrossRef
26.
go back to reference Valayannopoulos V, Haudry C, Serre V, Barth M, Boddaert N, Arnoux JB, et al. New SUCLG1 patients expanding the phenotypic spectrum of this rare cause of mild methylmalonic aciduria. Mitochondrion. 2010;10:335–41.PubMedCrossRef Valayannopoulos V, Haudry C, Serre V, Barth M, Boddaert N, Arnoux JB, et al. New SUCLG1 patients expanding the phenotypic spectrum of this rare cause of mild methylmalonic aciduria. Mitochondrion. 2010;10:335–41.PubMedCrossRef
27.
go back to reference Heringer J, Boy SP, Ensenauer R, Assmann B, Zschocke J, Harting I, et al. Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol. 2010;68:743–52.PubMedCrossRef Heringer J, Boy SP, Ensenauer R, Assmann B, Zschocke J, Harting I, et al. Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol. 2010;68:743–52.PubMedCrossRef
28.
go back to reference Orcesi S, Gorni K, Termine C, Uggetti C, Veggiotti P, Carrara F, et al. Bilateral putaminal necrosis associated with the mitochondrial DNA A8344G myoclonus epilepsy with ragged red fibers (MERRF) mutation: an infantile case. J Child Neurol. 2006;21:79–82.PubMedCrossRef Orcesi S, Gorni K, Termine C, Uggetti C, Veggiotti P, Carrara F, et al. Bilateral putaminal necrosis associated with the mitochondrial DNA A8344G myoclonus epilepsy with ragged red fibers (MERRF) mutation: an infantile case. J Child Neurol. 2006;21:79–82.PubMedCrossRef
29.
go back to reference Campos Y, Martin MA, Rubio JC, Gutierrez del Olmo MC, Cabello A, Arenas J. Bilateral striatal necrosis and MELAS associated with a new T3308C mutation in the mitochondrial ND1 gene. Biochem Biophys Res Commun. 1997;238:323–5.PubMedCrossRef Campos Y, Martin MA, Rubio JC, Gutierrez del Olmo MC, Cabello A, Arenas J. Bilateral striatal necrosis and MELAS associated with a new T3308C mutation in the mitochondrial ND1 gene. Biochem Biophys Res Commun. 1997;238:323–5.PubMedCrossRef
30.
go back to reference De Meirleir L, Seneca S, Lissens W, Schoentjes E, Desprechins B. Bilateral striatal necrosis with a novel point mutation in the mitochondrial ATPase 6 gene. Pediatr Neurol. 1995;13:242–6.PubMedCrossRef De Meirleir L, Seneca S, Lissens W, Schoentjes E, Desprechins B. Bilateral striatal necrosis with a novel point mutation in the mitochondrial ATPase 6 gene. Pediatr Neurol. 1995;13:242–6.PubMedCrossRef
31.
go back to reference Thyagarajan D, Shanske S, Vazquez-Memije M, De Vivo D, DiMauro S. A novel mitochondrial ATPase 6 point mutation in familial bilateral striatal necrosis. Ann Neurol. 1995;38:468–72.PubMedCrossRef Thyagarajan D, Shanske S, Vazquez-Memije M, De Vivo D, DiMauro S. A novel mitochondrial ATPase 6 point mutation in familial bilateral striatal necrosis. Ann Neurol. 1995;38:468–72.PubMedCrossRef
32.
go back to reference Solano A, Roig M, Vives-Bauza C, Hernandez-Pena J, Garcia-Arumi E, Playan A, et al. Bilateral striatal necrosis associated with a novel mutation in the mitochondrial ND6 gene. Ann Neurol. 2003;54:527–30.PubMedCrossRef Solano A, Roig M, Vives-Bauza C, Hernandez-Pena J, Garcia-Arumi E, Playan A, et al. Bilateral striatal necrosis associated with a novel mutation in the mitochondrial ND6 gene. Ann Neurol. 2003;54:527–30.PubMedCrossRef
33.
go back to reference Aniello MS, Martino D, Petruzzella V, Eleopra R, Mancuso M, Dell'Aglio R, et al. Bilateral striatal necrosis, dystonia and multiple mitochondrial DNA deletions: case study and effect of deep brain stimulation. Mov Disord. 2008;23:114–8.PubMedCrossRef Aniello MS, Martino D, Petruzzella V, Eleopra R, Mancuso M, Dell'Aglio R, et al. Bilateral striatal necrosis, dystonia and multiple mitochondrial DNA deletions: case study and effect of deep brain stimulation. Mov Disord. 2008;23:114–8.PubMedCrossRef
34.
go back to reference Barel O, Shorer Z, Flusser H, Ofir R, Narkis G, Finer G, et al. Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ. Am J Hum Genet. 2008;82:1211–6.PubMedPubMedCentralCrossRef Barel O, Shorer Z, Flusser H, Ofir R, Narkis G, Finer G, et al. Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ. Am J Hum Genet. 2008;82:1211–6.PubMedPubMedCentralCrossRef
35.
go back to reference Debray FG, Seneca S, Gonce M, Vancampenhaut K, Bianchi E, Boemer F, et al. Mitochondrial encephalomyopathy with cytochrome c oxidase deficiency caused by a novel mutation in the MTCO1 gene. Mitochondrion. 2014;17:101–5.PubMedCrossRef Debray FG, Seneca S, Gonce M, Vancampenhaut K, Bianchi E, Boemer F, et al. Mitochondrial encephalomyopathy with cytochrome c oxidase deficiency caused by a novel mutation in the MTCO1 gene. Mitochondrion. 2014;17:101–5.PubMedCrossRef
36.
go back to reference Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D'Adamo P, et al. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010;86:639–49.PubMedPubMedCentralCrossRef Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D'Adamo P, et al. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010;86:639–49.PubMedPubMedCentralCrossRef
37.
go back to reference Lebre AS, Rio M, Faivre d'Arcier L, Vernerey D, Landrieu P, Slama A, et al. A common pattern of brain MRI imaging in mitochondrial diseases with complex I deficiency. J Med Genet. 2011;48:16–23.PubMedCrossRef Lebre AS, Rio M, Faivre d'Arcier L, Vernerey D, Landrieu P, Slama A, et al. A common pattern of brain MRI imaging in mitochondrial diseases with complex I deficiency. J Med Genet. 2011;48:16–23.PubMedCrossRef
38.
go back to reference Uziel G, Ghezzi D, Zeviani M. Infantile mitochondrial encephalopathy. Semin Fetal Neonatal Med. 2011;16:205–15.PubMedCrossRef Uziel G, Ghezzi D, Zeviani M. Infantile mitochondrial encephalopathy. Semin Fetal Neonatal Med. 2011;16:205–15.PubMedCrossRef
39.
go back to reference Baertling F, Rodenburg RJ, Schaper J, Smeitink JA, Koopman WJ, Mayatepek E, et al. A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry. 2014;85:257–65.PubMedCrossRef Baertling F, Rodenburg RJ, Schaper J, Smeitink JA, Koopman WJ, Mayatepek E, et al. A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry. 2014;85:257–65.PubMedCrossRef
40.
go back to reference Harting I, Neumaier-Probst E, Seitz A, Maier EM, Assmann B, Baric I, et al. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain. 2009;132:1764–82.PubMedCrossRef Harting I, Neumaier-Probst E, Seitz A, Maier EM, Assmann B, Baric I, et al. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain. 2009;132:1764–82.PubMedCrossRef
41.
go back to reference Martínez Bermejo A, Arcas J, Roche MC, López-Martín V, Royo A, Merinero B, et al. Bilateral hypodensity of the basal ganglia. Clinico-evolutionary correlation in children. Rev Neurol. 2001;33:101–11.PubMed Martínez Bermejo A, Arcas J, Roche MC, López-Martín V, Royo A, Merinero B, et al. Bilateral hypodensity of the basal ganglia. Clinico-evolutionary correlation in children. Rev Neurol. 2001;33:101–11.PubMed
42.
go back to reference Sen A, Pillay RS. Striatal necrosis in type 1 glutaric aciduria: different stages in two siblings. J Pediatr Neurosci. 2011;6:146–8.PubMedPubMedCentral Sen A, Pillay RS. Striatal necrosis in type 1 glutaric aciduria: different stages in two siblings. J Pediatr Neurosci. 2011;6:146–8.PubMedPubMedCentral
43.
go back to reference Strauss KA, Lazovic J, Wintermark M, Morton DH. Multimodal imaging of striatal degeneration in Amish patients with glutaryl-CoA dehydrogenase deficiency. Brain. 2007;130:1905–20.PubMedCrossRef Strauss KA, Lazovic J, Wintermark M, Morton DH. Multimodal imaging of striatal degeneration in Amish patients with glutaryl-CoA dehydrogenase deficiency. Brain. 2007;130:1905–20.PubMedCrossRef
44.
go back to reference Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.PubMedPubMedCentralCrossRef Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.PubMedPubMedCentralCrossRef
45.
go back to reference Nizon M, Ottolenghi C, Valayannopoulos V, Arnoux JB, Barbier V, Habarou F, et al. Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis. 2013;8:148.PubMedPubMedCentralCrossRef Nizon M, Ottolenghi C, Valayannopoulos V, Arnoux JB, Barbier V, Habarou F, et al. Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis. 2013;8:148.PubMedPubMedCentralCrossRef
46.
go back to reference Nyhan WL, Bay C, Beyer EW, Mazi M. Neurologic nonmetabolic presentation of propionic acidemia. Arch Neurol. 1999;56:1143–7.PubMedCrossRef Nyhan WL, Bay C, Beyer EW, Mazi M. Neurologic nonmetabolic presentation of propionic acidemia. Arch Neurol. 1999;56:1143–7.PubMedCrossRef
47.
go back to reference Johnson JA, Le KL, Palacios E. Propionic acidemia: case report and review of neurologic sequelae. Pediatr Neurol. 2009;40:317–20.PubMedCrossRef Johnson JA, Le KL, Palacios E. Propionic acidemia: case report and review of neurologic sequelae. Pediatr Neurol. 2009;40:317–20.PubMedCrossRef
48.
go back to reference Wortmann SB, De Brouwer APM, Wevers RA, Morava E. MEGDEL syndrome. 1993. Wortmann SB, De Brouwer APM, Wevers RA, Morava E. MEGDEL syndrome. 1993.
49.
go back to reference Saudubray JM, Sedel F, Walter JH. Clinical approach to treatable inborn metabolic diseases: an introduction. J Inherit Metab Dis. 2006;29:261–74.PubMedCrossRef Saudubray JM, Sedel F, Walter JH. Clinical approach to treatable inborn metabolic diseases: an introduction. J Inherit Metab Dis. 2006;29:261–74.PubMedCrossRef
50.
go back to reference Ozand PT, Gascon GG, Al Essa M, Joshi S, Al Jishi E, Bakheet S, et al. Biotin-responsive basal ganglia disease: a novel entity. Brain. 1998;121(Pt 7):1267–79.PubMedCrossRef Ozand PT, Gascon GG, Al Essa M, Joshi S, Al Jishi E, Bakheet S, et al. Biotin-responsive basal ganglia disease: a novel entity. Brain. 1998;121(Pt 7):1267–79.PubMedCrossRef
51.
go back to reference Debs R, Depienne C, Rastetter A, Bellanger A, Degos B, Galanaud D, et al. Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch Neurol. 2010;67:126–30.PubMedCrossRef Debs R, Depienne C, Rastetter A, Bellanger A, Degos B, Galanaud D, et al. Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch Neurol. 2010;67:126–30.PubMedCrossRef
52.
go back to reference Haack TB, Klee D, Strom TM, Mayatepek E, Meitinger T, Prokisch H, et al. Infantile Leigh-like syndrome caused by SLC19A3 mutations is a treatable disease. Brain. 2014;137:e295.PubMedCrossRef Haack TB, Klee D, Strom TM, Mayatepek E, Meitinger T, Prokisch H, et al. Infantile Leigh-like syndrome caused by SLC19A3 mutations is a treatable disease. Brain. 2014;137:e295.PubMedCrossRef
53.
go back to reference Yamada K, Miura K, Hara K, Suzuki M, Nakanishi K, Kumagai T, et al. A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations. BMC Med Genet. 2010;11:171.PubMedPubMedCentralCrossRef Yamada K, Miura K, Hara K, Suzuki M, Nakanishi K, Kumagai T, et al. A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations. BMC Med Genet. 2010;11:171.PubMedPubMedCentralCrossRef
54.
go back to reference Alfadhel M, Almuntashri M, Jadah RH, Bashiri FA, Al Rifai MT, Al Shalaan H, et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013;8:83.PubMedPubMedCentralCrossRef Alfadhel M, Almuntashri M, Jadah RH, Bashiri FA, Al Rifai MT, Al Shalaan H, et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013;8:83.PubMedPubMedCentralCrossRef
55.
go back to reference Kassem H, Wafaie A, Alsuhibani S, Farid T. Biotin-responsive basal ganglia disease: neuroimaging features before and after treatment. AJNR Am J Neuroradiol. 2014;35:1990–5.PubMedCrossRef Kassem H, Wafaie A, Alsuhibani S, Farid T. Biotin-responsive basal ganglia disease: neuroimaging features before and after treatment. AJNR Am J Neuroradiol. 2014;35:1990–5.PubMedCrossRef
56.
go back to reference Zeng WQ, Al-Yamani E, Acierno Jr JS, Slaugenhaupt S, Gillis T, MacDonald ME, et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet. 2005;77:16–26.PubMedPubMedCentralCrossRef Zeng WQ, Al-Yamani E, Acierno Jr JS, Slaugenhaupt S, Gillis T, MacDonald ME, et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet. 2005;77:16–26.PubMedPubMedCentralCrossRef
57.
go back to reference Zhao R, Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med. 2013;34:373–85.PubMedCrossRef Zhao R, Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med. 2013;34:373–85.PubMedCrossRef
58.
go back to reference Vlasova TI, Stratton SL, Wells AM, Mock NI, Mock DM. Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. J Nutr. 2005;135:42–7.PubMedPubMedCentral Vlasova TI, Stratton SL, Wells AM, Mock NI, Mock DM. Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. J Nutr. 2005;135:42–7.PubMedPubMedCentral
59.
go back to reference Kevelam SH, Bugiani M, Salomons GS, Feigenbaum A, Blaser S, Prasad C, et al. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain. 2013;136:1534–43.PubMedCrossRef Kevelam SH, Bugiani M, Salomons GS, Feigenbaum A, Blaser S, Prasad C, et al. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain. 2013;136:1534–43.PubMedCrossRef
60.
go back to reference Mayr JA, Freisinger P, Schlachter K, Rolinski B, Zimmermann FA, Scheffner T, et al. Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Hum Genet. 2011;89:806–12.PubMedPubMedCentralCrossRef Mayr JA, Freisinger P, Schlachter K, Rolinski B, Zimmermann FA, Scheffner T, et al. Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Hum Genet. 2011;89:806–12.PubMedPubMedCentralCrossRef
61.
go back to reference Rosenberg MJ, Agarwala R, Bouffard G, Davis J, Fiermonte G, Hilliard MS, et al. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat Genet. 2002;32:175–9.PubMedCrossRef Rosenberg MJ, Agarwala R, Bouffard G, Davis J, Fiermonte G, Hilliard MS, et al. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat Genet. 2002;32:175–9.PubMedCrossRef
62.
go back to reference Spiegel R, Shaag A, Edvardson S, Mandel H, Stepensky P, Shalev SA, et al. SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol. 2009;66:419–24.PubMedCrossRef Spiegel R, Shaag A, Edvardson S, Mandel H, Stepensky P, Shalev SA, et al. SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol. 2009;66:419–24.PubMedCrossRef
63.
go back to reference Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, et al. Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol. 2006;60:214–22.PubMedCrossRef Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, et al. Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol. 2006;60:214–22.PubMedCrossRef
64.
go back to reference Straussberg R, Shorer Z, Weitz R, Basel L, Kornreich L, Corie CI, et al. Familial infantile bilateral striatal necrosis: clinical features and response to biotin treatment. Neurology. 2002;59:983–9.PubMedCrossRef Straussberg R, Shorer Z, Weitz R, Basel L, Kornreich L, Corie CI, et al. Familial infantile bilateral striatal necrosis: clinical features and response to biotin treatment. Neurology. 2002;59:983–9.PubMedCrossRef
65.
go back to reference Dale RC, Merheb V, Pillai S, Wang D, Cantrill L, Murphy TK, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain. 2012;135:3453–68.PubMedCrossRef Dale RC, Merheb V, Pillai S, Wang D, Cantrill L, Murphy TK, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain. 2012;135:3453–68.PubMedCrossRef
66.
go back to reference Tzoulis C, Vedeler C, Haugen M, Storstein A, Tran GT, Gjerde IO, et al. Progressive striatal necrosis associated with anti-NMDA receptor antibodies. BMC Neurol. 2013;13:55.PubMedPubMedCentralCrossRef Tzoulis C, Vedeler C, Haugen M, Storstein A, Tran GT, Gjerde IO, et al. Progressive striatal necrosis associated with anti-NMDA receptor antibodies. BMC Neurol. 2013;13:55.PubMedPubMedCentralCrossRef
67.
go back to reference Chiapparini L, Granata T, Farina L, Ciceri E, Erbetta A, Ragona F, et al. Diagnostic imaging in 13 cases of Rasmussen’s encephalitis: can early MRI suggest the diagnosis? Neuroradiology. 2003;45:171–83.PubMed Chiapparini L, Granata T, Farina L, Ciceri E, Erbetta A, Ragona F, et al. Diagnostic imaging in 13 cases of Rasmussen’s encephalitis: can early MRI suggest the diagnosis? Neuroradiology. 2003;45:171–83.PubMed
68.••
go back to reference Bekiesinska-Figatowska M, Mierzewska H, Jurkiewicz E. Basal ganglia lesions in children and adults. Eur J Radiol. 2013;82:837–49. Bekiesinska-Figatowska et al. make a review about basal ganglia lesions. MRI pattern recognition not alone but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. PubMedCrossRef Bekiesinska-Figatowska M, Mierzewska H, Jurkiewicz E. Basal ganglia lesions in children and adults. Eur J Radiol. 2013;82:837–49. Bekiesinska-Figatowska et al. make a review about basal ganglia lesions. MRI pattern recognition not alone but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. PubMedCrossRef
69.
go back to reference Gataullina S, De Lonlay P, Dellatolas G, Valayannapoulos V, Napuri S, Damaj L, et al. Topography of brain damage in metabolic hypoglycaemia is determined by age at which hypoglycaemia occurred. Dev Med Child Neurol. 2013;55:162–6.PubMedCrossRef Gataullina S, De Lonlay P, Dellatolas G, Valayannapoulos V, Napuri S, Damaj L, et al. Topography of brain damage in metabolic hypoglycaemia is determined by age at which hypoglycaemia occurred. Dev Med Child Neurol. 2013;55:162–6.PubMedCrossRef
71.
go back to reference Blanco M, Casado R, Vazquez F, Pumar JM. CT and MR imaging findings in methanol intoxication. AJNR Am J Neuroradiol. 2006;27:452–4.PubMed Blanco M, Casado R, Vazquez F, Pumar JM. CT and MR imaging findings in methanol intoxication. AJNR Am J Neuroradiol. 2006;27:452–4.PubMed
72.
go back to reference Gaul HP, Wallace CJ, Auer RN, Fong TC. MR findings in methanol intoxication. AJNR Am J Neuroradiol. 1995;16:1783–6.PubMed Gaul HP, Wallace CJ, Auer RN, Fong TC. MR findings in methanol intoxication. AJNR Am J Neuroradiol. 1995;16:1783–6.PubMed
73.
go back to reference Glazer M, Dross P. Necrosis of the putamen caused by methanol intoxication: MR findings. AJR Am J Roentgenol. 1993;160:1105–6.PubMedCrossRef Glazer M, Dross P. Necrosis of the putamen caused by methanol intoxication: MR findings. AJR Am J Roentgenol. 1993;160:1105–6.PubMedCrossRef
74.
go back to reference Hopkins RO, Fearing MA, Weaver LK, Foley JF. Basal ganglia lesions following carbon monoxide poisoning. Brain Inj. 2006;20:273–81.PubMedCrossRef Hopkins RO, Fearing MA, Weaver LK, Foley JF. Basal ganglia lesions following carbon monoxide poisoning. Brain Inj. 2006;20:273–81.PubMedCrossRef
75.
go back to reference Ozelame RV, Shroff M, Wood B, Bouffet E, Bartels U, Drake JM, et al. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy. Pediatr Radiol. 2006;36:325–30.PubMedCrossRef Ozelame RV, Shroff M, Wood B, Bouffet E, Bartels U, Drake JM, et al. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy. Pediatr Radiol. 2006;36:325–30.PubMedCrossRef
76.
go back to reference Bekiesinska-Figatowska M, Kuczynska-Zardzewialy A, Pomianowska B, Kajdana K, Szpak GM, Iwanowska B, et al. The value of magnetic resonance imaging in the early diagnosis of Creutzfeldt-Jakob disease—own experience. Pol J Radiol. 2012;77:63–7.PubMedPubMedCentralCrossRef Bekiesinska-Figatowska M, Kuczynska-Zardzewialy A, Pomianowska B, Kajdana K, Szpak GM, Iwanowska B, et al. The value of magnetic resonance imaging in the early diagnosis of Creutzfeldt-Jakob disease—own experience. Pol J Radiol. 2012;77:63–7.PubMedPubMedCentralCrossRef
77.
go back to reference Barkovich, A., and Patay, Z. (2011). Metabolic toxic and inflammatory brain disorders, in “Pediatric Neuroimmages”, V Edition Edition, (Lippincott Williams and Wilkins). Barkovich, A., and Patay, Z. (2011). Metabolic toxic and inflammatory brain disorders, in “Pediatric Neuroimmages”, V Edition Edition, (Lippincott Williams and Wilkins).
78.
go back to reference Sato S, Nakajima J, Shimura M, Kawashima H, Yoshio T, Hara Y. Reversible basal ganglia lesions in neuropsychiatric lupus: a report of three pediatric cases. Int J Rheum Dis. 2014;17:274–9.PubMedCrossRef Sato S, Nakajima J, Shimura M, Kawashima H, Yoshio T, Hara Y. Reversible basal ganglia lesions in neuropsychiatric lupus: a report of three pediatric cases. Int J Rheum Dis. 2014;17:274–9.PubMedCrossRef
79.
go back to reference Bricout M, Grevent D, Lebre AS, Rio M, Desguerre I, De Lonlay P, et al. Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations. J Med Genet. 2014;51:429–35.PubMedCrossRef Bricout M, Grevent D, Lebre AS, Rio M, Desguerre I, De Lonlay P, et al. Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations. J Med Genet. 2014;51:429–35.PubMedCrossRef
80.
go back to reference Miyamura Y, Suzuki T, Kono M, Inagaki K, Ito S, Suzuki N, et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet. 2003;73:693–9.PubMedPubMedCentralCrossRef Miyamura Y, Suzuki T, Kono M, Inagaki K, Ito S, Suzuki N, et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet. 2003;73:693–9.PubMedPubMedCentralCrossRef
81.
go back to reference Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet. 2012;44:1243–8.PubMedPubMedCentralCrossRef Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet. 2012;44:1243–8.PubMedPubMedCentralCrossRef
82.
go back to reference La Piana R, Uggetti C, Olivieri I, Tonduti D, Balottin U, Fazzi E, et al. Bilateral striatal necrosis in two subjects with Aicardi-Goutieres syndrome due to mutations in ADAR1 (AGS6). Am J Med Genet A. 2014;164A:815–9.PubMedCrossRef La Piana R, Uggetti C, Olivieri I, Tonduti D, Balottin U, Fazzi E, et al. Bilateral striatal necrosis in two subjects with Aicardi-Goutieres syndrome due to mutations in ADAR1 (AGS6). Am J Med Genet A. 2014;164A:815–9.PubMedCrossRef
83.
go back to reference Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci. 2011;1238:91–8.PubMedCrossRef Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci. 2011;1238:91–8.PubMedCrossRef
84.
go back to reference Hoffmann C, Ben-Zeev B, Anikster Y, Nissenkorn A, Brand N, Kuint J, et al. Magnetic resonance imaging and magnetic resonance spectroscopy in isolated sulfite oxidase deficiency. J Child Neurol. 2007;22:1214–21.PubMedCrossRef Hoffmann C, Ben-Zeev B, Anikster Y, Nissenkorn A, Brand N, Kuint J, et al. Magnetic resonance imaging and magnetic resonance spectroscopy in isolated sulfite oxidase deficiency. J Child Neurol. 2007;22:1214–21.PubMedCrossRef
85.
go back to reference Bayram E, Topcu Y, Karakaya P, Yis U, Cakmakci H, Ichida K, et al. Molybdenum cofactor deficiency: review of 12 cases (MoCD and review). Eur J Paediatr Neurol. 2013;17:1–6.PubMedCrossRef Bayram E, Topcu Y, Karakaya P, Yis U, Cakmakci H, Ichida K, et al. Molybdenum cofactor deficiency: review of 12 cases (MoCD and review). Eur J Paediatr Neurol. 2013;17:1–6.PubMedCrossRef
86.
go back to reference Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, et al. Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics. 2005;116:757–66.PubMedCrossRef Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, et al. Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics. 2005;116:757–66.PubMedCrossRef
87.
go back to reference Rocha S, Ferreira AC, Dias AI, Vieira JP, Sequeira S. Sulfite oxidase deficiency—an unusual late and mild presentation. Brain Dev. 2014;36:176–9.PubMedCrossRef Rocha S, Ferreira AC, Dias AI, Vieira JP, Sequeira S. Sulfite oxidase deficiency—an unusual late and mild presentation. Brain Dev. 2014;36:176–9.PubMedCrossRef
88.
go back to reference Hughes EF, Fairbanks L, Simmonds HA, Robinson RO. Molybdenum cofactor deficiency-phenotypic variability in a family with a late-onset variant. Dev Med Child Neurol. 1998;40:57–61.PubMedCrossRef Hughes EF, Fairbanks L, Simmonds HA, Robinson RO. Molybdenum cofactor deficiency-phenotypic variability in a family with a late-onset variant. Dev Med Child Neurol. 1998;40:57–61.PubMedCrossRef
89.
go back to reference Alkufri F, Harrower T, Rahman Y, Hughes E, Mundy H, Knibb JA, et al. Molybdenum cofactor deficiency presenting with a parkinsonism-dystonia syndrome. Mov Disord. 2013;28:399–401.PubMedCrossRef Alkufri F, Harrower T, Rahman Y, Hughes E, Mundy H, Knibb JA, et al. Molybdenum cofactor deficiency presenting with a parkinsonism-dystonia syndrome. Mov Disord. 2013;28:399–401.PubMedCrossRef
90.
go back to reference Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 2001;27:117–20.PubMedCrossRef Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 2001;27:117–20.PubMedCrossRef
91.
go back to reference Prust M, Wang J, Morizono H, Messing A, Brenner M, Gordon E, et al. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology. 2011;77:1287–94.PubMedPubMedCentralCrossRef Prust M, Wang J, Morizono H, Messing A, Brenner M, Gordon E, et al. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology. 2011;77:1287–94.PubMedPubMedCentralCrossRef
92.
go back to reference Farina L, Pareyson D, Minati L, Ceccherini I, Chiapparini L, Romano S, et al. Can MR imaging diagnose adult-onset Alexander disease? AJNR Am J Neuroradiol. 2008;29:1190–6.PubMedCrossRef Farina L, Pareyson D, Minati L, Ceccherini I, Chiapparini L, Romano S, et al. Can MR imaging diagnose adult-onset Alexander disease? AJNR Am J Neuroradiol. 2008;29:1190–6.PubMedCrossRef
93.
go back to reference Graff-Radford J, Schwartz K, Gavrilova RH, Lachance DH, Kumar N. Neuroimaging and clinical features in type II (late-onset) Alexander disease. Neurology. 2014;82:49–56.PubMedPubMedCentralCrossRef Graff-Radford J, Schwartz K, Gavrilova RH, Lachance DH, Kumar N. Neuroimaging and clinical features in type II (late-onset) Alexander disease. Neurology. 2014;82:49–56.PubMedPubMedCentralCrossRef
94.
go back to reference Messing A, Li R, Naidu S, Taylor JP, Silverman L, Flint D, et al. Archetypal and new families with Alexander disease and novel mutations in GFAP. Arch Neurol. 2012;69:208–14.PubMedPubMedCentralCrossRef Messing A, Li R, Naidu S, Taylor JP, Silverman L, Flint D, et al. Archetypal and new families with Alexander disease and novel mutations in GFAP. Arch Neurol. 2012;69:208–14.PubMedPubMedCentralCrossRef
95.
go back to reference Mignot C, Boespflug-Tanguy O, Gelot A, Dautigny A, Pham-Dinh D, Rodriguez D. Alexander disease: putative mechanisms of an astrocytic encephalopathy. Cellular and Molecular Life Sciences (CMLS). 2004;61:369–85.CrossRef Mignot C, Boespflug-Tanguy O, Gelot A, Dautigny A, Pham-Dinh D, Rodriguez D. Alexander disease: putative mechanisms of an astrocytic encephalopathy. Cellular and Molecular Life Sciences (CMLS). 2004;61:369–85.CrossRef
96.
go back to reference van der Knaap MS, Naidu S, Breiter SN, Blaser S, Stroink H, Springer S, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol. 2001;22:541–52.PubMed van der Knaap MS, Naidu S, Breiter SN, Blaser S, Stroink H, Springer S, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol. 2001;22:541–52.PubMed
97.
go back to reference Maegawa GH, Stockley T, Tropak M, Banwell B, Blaser S, Kok F, et al. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics. 2006;118:e1550–1562.PubMedPubMedCentralCrossRef Maegawa GH, Stockley T, Tropak M, Banwell B, Blaser S, Kok F, et al. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics. 2006;118:e1550–1562.PubMedPubMedCentralCrossRef
98.
go back to reference Nardocci N, Bertagnolio B, Rumi V, Angelini L. Progressive dystonia symptomatic of juvenile GM2 gangliosidosis. Mov Disord. 1992;7:64–7.PubMedCrossRef Nardocci N, Bertagnolio B, Rumi V, Angelini L. Progressive dystonia symptomatic of juvenile GM2 gangliosidosis. Mov Disord. 1992;7:64–7.PubMedCrossRef
100.
go back to reference Bano S, Prasad A, Yadav SN, Chaudhary V, Garga UC. Neuroradiological findings in GM2 gangliosidosis variant B1. J Pediatr Neurosci. 2011;6:110–3.PubMedPubMedCentral Bano S, Prasad A, Yadav SN, Chaudhary V, Garga UC. Neuroradiological findings in GM2 gangliosidosis variant B1. J Pediatr Neurosci. 2011;6:110–3.PubMedPubMedCentral
101.
go back to reference Seshadri R, Christopher R, Arvinda HR. Teaching neuroimages: MRI in infantile Sandhoff disease. Neurology. 2011;77:e34.PubMedCrossRef Seshadri R, Christopher R, Arvinda HR. Teaching neuroimages: MRI in infantile Sandhoff disease. Neurology. 2011;77:e34.PubMedCrossRef
102.
go back to reference Bomont P, Cavalier L, Blondeau F, Ben Hamida C, Belal S, Tazir M, et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet. 2000;26:370–4.PubMedCrossRef Bomont P, Cavalier L, Blondeau F, Ben Hamida C, Belal S, Tazir M, et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet. 2000;26:370–4.PubMedCrossRef
103.
go back to reference Bruno C, Bertini E, Federico A, Tonoli E, Lispi ML, Cassandrini D, et al. Clinical and molecular findings in patients with giant axonal neuropathy (GAN). Neurology. 2004;62:13–6.PubMedCrossRef Bruno C, Bertini E, Federico A, Tonoli E, Lispi ML, Cassandrini D, et al. Clinical and molecular findings in patients with giant axonal neuropathy (GAN). Neurology. 2004;62:13–6.PubMedCrossRef
104.
go back to reference Van der Knaap M, editor. Magnetic resonance of myelination and myelin disorders, third edition. Berlin: Springer; 2005. Van der Knaap M, editor. Magnetic resonance of myelination and myelin disorders, third edition. Berlin: Springer; 2005.
105.
go back to reference van der Knaap MS, Naidu S, Pouwels PJ, Bonavita S, van Coster R, Lagae L, et al. New syndrome characterized by hypomyelination with atrophy of the basal ganglia and cerebellum. AJNR Am J Neuroradiol. 2002;23:1466–74.PubMed van der Knaap MS, Naidu S, Pouwels PJ, Bonavita S, van Coster R, Lagae L, et al. New syndrome characterized by hypomyelination with atrophy of the basal ganglia and cerebellum. AJNR Am J Neuroradiol. 2002;23:1466–74.PubMed
106.
go back to reference Simons C, Wolf NI, McNeil N, Caldovic L, Devaney JM, Takanohashi A, et al. A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet. 2013;92:767–73.PubMedPubMedCentralCrossRef Simons C, Wolf NI, McNeil N, Caldovic L, Devaney JM, Takanohashi A, et al. A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet. 2013;92:767–73.PubMedPubMedCentralCrossRef
107.
go back to reference Tonduti, D., Aiello, C., Renaldo, F., Dorboz, I., Saaman, S., Rodriguez, D., Fettah, H., Elmaleh, M., Biancheri, R., Barresi, S., et al. (2015). TUBB4A-related hypomyelinating leukodystrophy: new insights from a series of 12 patients. Eur J Paediatr Neurol. Tonduti, D., Aiello, C., Renaldo, F., Dorboz, I., Saaman, S., Rodriguez, D., Fettah, H., Elmaleh, M., Biancheri, R., Barresi, S., et al. (2015). TUBB4A-related hypomyelinating leukodystrophy: new insights from a series of 12 patients. Eur J Paediatr Neurol.
108.
go back to reference Hamilton EM, Polder E, Vanderver A, Naidu S, Schiffmann R, Fisher K, et al. Hypomyelination with atrophy of the basal ganglia and cerebellum: further delineation of the phenotype and genotype-phenotype correlation. Brain. 2014;137:1921–30.PubMedPubMedCentralCrossRef Hamilton EM, Polder E, Vanderver A, Naidu S, Schiffmann R, Fisher K, et al. Hypomyelination with atrophy of the basal ganglia and cerebellum: further delineation of the phenotype and genotype-phenotype correlation. Brain. 2014;137:1921–30.PubMedPubMedCentralCrossRef
109.
go back to reference Huster, D. Wilson disease. Best Pract Res Clin Gastroenterol 24, 531–539. Huster, D. Wilson disease. Best Pract Res Clin Gastroenterol 24, 531–539.
110.
go back to reference Kim TJ, Kim IO, Kim WS, Cheon JE, Moon SG, Kwon JW, et al. MR imaging of the brain in Wilson disease of childhood: findings before and after treatment with clinical correlation. AJNR Am J Neuroradiol. 2006;27:1373–8.PubMed Kim TJ, Kim IO, Kim WS, Cheon JE, Moon SG, Kwon JW, et al. MR imaging of the brain in Wilson disease of childhood: findings before and after treatment with clinical correlation. AJNR Am J Neuroradiol. 2006;27:1373–8.PubMed
111.
go back to reference Trocello JM, Woimant F, El Balkhi S, Guichard JP, Poupon J, Chappuis P, et al. Extensive striatal, cortical, and white matter brain MRI abnormalities in Wilson disease. Neurology. 2013;81:1557.PubMedCrossRef Trocello JM, Woimant F, El Balkhi S, Guichard JP, Poupon J, Chappuis P, et al. Extensive striatal, cortical, and white matter brain MRI abnormalities in Wilson disease. Neurology. 2013;81:1557.PubMedCrossRef
112.
114.
go back to reference Mascalchi M, Lolli F, Della Nave R, Tessa C, Petralli R, Gavazzi C, et al. Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology. 2004;232:867–73.PubMedCrossRef Mascalchi M, Lolli F, Della Nave R, Tessa C, Petralli R, Gavazzi C, et al. Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology. 2004;232:867–73.PubMedCrossRef
115.
go back to reference Schapiro M, Cecil KM, Doescher J, Kiefer AM, Jones BV. MR imaging and spectroscopy in juvenile Huntington disease. Pediatr Radiol. 2004;34:640–3.PubMedCrossRef Schapiro M, Cecil KM, Doescher J, Kiefer AM, Jones BV. MR imaging and spectroscopy in juvenile Huntington disease. Pediatr Radiol. 2004;34:640–3.PubMedCrossRef
116.
go back to reference Geevasinga N, Richards FH, Jones KJ, Ryan MM. Juvenile Huntington disease. J Paediatr Child Health. 2006;42:552–4.PubMedCrossRef Geevasinga N, Richards FH, Jones KJ, Ryan MM. Juvenile Huntington disease. J Paediatr Child Health. 2006;42:552–4.PubMedCrossRef
117.
go back to reference Dusi S, Valletta L, Haack TB, Tsuchiya Y, Venco P, Pasqualato S, et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet. 2014;94:11–22.PubMedPubMedCentralCrossRef Dusi S, Valletta L, Haack TB, Tsuchiya Y, Venco P, Pasqualato S, et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet. 2014;94:11–22.PubMedPubMedCentralCrossRef
118.
go back to reference Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001;28:350–4.PubMedCrossRef Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001;28:350–4.PubMedCrossRef
119.
120.
go back to reference Lehn A, Boyle R, Brown H, Airey C, Mellick G. Neuroferritinopathy. Parkinsonism Relat Disord. 2012;18:909–15.PubMedCrossRef Lehn A, Boyle R, Brown H, Airey C, Mellick G. Neuroferritinopathy. Parkinsonism Relat Disord. 2012;18:909–15.PubMedCrossRef
121.
go back to reference Mancuso M, Davidzon G, Kurlan RM, Tawil R, Bonilla E, Di Mauro S, et al. Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. J Neuropathol Exp Neurol. 2005;64:280–94.PubMedCrossRef Mancuso M, Davidzon G, Kurlan RM, Tawil R, Bonilla E, Di Mauro S, et al. Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. J Neuropathol Exp Neurol. 2005;64:280–94.PubMedCrossRef
Metadata
Title
Neurological Disorders Associated with Striatal Lesions: Classification and Diagnostic Approach
Authors
Davide Tonduti
Luisa Chiapparini
Isabella Moroni
Anna Ardissone
Giovanna Zorzi
Federica Zibordi
Sergio Raspante
Celeste Panteghini
Barbara Garavaglia
Nardo Nardocci
Publication date
01-06-2016
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 6/2016
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-016-0656-3

Other articles of this Issue 6/2016

Current Neurology and Neuroscience Reports 6/2016 Go to the issue

Genetics (V Bonifati, Section Editor)

ALS: Recent Developments from Genetics Studies

Critical Care (SA Mayer, Section Editor)

Brain Multimodality Monitoring: Updated Perspectives

Neurology of Systemic Diseases (J Biller, Section Editor)

Neurologic Complications in the Intensive Care Unit

Behavior (H Kirshner, Section Editor)

Kleine-Levin Syndrome

Neuro-Ophthalmology (A Kawasaki, Section Editor)

Progressive External Ophthalmoplegia