Skip to main content
Top
Published in: Current Hematologic Malignancy Reports 6/2017

01-12-2017 | CART and Immunotherapy (M Ruella, Section Editor)

Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer

Authors: Nathan Singh, Junwei Shi, Carl H. June, Marco Ruella

Published in: Current Hematologic Malignancy Reports | Issue 6/2017

Login to get access

Abstract

Purpose of Review

In this review, we discuss the most recent developments in gene-editing technology and discuss their application to adoptive T cell immunotherapy.

Recent Findings

Engineered T cell therapies targeting cancer antigens have demonstrated significant efficacy in specific patient populations. Most impressively, CD19-directed chimeric antigen receptor T cells (CART19) have led to impressive responses in patients with B-cell leukemia and lymphoma. CTL019, or KYMRIAH™ (tisagenlecleucel), a CD19 CAR T cell product developed by Novartis and the University of Pennsylvania, was recently approved for clinical use by the Food and Drug Administration, representing a landmark in the application of adoptive T cell therapies. As CART19 enters routine clinical use, improving the efficacy of this exciting platform is the next step in broader application.

Summary

Novel gene-editing technologies like CRISPR-Cas9 allow facile editing of specific genes within the genome, generating a powerful platform to further optimize the activity of engineered T cells.
Literature
1.
go back to reference Mitchison NA. Studies on the immunological response to foreign tumor transplants in the mouse. I. The role of lymph node cells in conferring immunity by adoptive transfer. J Exp Med. 1955;102(2):157–77.CrossRefPubMedPubMedCentral Mitchison NA. Studies on the immunological response to foreign tumor transplants in the mouse. I. The role of lymph node cells in conferring immunity by adoptive transfer. J Exp Med. 1955;102(2):157–77.CrossRefPubMedPubMedCentral
2.
go back to reference Barnes DW, Loutit JF. Treatment of murine leukaemia with x-rays and homologous bone marrow. II. Br J Haematol. 1957;3(3):241–52.CrossRefPubMed Barnes DW, Loutit JF. Treatment of murine leukaemia with x-rays and homologous bone marrow. II. Br J Haematol. 1957;3(3):241–52.CrossRefPubMed
3.
go back to reference Mathe G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M. Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res. 1965;25(9):1525–31.PubMed Mathe G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M. Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res. 1965;25(9):1525–31.PubMed
4.
go back to reference Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300(19):1068–73.CrossRefPubMed Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300(19):1068–73.CrossRefPubMed
5.
go back to reference Marmont AM, Horowitz MM, Gale RP, Sobocinski K, Ash RC, van Bekkum DW, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood. 1991;78(8):2120–30.PubMed Marmont AM, Horowitz MM, Gale RP, Sobocinski K, Ash RC, van Bekkum DW, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood. 1991;78(8):2120–30.PubMed
6.
go back to reference Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76(12):2462–5.PubMed Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76(12):2462–5.PubMed
7.
go back to reference Higano CS, Brixey M, Bryant EM, Durnam DM, Doney K, Sullivan KM, et al. Durable complete remission of acute nonlymphocytic leukemia associated with discontinuation of immunosuppression following relapse after allogeneic bone marrow transplantation. A case report of a probable graft-versus-leukemia effect. Transplantation. 1990;50(1):175–7.CrossRefPubMed Higano CS, Brixey M, Bryant EM, Durnam DM, Doney K, Sullivan KM, et al. Durable complete remission of acute nonlymphocytic leukemia associated with discontinuation of immunosuppression following relapse after allogeneic bone marrow transplantation. A case report of a probable graft-versus-leukemia effect. Transplantation. 1990;50(1):175–7.CrossRefPubMed
8.
go back to reference Porter DL, Connors JM, Van Deerlin VM, Duffy KM, McGarigle C, Saidman SL, et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol. 1999;17(4):1234.CrossRefPubMed Porter DL, Connors JM, Van Deerlin VM, Duffy KM, McGarigle C, Saidman SL, et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol. 1999;17(4):1234.CrossRefPubMed
9.
go back to reference Loren AW, Porter DL. Donor leukocyte infusions for the treatment of relapsed acute leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant. 2008;41(5):483–93.CrossRefPubMed Loren AW, Porter DL. Donor leukocyte infusions for the treatment of relapsed acute leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant. 2008;41(5):483–93.CrossRefPubMed
10.
go back to reference Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26(32):5233–9.CrossRefPubMedPubMedCentral Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26(32):5233–9.CrossRefPubMedPubMedCentral
11.
go back to reference Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.CrossRefPubMed Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.CrossRefPubMed
13.
go back to reference Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, et al. Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res. 2017;23(10):2491–505.CrossRefPubMed Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, et al. Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res. 2017;23(10):2491–505.CrossRefPubMed
14.
go back to reference •• Rosenberg SA, Tran E, Robbins PF. T-cell transfer therapy targeting mutant KRAS. N Engl J Med. 2017;376(7):e11. Seminal report of the clinical use of mutated RAS-specific TILs. CrossRefPubMed •• Rosenberg SA, Tran E, Robbins PF. T-cell transfer therapy targeting mutant KRAS. N Engl J Med. 2017;376(7):e11. Seminal report of the clinical use of mutated RAS-specific TILs. CrossRefPubMed
15.
16.
go back to reference Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21.CrossRefPubMedPubMedCentral Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21.CrossRefPubMedPubMedCentral
17.
go back to reference Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.CrossRefPubMedPubMedCentral Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.CrossRefPubMedPubMedCentral
18.
go back to reference Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.CrossRefPubMedPubMedCentral Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.CrossRefPubMedPubMedCentral
19.
go back to reference Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139.CrossRefPubMed Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139.CrossRefPubMed
20.
go back to reference Singh N, Perazzelli J, Grupp SA, Barrett DM. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med. 2016;8(320):320ra3.CrossRefPubMed Singh N, Perazzelli J, Grupp SA, Barrett DM. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med. 2016;8(320):320ra3.CrossRefPubMed
21.
go back to reference Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9.CrossRefPubMedPubMedCentral Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9.CrossRefPubMedPubMedCentral
22.
23.
24.
go back to reference Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646–51.CrossRefPubMed Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646–51.CrossRefPubMed
26.
go back to reference Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science. 2003;300(5620):763.CrossRefPubMed Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science. 2003;300(5620):763.CrossRefPubMed
27.
go back to reference Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12.CrossRefPubMed Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12.CrossRefPubMed
28.
go back to reference Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.CrossRefPubMed Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.CrossRefPubMed
29.
30.
go back to reference Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331–8.CrossRefPubMed Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331–8.CrossRefPubMed
31.
go back to reference Barrangou R, Horvath P. A decade of discovery: CRISPR functions and applications. Nat Microbiol. 2017;2:17092.CrossRefPubMed Barrangou R, Horvath P. A decade of discovery: CRISPR functions and applications. Nat Microbiol. 2017;2:17092.CrossRefPubMed
32.
33.
go back to reference •• Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L, Maiti S, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119(24):5697–705. One of the first reports of zinc-finger nucleases to generate TCR knockout in T cells. CrossRefPubMedPubMedCentral •• Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L, Maiti S, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119(24):5697–705. One of the first reports of zinc-finger nucleases to generate TCR knockout in T cells. CrossRefPubMedPubMedCentral
34.
go back to reference •• Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 2015;75(18):3853–64. One of the first reports of the use of TALEN to generate TCR and CD52 knockout in CAR T cells. CrossRefPubMed •• Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 2015;75(18):3853–64. One of the first reports of the use of TALEN to generate TCR and CD52 knockout in CAR T cells. CrossRefPubMed
35.
go back to reference •• Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017;9(374). The first report on the use of TALEN-edited CART19 for B-ALL. •• Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017;9(374). The first report on the use of TALEN-edited CART19 for B-ALL.
36.
go back to reference •• Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66. Important paper describing the generation and the activity of PD-1 knocked-out T cells. CrossRefPubMed •• Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66. Important paper describing the generation and the activity of PD-1 knocked-out T cells. CrossRefPubMed
37.
go back to reference •• Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113–7. Seminal report on the specific insertion of the CAR19 gene in the TCR locus. CrossRefPubMedPubMedCentral •• Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113–7. Seminal report on the specific insertion of the CAR19 gene in the TCR locus. CrossRefPubMedPubMedCentral
38.
go back to reference •• Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood. 2013;122(8):1341–9. Interesting work aimed at reducing rejection of universal T cells by the knock out of HLA. CrossRefPubMedPubMedCentral •• Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood. 2013;122(8):1341–9. Interesting work aimed at reducing rejection of universal T cells by the knock out of HLA. CrossRefPubMedPubMedCentral
39.
go back to reference •• Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget: Important paper describing the generation of multiplex knock out in T cells; 2017. •• Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget: Important paper describing the generation of multiplex knock out in T cells; 2017.
40.
go back to reference ASGCT 19th Annual Meeting: abstracts. Molecular therapy : the journal of the American Society of Gene Therapy. 2016;24 Suppl 1:S1–S304. ASGCT 19th Annual Meeting: abstracts. Molecular therapy : the journal of the American Society of Gene Therapy. 2016;24 Suppl 1:S1–S304.
41.
go back to reference Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.CrossRefPubMed Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.CrossRefPubMed
42.
go back to reference Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.CrossRefPubMed Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.CrossRefPubMed
43.
go back to reference Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375(19):1845–55.CrossRefPubMedPubMedCentral Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375(19):1845–55.CrossRefPubMedPubMedCentral
44.
go back to reference Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRefPubMedPubMedCentral Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRefPubMedPubMedCentral
45.
go back to reference Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentral Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentral
46.
go back to reference Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefPubMedPubMedCentral Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefPubMedPubMedCentral
47.
go back to reference Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372(4):311–9.CrossRefPubMed Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372(4):311–9.CrossRefPubMed
48.
go back to reference Yousefi H, Yuan J, Keshavarz-Fathi M, Murphy JF, Rezaei N. Immunotherapy of cancers comes of age. Expert Rev Clin Immunol. 2017:1–15. Yousefi H, Yuan J, Keshavarz-Fathi M, Murphy JF, Rezaei N. Immunotherapy of cancers comes of age. Expert Rev Clin Immunol. 2017:1–15.
49.
go back to reference Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8(10):17002–11.PubMedPubMedCentral Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8(10):17002–11.PubMedPubMedCentral
50.
go back to reference Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–16.CrossRefPubMedPubMedCentral Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–16.CrossRefPubMedPubMedCentral
51.
go back to reference •• Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10. First and seminal report of the clinical use of HIV-resistant T cells. CrossRefPubMedPubMedCentral •• Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10. First and seminal report of the clinical use of HIV-resistant T cells. CrossRefPubMedPubMedCentral
52.
go back to reference Kim MY. Genome editing using CRISPR-Cas9 to increase the therapeutic index of antigen-specific immunotherapy in acute myeloid leukemia. Mol Ther. 2016;24(S1):pS108.CrossRef Kim MY. Genome editing using CRISPR-Cas9 to increase the therapeutic index of antigen-specific immunotherapy in acute myeloid leukemia. Mol Ther. 2016;24(S1):pS108.CrossRef
53.
go back to reference Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood. 2017;130(3):285–96.CrossRefPubMed Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood. 2017;130(3):285–96.CrossRefPubMed
Metadata
Title
Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer
Authors
Nathan Singh
Junwei Shi
Carl H. June
Marco Ruella
Publication date
01-12-2017
Publisher
Springer US
Published in
Current Hematologic Malignancy Reports / Issue 6/2017
Print ISSN: 1558-8211
Electronic ISSN: 1558-822X
DOI
https://doi.org/10.1007/s11899-017-0417-7

Other articles of this Issue 6/2017

Current Hematologic Malignancy Reports 6/2017 Go to the issue

Acute Myeloid Leukemias (H Erba, Section Editor)

Measurement of Residual Disease in Acute Myeloid Leukemia

Acute Myeloid Leukemias (H Erba, Section Editor)

Targeting IDH1 and IDH2 Mutations in Acute Myeloid Leukemia

Myeloproliferative Neoplasms (B Stein, Section Editor)

Novel Therapies for Myelofibrosis

Social Media Impact of Hematologic Malignancies (N Pemmaraju, Section Editor)

Social Media in Hematology in 2017: Dystopia, Utopia, or Somewhere In-between?