Skip to main content
Top
Published in: Current Heart Failure Reports 6/2017

01-12-2017 | Pathophysiology: Neuroendocrine, Vascular, and Metabolic Factors (S Katz, Section Editor)

Glycosylated Chromogranin A: Potential Role in the Pathogenesis of Heart Failure

Authors: Anett H. Ottesen, Geir Christensen, Torbjørn Omland, Helge Røsjø

Published in: Current Heart Failure Reports | Issue 6/2017

Login to get access

Abstract

Purpose of Review

Endocrine and paracrine factors influence the cardiovascular system and the heart by a number of different mechanisms. The chromogranin-secretogranin (granin) proteins seem to represent a new family of proteins that exerts both direct and indirect effects on cardiac and vascular functions. The granin proteins are produced in multiple tissues, including cardiac cells, and circulating granin protein concentrations provide incremental prognostic information to established risk indices in patients with myocardial dysfunction. In this review, we provide recent data for the granin proteins in relation with cardiovascular disease, and with a special focus on chromogranin A and heart failure.

Recent Findings

Chromogranin A is the most studied member of the granin protein family, and shorter, functionally active peptide fragments of chromogranin A exert protective effects on myocardial cell death, ischemia-reperfusion injury, and cardiomyocyte Ca2+ handling. Granin peptides have also been found to induce angiogenesis and vasculogenesis. Protein glycosylation is an important post-translational regulatory mechanism, and we recently found chromogranin A molecules to be hyperglycosylated in the failing myocardium. Chromogranin A hyperglycosylation impaired processing of full-length chromogranin A molecules into physiologically active chromogranin A peptides, and patients with acute heart failure and low rate of chromogranin A processing had increased mortality compared to other acute heart failure patients. Other studies have also demonstrated that circulating granin protein concentrations increase in parallel with heart failure disease stage.

Summary

The granin protein family seems to influence heart failure pathophysiology, and chromogranin A hyperglycosylation could directly be implicated in heart failure disease progression.
Literature
1.
go back to reference Ponikowski P, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail, 2016. 2016;18(8):891–975.CrossRef Ponikowski P, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail, 2016. 2016;18(8):891–975.CrossRef
2.
go back to reference Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet. 2011;378(9792):704–12.PubMedPubMedCentralCrossRef Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet. 2011;378(9792):704–12.PubMedPubMedCentralCrossRef
3.
go back to reference Omland T. Advances in congestive heart failure management in the intensive care unit: B-type natriuretic peptides in evaluation of acute heart failure. Crit Care Med. 2008;36(1 Suppl):S17–27.PubMedCrossRef Omland T. Advances in congestive heart failure management in the intensive care unit: B-type natriuretic peptides in evaluation of acute heart failure. Crit Care Med. 2008;36(1 Suppl):S17–27.PubMedCrossRef
4.
go back to reference Semenov AG, et al. Processing of pro-brain natriuretic peptide is suppressed by O-glycosylation in the region close to the cleavage site. Clin Chem. 2009;55(3):489–98.PubMedCrossRef Semenov AG, et al. Processing of pro-brain natriuretic peptide is suppressed by O-glycosylation in the region close to the cleavage site. Clin Chem. 2009;55(3):489–98.PubMedCrossRef
5.
go back to reference Lunde IG, et al. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics. 2012;44(2):162–72.PubMedCrossRef Lunde IG, et al. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics. 2012;44(2):162–72.PubMedCrossRef
6.
go back to reference Sanada S, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117(6):1538–49.PubMedPubMedCentralCrossRef Sanada S, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117(6):1538–49.PubMedPubMedCentralCrossRef
7.
go back to reference Kempf T, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17(5):581–8.PubMedCrossRef Kempf T, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17(5):581–8.PubMedCrossRef
8.
go back to reference • Bartolomucci A, et al. The extended granin family: structure, function, and biomedical implications. Endocr Rev. 2011;32(6):755–97. Comprehensive review of the granin protein family PubMedPubMedCentralCrossRef • Bartolomucci A, et al. The extended granin family: structure, function, and biomedical implications. Endocr Rev. 2011;32(6):755–97. Comprehensive review of the granin protein family PubMedPubMedCentralCrossRef
9.
go back to reference Huttner WB, Gerdes HH, Rosa P. The granin (chromogranin/secretogranin) family. Trends Biochem Sci. 1991;16(1):27–30.PubMedCrossRef Huttner WB, Gerdes HH, Rosa P. The granin (chromogranin/secretogranin) family. Trends Biochem Sci. 1991;16(1):27–30.PubMedCrossRef
10.
go back to reference Røsjø H, et al. Secretogranin II; a protein increased in the myocardium and circulation in heart failure with cardioprotective properties. PLoS One. 2012;7(5):e37401.PubMedPubMedCentralCrossRef Røsjø H, et al. Secretogranin II; a protein increased in the myocardium and circulation in heart failure with cardioprotective properties. PLoS One. 2012;7(5):e37401.PubMedPubMedCentralCrossRef
11.
go back to reference Eskeland NL, et al. Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway. J Clin Invest. 1996;98(1):148–56.PubMedPubMedCentralCrossRef Eskeland NL, et al. Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway. J Clin Invest. 1996;98(1):148–56.PubMedPubMedCentralCrossRef
12.
go back to reference Biswas N, et al. Proteolytic cleavage of human chromogranin A containing naturally occurring catestatin variants: differential processing at catestatin region by plasmin. Endocrinology. 2008;149(2):749–57.PubMedCrossRef Biswas N, et al. Proteolytic cleavage of human chromogranin A containing naturally occurring catestatin variants: differential processing at catestatin region by plasmin. Endocrinology. 2008;149(2):749–57.PubMedCrossRef
13.
go back to reference Jiang Q, et al. Proteolytic cleavage of chromogranin A (CgA) by plasmin. Selective liberation of a specific bioactive CgA fragment that regulates catecholamine release. J Biol Chem. 2001;276(27):25022–9.PubMedCrossRef Jiang Q, et al. Proteolytic cleavage of chromogranin A (CgA) by plasmin. Selective liberation of a specific bioactive CgA fragment that regulates catecholamine release. J Biol Chem. 2001;276(27):25022–9.PubMedCrossRef
14.
15.
go back to reference Helle KB. Comparative studies on the soluble protein fractions of bovine, equine, porcine and ovine adrenal chromaffin granules. Biochem J. 1966;100(1):6C–7C.PubMedPubMedCentralCrossRef Helle KB. Comparative studies on the soluble protein fractions of bovine, equine, porcine and ovine adrenal chromaffin granules. Biochem J. 1966;100(1):6C–7C.PubMedPubMedCentralCrossRef
16.
go back to reference O'Connor DT. Chromogranin: widespread immunoreactivity in polypeptide hormone producing tissues and in serum. Regul Pept. 1983;6(3):263–80.PubMedCrossRef O'Connor DT. Chromogranin: widespread immunoreactivity in polypeptide hormone producing tissues and in serum. Regul Pept. 1983;6(3):263–80.PubMedCrossRef
17.
go back to reference Taupenot L, Harper KL, O'Connor DT. The chromogranin-secretogranin family. N Engl J Med. 2003;348(12):1134–49.PubMedCrossRef Taupenot L, Harper KL, O'Connor DT. The chromogranin-secretogranin family. N Engl J Med. 2003;348(12):1134–49.PubMedCrossRef
18.
go back to reference Winkler H, Fischer-Colbrie R. The chromogranins A and B: the first 25 years and future perspectives. Neuroscience. 1992;49(3):497–528.PubMedCrossRef Winkler H, Fischer-Colbrie R. The chromogranins A and B: the first 25 years and future perspectives. Neuroscience. 1992;49(3):497–528.PubMedCrossRef
19.
go back to reference • Pieroni M, et al. Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J. 2007;28(9):1117–27. First study to demonstrate increased myocardial CgA production in heart failure PubMedCrossRef • Pieroni M, et al. Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J. 2007;28(9):1117–27. First study to demonstrate increased myocardial CgA production in heart failure PubMedCrossRef
20.
go back to reference Biswas N, et al. Chromogranin/secretogranin proteins in murine heart: myocardial production of chromogranin A fragment catestatin (Chga(364–384)). Cell Tissue Res. 2010;342(3):353–61.PubMedPubMedCentralCrossRef Biswas N, et al. Chromogranin/secretogranin proteins in murine heart: myocardial production of chromogranin A fragment catestatin (Chga(364–384)). Cell Tissue Res. 2010;342(3):353–61.PubMedPubMedCentralCrossRef
21.
go back to reference Røsjø H, et al. Prognostic value of chromogranin A in chronic heart failure: data from the GISSI-Heart Failure trial. Eur J Heart Fail. 2010;12(6):549–56.PubMedCrossRef Røsjø H, et al. Prognostic value of chromogranin A in chronic heart failure: data from the GISSI-Heart Failure trial. Eur J Heart Fail. 2010;12(6):549–56.PubMedCrossRef
22.
go back to reference Rosa P, et al. The major tyrosine-sulfated protein of the bovine anterior pituitary is a secretory protein present in gonadotrophs, thyrotrophs, mammotrophs, and corticotrophs. J Cell Biol. 1985;100(3):928–37.PubMedCrossRef Rosa P, et al. The major tyrosine-sulfated protein of the bovine anterior pituitary is a secretory protein present in gonadotrophs, thyrotrophs, mammotrophs, and corticotrophs. J Cell Biol. 1985;100(3):928–37.PubMedCrossRef
23.
go back to reference Fischer-Colbrie R, Hagn C, Schober M. Chromogranins A, B, and C: widespread constituents of secretory vesicles. Ann N Y Acad Sci. 1987;493:120–34.PubMedCrossRef Fischer-Colbrie R, Hagn C, Schober M. Chromogranins A, B, and C: widespread constituents of secretory vesicles. Ann N Y Acad Sci. 1987;493:120–34.PubMedCrossRef
24.
go back to reference Heidrich FM, et al. Chromogranin B regulates calcium signaling, nuclear factor kappaB activity, and brain natriuretic peptide production in cardiomyocytes. Circ Res. 2008;102(10):1230–8.PubMedPubMedCentralCrossRef Heidrich FM, et al. Chromogranin B regulates calcium signaling, nuclear factor kappaB activity, and brain natriuretic peptide production in cardiomyocytes. Circ Res. 2008;102(10):1230–8.PubMedPubMedCentralCrossRef
25.
go back to reference Bergh J, et al. The release of chromogranin A and B like activity from human lung cancer cell lines. A potential marker for a subset of small cell lung cancer. Acta Oncol. 1989;28(5):651–4.PubMedCrossRef Bergh J, et al. The release of chromogranin A and B like activity from human lung cancer cell lines. A potential marker for a subset of small cell lung cancer. Acta Oncol. 1989;28(5):651–4.PubMedCrossRef
26.
go back to reference Sobol RE, et al. Elevated serum chromogranin A concentrations in small-cell lung carcinoma. Ann Intern Med. 1986;105(5):698–700.PubMedCrossRef Sobol RE, et al. Elevated serum chromogranin A concentrations in small-cell lung carcinoma. Ann Intern Med. 1986;105(5):698–700.PubMedCrossRef
27.
go back to reference Angelsen A, et al. Neuroendocrine differentiation in carcinomas of the prostate: do neuroendocrine serum markers reflect immunohistochemical findings? Prostate. 1997;30(1):1–6.PubMedCrossRef Angelsen A, et al. Neuroendocrine differentiation in carcinomas of the prostate: do neuroendocrine serum markers reflect immunohistochemical findings? Prostate. 1997;30(1):1–6.PubMedCrossRef
28.
go back to reference Angelsen A, et al. Use of neuroendocrine serum markers in the follow-up of patients with cancer of the prostate. Prostate. 1997;31(2):110–7.PubMedCrossRef Angelsen A, et al. Use of neuroendocrine serum markers in the follow-up of patients with cancer of the prostate. Prostate. 1997;31(2):110–7.PubMedCrossRef
29.
go back to reference Paco S, et al. Regulation of exocytotic protein expression and Ca2+-dependent peptide secretion in astrocytes. J Neurochem. 2009;110(1):143–56.PubMedCrossRef Paco S, et al. Regulation of exocytotic protein expression and Ca2+-dependent peptide secretion in astrocytes. J Neurochem. 2009;110(1):143–56.PubMedCrossRef
30.
go back to reference Troger J, et al. Release of secretoneurin and noradrenaline from hypothalamic slices and its differential inhibition by calcium channel blockers. Naunyn Schmiedebergs Arch Pharmacol. 1994;349(6):565–9.PubMedCrossRef Troger J, et al. Release of secretoneurin and noradrenaline from hypothalamic slices and its differential inhibition by calcium channel blockers. Naunyn Schmiedebergs Arch Pharmacol. 1994;349(6):565–9.PubMedCrossRef
31.
go back to reference Mahata SK, et al. Neuroendocrine cell type-specific and inducible expression of chromogranin/secretogranin genes: crucial promoter motifs. Ann N Y Acad Sci. 2002;971:27–38.PubMedCrossRef Mahata SK, et al. Neuroendocrine cell type-specific and inducible expression of chromogranin/secretogranin genes: crucial promoter motifs. Ann N Y Acad Sci. 2002;971:27–38.PubMedCrossRef
32.
go back to reference Steiner HJ, et al. Chromogranins A and B are co-localized with atrial natriuretic peptides in secretory granules of rat heart. J Histochem Cytochem. 1990;38(6):845–50.PubMedCrossRef Steiner HJ, et al. Chromogranins A and B are co-localized with atrial natriuretic peptides in secretory granules of rat heart. J Histochem Cytochem. 1990;38(6):845–50.PubMedCrossRef
33.
go back to reference Yoo SH, et al. Coupling of the inositol 1,4,5-trisphosphate receptor and chromogranins A and B in secretory granules. J Biol Chem. 2000;275(17):12553–9.PubMedCrossRef Yoo SH, et al. Coupling of the inositol 1,4,5-trisphosphate receptor and chromogranins A and B in secretory granules. J Biol Chem. 2000;275(17):12553–9.PubMedCrossRef
34.
go back to reference Yoo SH. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J. 2010;24(3):653–64.PubMedPubMedCentralCrossRef Yoo SH. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J. 2010;24(3):653–64.PubMedPubMedCentralCrossRef
35.
go back to reference Yoo SH, Huh YH, Hur YS. Inositol 1,4,5-trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins. Cell Mol Neurobiol. 2010;30(8):1155–61.PubMedCrossRef Yoo SH, Huh YH, Hur YS. Inositol 1,4,5-trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins. Cell Mol Neurobiol. 2010;30(8):1155–61.PubMedCrossRef
36.
go back to reference Yoo SH, Hur YS. Enrichment of the inositol 1,4,5-trisphosphate receptor/Ca2+ channels in secretory granules and essential roles of chromogranins. Cell Calcium. 2012;51(3-4):342–50.PubMedCrossRef Yoo SH, Hur YS. Enrichment of the inositol 1,4,5-trisphosphate receptor/Ca2+ channels in secretory granules and essential roles of chromogranins. Cell Calcium. 2012;51(3-4):342–50.PubMedCrossRef
37.
go back to reference • Mahapatra NR, et al. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest. 2005;115(7):1942–52. First study to demonstrate that CHGA-/- mice develop a heart failure phenotype PubMedPubMedCentralCrossRef • Mahapatra NR, et al. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest. 2005;115(7):1942–52. First study to demonstrate that CHGA-/- mice develop a heart failure phenotype PubMedPubMedCentralCrossRef
38.
go back to reference Mahata SK, et al. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997;100(6):1623–33.PubMedPubMedCentralCrossRef Mahata SK, et al. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997;100(6):1623–33.PubMedPubMedCentralCrossRef
39.
go back to reference Angelone T, et al. The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology. 2008;149(10):4780–93.PubMedPubMedCentralCrossRef Angelone T, et al. The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology. 2008;149(10):4780–93.PubMedPubMedCentralCrossRef
40.
go back to reference Theurl M, et al. The neuropeptide catestatin acts as a novel angiogenic cytokine via a basic fibroblast growth factor-dependent mechanism. Circ Res. 2010;107(11):1326–35.PubMedCrossRef Theurl M, et al. The neuropeptide catestatin acts as a novel angiogenic cytokine via a basic fibroblast growth factor-dependent mechanism. Circ Res. 2010;107(11):1326–35.PubMedCrossRef
41.
go back to reference O'Connor DT, et al. Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens. 2002;20(7):1335–45.PubMedCrossRef O'Connor DT, et al. Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens. 2002;20(7):1335–45.PubMedCrossRef
42.
go back to reference Rao F, et al. Catecholamine release-inhibitory peptide catestatin (chromogranin A(352–372)): naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension. Circulation. 2007;115(17):2271–81.PubMedCrossRef Rao F, et al. Catecholamine release-inhibitory peptide catestatin (chromogranin A(352–372)): naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension. Circulation. 2007;115(17):2271–81.PubMedCrossRef
43.
go back to reference O'Connor DT, et al. Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clin Endocrinol Metab. 2005;90(9):5414–25.PubMedCrossRef O'Connor DT, et al. Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clin Endocrinol Metab. 2005;90(9):5414–25.PubMedCrossRef
44.
45.
go back to reference Egger M, et al. Monocyte migration: a novel effect and signaling pathways of catestatin. Eur J Pharmacol. 2008;598(1-3):104–11.PubMedCrossRef Egger M, et al. Monocyte migration: a novel effect and signaling pathways of catestatin. Eur J Pharmacol. 2008;598(1-3):104–11.PubMedCrossRef
46.
go back to reference Zhang D, et al. Two chromogranin A-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS One. 2009;4(2):e4501.PubMedPubMedCentralCrossRef Zhang D, et al. Two chromogranin A-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS One. 2009;4(2):e4501.PubMedPubMedCentralCrossRef
47.
go back to reference Aardal S, Helle KB. The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept. 1992;41(1):9–18.PubMedCrossRef Aardal S, Helle KB. The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept. 1992;41(1):9–18.PubMedCrossRef
48.
go back to reference • Ottesen AH, et al. Secretoneurin is a novel prognostic cardiovascular biomarker associated with cardiomyocyte calcium handling. J Am Coll Cardiol. 2015;65(4):339–51. First study to demonstrate a direct link between granin peptides and cardiomyocyte Ca2+ handling PubMedCrossRef • Ottesen AH, et al. Secretoneurin is a novel prognostic cardiovascular biomarker associated with cardiomyocyte calcium handling. J Am Coll Cardiol. 2015;65(4):339–51. First study to demonstrate a direct link between granin peptides and cardiomyocyte Ca2+ handling PubMedCrossRef
50.
go back to reference Angelone T, et al. Phosphodiesterase type-2 and NO-dependent S-nitrosylation mediate the cardioinhibition of the antihypertensive catestatin. Am J Physiol Heart Circ Physiol. 2012;302(2):H431–42.PubMedCrossRef Angelone T, et al. Phosphodiesterase type-2 and NO-dependent S-nitrosylation mediate the cardioinhibition of the antihypertensive catestatin. Am J Physiol Heart Circ Physiol. 2012;302(2):H431–42.PubMedCrossRef
51.
go back to reference • Ottesen AH, et al. Glycosylated chromogranin A in heart failure: implications for processing and cardiomyocyte calcium homeostasis. Circ Heart Fail. 2017. 10(2). First study to report myocardial CgA hyperglycosylation in heart failure and that this may influence disease progression • Ottesen AH, et al. Glycosylated chromogranin A in heart failure: implications for processing and cardiomyocyte calcium homeostasis. Circ Heart Fail. 2017. 10(2). First study to report myocardial CgA hyperglycosylation in heart failure and that this may influence disease progression
52.
go back to reference Rosjo H, et al. Chromogranin B in heart failure: a putative cardiac biomarker expressed in the failing myocardium. Circ Heart Fail. 2010;3(4):503–11.PubMedCrossRef Rosjo H, et al. Chromogranin B in heart failure: a putative cardiac biomarker expressed in the failing myocardium. Circ Heart Fail. 2010;3(4):503–11.PubMedCrossRef
53.
go back to reference • Ceconi C, et al. Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. Eur Heart J. 2002;23(12):967–74. First study to demonstrate increased circulating CgA concentrations in parallel with heart failure severity and the potential of CgA as a cardiac biomarker PubMedCrossRef • Ceconi C, et al. Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. Eur Heart J. 2002;23(12):967–74. First study to demonstrate increased circulating CgA concentrations in parallel with heart failure severity and the potential of CgA as a cardiac biomarker PubMedCrossRef
54.
go back to reference Omland T, Dickstein K, Syversen U. Association between plasma chromogranin A concentration and long-term mortality after myocardial infarction. Am J Med. 2003;114(1):25–30.PubMedCrossRef Omland T, Dickstein K, Syversen U. Association between plasma chromogranin A concentration and long-term mortality after myocardial infarction. Am J Med. 2003;114(1):25–30.PubMedCrossRef
55.
go back to reference Estensen ME, et al. Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction. Am Heart J. 2006;152(5):927. e1-6PubMedCrossRef Estensen ME, et al. Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction. Am Heart J. 2006;152(5):927. e1-6PubMedCrossRef
56.
go back to reference Jansson AM, et al. Prognostic value of circulating chromogranin A levels in acute coronary syndromes. Eur Heart J. 2009;30(1):25–32.PubMedCrossRef Jansson AM, et al. Prognostic value of circulating chromogranin A levels in acute coronary syndromes. Eur Heart J. 2009;30(1):25–32.PubMedCrossRef
57.
go back to reference Røsjø H, et al. Prognostic value of chromogranin A in severe sepsis: data from the FINNSEPSIS study. Intensive Care Med. 2012;38(5):820–9.PubMedCrossRef Røsjø H, et al. Prognostic value of chromogranin A in severe sepsis: data from the FINNSEPSIS study. Intensive Care Med. 2012;38(5):820–9.PubMedCrossRef
58.
go back to reference Zhang D, et al. Prognostic value of chromogranin A at admission in critically ill patients: a cohort study in a medical intensive care unit. Clin Chem. 2008;54(9):1497–503.PubMedCrossRef Zhang D, et al. Prognostic value of chromogranin A at admission in critically ill patients: a cohort study in a medical intensive care unit. Clin Chem. 2008;54(9):1497–503.PubMedCrossRef
59.
go back to reference Lu L, et al. Reduced serum levels of vasostatin-2, an anti-inflammatory peptide derived from chromogranin A, are associated with the presence and severity of coronary artery disease. Eur Heart J. 2012;33(18):2297–306.PubMedCrossRef Lu L, et al. Reduced serum levels of vasostatin-2, an anti-inflammatory peptide derived from chromogranin A, are associated with the presence and severity of coronary artery disease. Eur Heart J. 2012;33(18):2297–306.PubMedCrossRef
60.
go back to reference Zhu D, et al. Catestatin is useful in detecting patients with stage B heart failure. Biomarkers. 2011;16(8):691–7.PubMedCrossRef Zhu D, et al. Catestatin is useful in detecting patients with stage B heart failure. Biomarkers. 2011;16(8):691–7.PubMedCrossRef
61.
go back to reference Goetze JP, et al. Making sense of chromogranin A in heart disease. Lancet Diabetes Endocrinol. 2013;1(1):7–8.PubMedCrossRef Goetze JP, et al. Making sense of chromogranin A in heart disease. Lancet Diabetes Endocrinol. 2013;1(1):7–8.PubMedCrossRef
62.
go back to reference Myhre PL, et al. Circulating chromogranin B levels in patients with acute respiratory failure: data from the FINNALI Study. Biomarkers. 2017: 1–7. Myhre PL, et al. Circulating chromogranin B levels in patients with acute respiratory failure: data from the FINNALI Study. Biomarkers. 2017: 1–7.
63.
go back to reference Leitner B, et al. Secretogranin II: relative amounts and processing to secretoneurin in various rat tissues. J Neurochem. 1996;66(3):1312–7.PubMedCrossRef Leitner B, et al. Secretogranin II: relative amounts and processing to secretoneurin in various rat tissues. J Neurochem. 1996;66(3):1312–7.PubMedCrossRef
64.
go back to reference Røsjø H, et al. Prognostic value of secretoneurin in critically ill patients with infections. Crit Care Med. 2016;44(10):1882–90.PubMedCrossRef Røsjø H, et al. Prognostic value of secretoneurin in critically ill patients with infections. Crit Care Med. 2016;44(10):1882–90.PubMedCrossRef
65.
go back to reference Myhre PL, et al. Prognostic value of secretoneurin in patients with acute respiratory failure: data from the FINNALI Study. Clin Chem. 2016;62(10):1380–9.PubMedCrossRef Myhre PL, et al. Prognostic value of secretoneurin in patients with acute respiratory failure: data from the FINNALI Study. Clin Chem. 2016;62(10):1380–9.PubMedCrossRef
66.
go back to reference Hasslacher J, et al. Secretoneurin as a marker for hypoxic brain injury after cardiopulmonary resuscitation. Intensive Care Med. 2014;40(10):1518–27.PubMedCrossRef Hasslacher J, et al. Secretoneurin as a marker for hypoxic brain injury after cardiopulmonary resuscitation. Intensive Care Med. 2014;40(10):1518–27.PubMedCrossRef
67.
go back to reference Røsjø H, et al. Effect of short- and long-term physical activities on circulating granin protein levels. Regul Pept. 2013;185:14–9.PubMedCrossRef Røsjø H, et al. Effect of short- and long-term physical activities on circulating granin protein levels. Regul Pept. 2013;185:14–9.PubMedCrossRef
68.
go back to reference Bauer SH, et al. Chromogranin A from bovine adrenal medulla: molecular characterization of glycosylations, phosphorylations, and sequence heterogeneities by mass spectrometry. Anal Biochem. 1999;274(1):69–80.PubMedCrossRef Bauer SH, et al. Chromogranin A from bovine adrenal medulla: molecular characterization of glycosylations, phosphorylations, and sequence heterogeneities by mass spectrometry. Anal Biochem. 1999;274(1):69–80.PubMedCrossRef
69.
go back to reference O'Connor DT, Deftos LJ. Secretion of chromogranin A by peptide-producing endocrine neoplasms. N Engl J Med. 1986;314(18):1145–51.PubMedCrossRef O'Connor DT, Deftos LJ. Secretion of chromogranin A by peptide-producing endocrine neoplasms. N Engl J Med. 1986;314(18):1145–51.PubMedCrossRef
70.
go back to reference Pasqua T, et al. Full-length human chromogranin-A cardioactivity: myocardial, coronary, and stimulus-induced processing evidence in normotensive and hypertensive male rat hearts. Endocrinology. 2013;154(9):3353–65.PubMedCrossRef Pasqua T, et al. Full-length human chromogranin-A cardioactivity: myocardial, coronary, and stimulus-induced processing evidence in normotensive and hypertensive male rat hearts. Endocrinology. 2013;154(9):3353–65.PubMedCrossRef
71.
go back to reference Røsjø H, et al. Influence of glycosylation on diagnostic and prognostic accuracy of N-terminal pro-B-type natriuretic peptide in acute dyspnea: data from the Akershus Cardiac Examination 2 Study. Clin Chem. 2015;61(8):1087–97.PubMedCrossRef Røsjø H, et al. Influence of glycosylation on diagnostic and prognostic accuracy of N-terminal pro-B-type natriuretic peptide in acute dyspnea: data from the Akershus Cardiac Examination 2 Study. Clin Chem. 2015;61(8):1087–97.PubMedCrossRef
73.
go back to reference Kennedy BP, et al. Mechanism of cardiovascular actions of the chromogranin A fragment catestatin in vivo. Peptides. 1998;19(7):1241–8.PubMedCrossRef Kennedy BP, et al. Mechanism of cardiovascular actions of the chromogranin A fragment catestatin in vivo. Peptides. 1998;19(7):1241–8.PubMedCrossRef
74.
go back to reference Mazza R, et al. Catestatin (chromogranin A344–364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart. Am J Physiol Heart Circ Physiol. 2008;295(1):H113–22.PubMedPubMedCentralCrossRef Mazza R, et al. Catestatin (chromogranin A344–364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart. Am J Physiol Heart Circ Physiol. 2008;295(1):H113–22.PubMedPubMedCentralCrossRef
75.
go back to reference Gayen JR, et al. Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin a null mouse. Endocrinology. 2009;150(11):5027–35.PubMedPubMedCentralCrossRef Gayen JR, et al. Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin a null mouse. Endocrinology. 2009;150(11):5027–35.PubMedPubMedCentralCrossRef
76.
go back to reference Dev NB, et al. Chromogranin A and the autonomic system: decomposition of heart rate variability and rescue by its catestatin fragment. Endocrinology. 2010;151(6):2760–8.PubMedPubMedCentralCrossRef Dev NB, et al. Chromogranin A and the autonomic system: decomposition of heart rate variability and rescue by its catestatin fragment. Endocrinology. 2010;151(6):2760–8.PubMedPubMedCentralCrossRef
77.
go back to reference Imbrogno S, et al. The catecholamine release-inhibitory peptide catestatin (chromogranin A344–363) modulates myocardial function in fish. J Exp Biol. 2010;213(Pt 21):3636–43. Imbrogno S, et al. The catecholamine release-inhibitory peptide catestatin (chromogranin A344–363) modulates myocardial function in fish. J Exp Biol. 2010;213(Pt 21):3636–43.
78.
go back to reference Penna C, et al. Catestatin improves post-ischemic left ventricular function and decreases ischemia/reperfusion injury in heart. Cell Mol Neurobiol. 2010;30(8):1171–9.PubMedPubMedCentralCrossRef Penna C, et al. Catestatin improves post-ischemic left ventricular function and decreases ischemia/reperfusion injury in heart. Cell Mol Neurobiol. 2010;30(8):1171–9.PubMedPubMedCentralCrossRef
79.
go back to reference Bassino E, et al. Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3beta pathway and preserving mitochondrial membrane potential. PLoS One. 2015;10(3):e0119790.PubMedPubMedCentralCrossRef Bassino E, et al. Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3beta pathway and preserving mitochondrial membrane potential. PLoS One. 2015;10(3):e0119790.PubMedPubMedCentralCrossRef
80.
go back to reference Angelone T, Mazza R, Cerra MC. Chromogranin-A: a multifaceted cardiovascular role in health and disease. Curr Med Chem. 2012;19(24):4042–50.PubMedCrossRef Angelone T, Mazza R, Cerra MC. Chromogranin-A: a multifaceted cardiovascular role in health and disease. Curr Med Chem. 2012;19(24):4042–50.PubMedCrossRef
81.
go back to reference Perrelli MG, et al. Catestatin reduces myocardial ischaemia/reperfusion injury: involvement of PI3K/Akt, PKCs, mitochondrial KATP channels and ROS signalling. Pflugers Arch. 2013;465(7):1031–40.PubMedCrossRef Perrelli MG, et al. Catestatin reduces myocardial ischaemia/reperfusion injury: involvement of PI3K/Akt, PKCs, mitochondrial KATP channels and ROS signalling. Pflugers Arch. 2013;465(7):1031–40.PubMedCrossRef
82.
go back to reference Bassino E, et al. Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3beta pathway and preserving mitochondrial membrane potential. PLoS One. 2015;10(3):e0119790.PubMedPubMedCentralCrossRef Bassino E, et al. Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3beta pathway and preserving mitochondrial membrane potential. PLoS One. 2015;10(3):e0119790.PubMedPubMedCentralCrossRef
83.
go back to reference Corti A, et al. Vasostatins exert negative inotropism in the working heart of the frog. Ann N Y Acad Sci. 2002;971:362–5.PubMedCrossRef Corti A, et al. Vasostatins exert negative inotropism in the working heart of the frog. Ann N Y Acad Sci. 2002;971:362–5.PubMedCrossRef
84.
go back to reference Tota B, et al. The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac beta-adrenergic-like inotropes. FASEB J. 2012;26(7):2888–98.PubMedPubMedCentralCrossRef Tota B, et al. The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac beta-adrenergic-like inotropes. FASEB J. 2012;26(7):2888–98.PubMedPubMedCentralCrossRef
85.
go back to reference Cappello S, et al. Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. Am J Physiol Heart Circ Physiol. 2007;293(1):H719–27.PubMedCrossRef Cappello S, et al. Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. Am J Physiol Heart Circ Physiol. 2007;293(1):H719–27.PubMedCrossRef
86.
go back to reference Stavrakis S, et al. Antiarrhythmic effects of vasostatin-1 in a canine model of atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23(7):771–7.PubMedCrossRef Stavrakis S, et al. Antiarrhythmic effects of vasostatin-1 in a canine model of atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23(7):771–7.PubMedCrossRef
87.
go back to reference Yu M, et al. Overexpression of vasostatin-1 protects hypoxia/reoxygenation injuries in cardiomyocytes independent of endothelial cells. Cardiovasc Ther. 2012;30(3):145–51.PubMedCrossRef Yu M, et al. Overexpression of vasostatin-1 protects hypoxia/reoxygenation injuries in cardiomyocytes independent of endothelial cells. Cardiovasc Ther. 2012;30(3):145–51.PubMedCrossRef
88.
go back to reference Salem S, et al. Identification of the vasoconstriction-inhibiting factor (VIF), a potent endogenous cofactor of angiotensin II acting on the angiotensin II type 2 receptor. Circulation. 2015;131(16):1426–34.PubMedCrossRef Salem S, et al. Identification of the vasoconstriction-inhibiting factor (VIF), a potent endogenous cofactor of angiotensin II acting on the angiotensin II type 2 receptor. Circulation. 2015;131(16):1426–34.PubMedCrossRef
89.
go back to reference Wang D, et al. Vasostatin-1 stops structural remodeling and improves calcium handling via the eNOS-NO-PKG pathway in rat hearts subjected to chronic beta-adrenergic receptor activation. Cardiovasc Drugs Ther. 2016;30(5):455–64.PubMedCrossRef Wang D, et al. Vasostatin-1 stops structural remodeling and improves calcium handling via the eNOS-NO-PKG pathway in rat hearts subjected to chronic beta-adrenergic receptor activation. Cardiovasc Drugs Ther. 2016;30(5):455–64.PubMedCrossRef
90.
go back to reference Filice, E., et al., Chromofungin, CgA47-66-derived peptide, produces basal cardiac effects and postconditioning cardioprotective action during ischemia/reperfusion injury. Peptides, 2015. 71: p. 40-8. Filice, E., et al., Chromofungin, CgA47-66-derived peptide, produces basal cardiac effects and postconditioning cardioprotective action during ischemia/reperfusion injury. Peptides, 2015. 71: p. 40-8.
91.
go back to reference Tota B, et al. The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac beta-adrenergic-like inotropes. FASEB J. 2012;26(7):2888–98.PubMedPubMedCentralCrossRef Tota B, et al. The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac beta-adrenergic-like inotropes. FASEB J. 2012;26(7):2888–98.PubMedPubMedCentralCrossRef
92.
go back to reference Schgoer W, et al. Gene therapy with the angiogenic cytokine secretoneurin induces therapeutic angiogenesis by a nitric oxide-dependent mechanism. Circ Res. 2009;105(10):994–1002.PubMedCrossRef Schgoer W, et al. Gene therapy with the angiogenic cytokine secretoneurin induces therapeutic angiogenesis by a nitric oxide-dependent mechanism. Circ Res. 2009;105(10):994–1002.PubMedCrossRef
93.
go back to reference Albrecht-Schgoer K, et al. The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells. Circulation. 2012;126(21):2491–501.PubMedCrossRef Albrecht-Schgoer K, et al. The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells. Circulation. 2012;126(21):2491–501.PubMedCrossRef
94.
go back to reference Schgoer W, et al. Secretoneurin gene therapy improves blood flow in an ischemia model in type 1 diabetic mice by enhancing therapeutic neovascularization. PLoS One. 2013;8(9):e74029.PubMedPubMedCentralCrossRef Schgoer W, et al. Secretoneurin gene therapy improves blood flow in an ischemia model in type 1 diabetic mice by enhancing therapeutic neovascularization. PLoS One. 2013;8(9):e74029.PubMedPubMedCentralCrossRef
95.
go back to reference Theurl M, et al. Secretoneurin gene therapy improves hind limb and cardiac ischaemia in Apo E(-)/(-) mice without influencing systemic atherosclerosis. Cardiovasc Res. 2015;105(1):96–106.PubMedCrossRef Theurl M, et al. Secretoneurin gene therapy improves hind limb and cardiac ischaemia in Apo E(-)/(-) mice without influencing systemic atherosclerosis. Cardiovasc Res. 2015;105(1):96–106.PubMedCrossRef
Metadata
Title
Glycosylated Chromogranin A: Potential Role in the Pathogenesis of Heart Failure
Authors
Anett H. Ottesen
Geir Christensen
Torbjørn Omland
Helge Røsjø
Publication date
01-12-2017
Publisher
Springer US
Published in
Current Heart Failure Reports / Issue 6/2017
Print ISSN: 1546-9530
Electronic ISSN: 1546-9549
DOI
https://doi.org/10.1007/s11897-017-0360-x

Other articles of this Issue 6/2017

Current Heart Failure Reports 6/2017 Go to the issue

Genetics of Heart Failure (K Adams, Section Editor)

Pharmacogenomics of Bucindolol in Atrial Fibrillation and Heart Failure

Prevention of Heart Failure (M. St. John Sutton, Section Editor)

Defining Ambulatory Advanced Heart Failure: MedaMACS and Beyond

Comorbidities of Heart Failure (C Angermann and F Edelmann, Section Editors)

Treating Disease Mechanisms in Patients With Heart Failure and Diabetes Mellitus