Skip to main content
Top
Published in: Current Diabetes Reports 10/2015

Open Access 01-10-2015 | Genetics (AP Morris, Section Editor)

Genetics of Type 2 Diabetes in African Americans

Author: Maggie C. Y. Ng

Published in: Current Diabetes Reports | Issue 10/2015

Login to get access

Abstract

Type 2 diabetes (T2D) is a global health problem showing substantial ethnic disparity in disease prevalence. African Americans have one of the highest prevalence of T2D in the USA but little is known about their genetic risks. This review summarizes the findings of genetic regions and loci associated with T2D and related glycemic traits using linkage, admixture, and association approaches in populations of African ancestry. In particular, findings from genome-wide association and exome chip studies suggest the presence of both ancestry-specific and shared loci for T2D and glycemic traits. Among the European-identified loci that are transferable to individuals of African ancestry, allelic heterogeneity as well as differential linkage disequilibrium and risk allele frequencies pose challenges and opportunities for fine mapping and identification of causal variant(s) by trans-ancestry meta-analysis. More genetic research is needed in African ancestry populations including the next-generation sequencing to improve the understanding of genetic architecture of T2D.
Literature
1.
go back to reference World Health Organization. Global status report on noncommunicable diseases 2014. Geneva; 2014 World Health Organization. Global status report on noncommunicable diseases 2014. Geneva; 2014
3.
go back to reference Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. Atlanta, GA; 2014 Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. Atlanta, GA; 2014
4.
go back to reference Dabelea D, Mayer-Davis EJ, Saydah S, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311:1778–86.PubMedCentralCrossRefPubMed Dabelea D, Mayer-Davis EJ, Saydah S, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311:1778–86.PubMedCentralCrossRefPubMed
5.
go back to reference Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311:806–14.CrossRefPubMed Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311:806–14.CrossRefPubMed
6.
go back to reference Umpierrez GE, Gonzalez A, Umpierrez D, Pimentel D. Diabetes mellitus in the Hispanic/Latino population: an increasing health care challenge in the United States. Am J Med Sci. 2007;334:274–82.CrossRefPubMed Umpierrez GE, Gonzalez A, Umpierrez D, Pimentel D. Diabetes mellitus in the Hispanic/Latino population: an increasing health care challenge in the United States. Am J Med Sci. 2007;334:274–82.CrossRefPubMed
7.
go back to reference Lora CM, Daviglus ML, Kusek JW, et al. Chronic kidney disease in United States Hispanics: a growing public health problem. Ethn Dis. 2009;19:466–72.PubMedCentralPubMed Lora CM, Daviglus ML, Kusek JW, et al. Chronic kidney disease in United States Hispanics: a growing public health problem. Ethn Dis. 2009;19:466–72.PubMedCentralPubMed
8.
go back to reference Beard HA, AlGhatrif M, Samper-Ternent R, Gerst K, Markides KS. Trends in diabetes prevalence and diabetes-related complications in older Mexican Americans from 1993–1994 to 2004–2005. Diabetes Care. 2009;32:2212–7.PubMedCentralCrossRefPubMed Beard HA, AlGhatrif M, Samper-Ternent R, Gerst K, Markides KS. Trends in diabetes prevalence and diabetes-related complications in older Mexican Americans from 1993–1994 to 2004–2005. Diabetes Care. 2009;32:2212–7.PubMedCentralCrossRefPubMed
9.
go back to reference Collins AJ, Foley RN, Herzog C, et al. Excerpts from the US renal data system 2009 annual data report. Am J Kidney Dis. 2010;55(S1–420):A426–7. Collins AJ, Foley RN, Herzog C, et al. Excerpts from the US renal data system 2009 annual data report. Am J Kidney Dis. 2010;55(S1–420):A426–7.
11.
go back to reference Jolly S, Vittinghoff E, Chattopadhyay A, Bibbins-Domingo K. Higher cardiovascular disease prevalence and mortality among younger blacks compared to whites. Am J Med. 2010;123:811–8.CrossRefPubMed Jolly S, Vittinghoff E, Chattopadhyay A, Bibbins-Domingo K. Higher cardiovascular disease prevalence and mortality among younger blacks compared to whites. Am J Med. 2010;123:811–8.CrossRefPubMed
12.
go back to reference Howard VJ, Kleindorfer DO, Judd SE, et al. Disparities in stroke incidence contributing to disparities in stroke mortality. Ann Neurol. 2011;69:619–27.PubMedCentralCrossRefPubMed Howard VJ, Kleindorfer DO, Judd SE, et al. Disparities in stroke incidence contributing to disparities in stroke mortality. Ann Neurol. 2011;69:619–27.PubMedCentralCrossRefPubMed
13.
go back to reference LaVeist TA, Thorpe Jr RJ, Galarraga JE, Bower KM, Gary-Webb TL. Environmental and socio-economic factors as contributors to racial disparities in diabetes prevalence. J Gen Intern Med. 2009;24:1144–8.PubMedCentralCrossRefPubMed LaVeist TA, Thorpe Jr RJ, Galarraga JE, Bower KM, Gary-Webb TL. Environmental and socio-economic factors as contributors to racial disparities in diabetes prevalence. J Gen Intern Med. 2009;24:1144–8.PubMedCentralCrossRefPubMed
14.
go back to reference Ariza MA, Vimalananda VG, Rosenzweig JL. The economic consequences of diabetes and cardiovascular disease in the United States. Rev Endocr Metab Disord. 2010;11:1–10.CrossRefPubMed Ariza MA, Vimalananda VG, Rosenzweig JL. The economic consequences of diabetes and cardiovascular disease in the United States. Rev Endocr Metab Disord. 2010;11:1–10.CrossRefPubMed
16.
go back to reference Rotimi C, Cooper R, Cao G, Sundarum C, McGee D. Familial aggregation of cardiovascular diseases in African-American pedigrees. Genet Epidemiol. 1994;11:397–407.CrossRefPubMed Rotimi C, Cooper R, Cao G, Sundarum C, McGee D. Familial aggregation of cardiovascular diseases in African-American pedigrees. Genet Epidemiol. 1994;11:397–407.CrossRefPubMed
17.
go back to reference Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. 2000;49:2201–7.CrossRefPubMed Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. 2000;49:2201–7.CrossRefPubMed
18.
go back to reference Velasco Mondragon HE, Charlton RW, Peart T, Burguete-Garcia AI, Hernandez-Avila M, Hsueh WC. Diabetes risk assessment in Mexicans and Mexican Americans: effects of parental history of diabetes are modified by adiposity level. Diabetes Care. 2010;33:2260–5.PubMedCentralCrossRefPubMed Velasco Mondragon HE, Charlton RW, Peart T, Burguete-Garcia AI, Hernandez-Avila M, Hsueh WC. Diabetes risk assessment in Mexicans and Mexican Americans: effects of parental history of diabetes are modified by adiposity level. Diabetes Care. 2010;33:2260–5.PubMedCentralCrossRefPubMed
19.
go back to reference Rotimi CN, Chen G, Adeyemo AA, et al. A genome-wide search for type 2 diabetes susceptibility genes in West Africans: the Africa America diabetes Mellitus (AADM) Study. Diabetes. 2004;53:838–41.CrossRefPubMed Rotimi CN, Chen G, Adeyemo AA, et al. A genome-wide search for type 2 diabetes susceptibility genes in West Africans: the Africa America diabetes Mellitus (AADM) Study. Diabetes. 2004;53:838–41.CrossRefPubMed
20.
go back to reference Chen G, Adeyemo A, Zhou J, et al. Genome-wide search for susceptibility genes to type 2 diabetes in West Africans: potential role of C-peptide. Diabetes Res Clin Pract. 2007;78:e1–6.CrossRefPubMed Chen G, Adeyemo A, Zhou J, et al. Genome-wide search for susceptibility genes to type 2 diabetes in West Africans: potential role of C-peptide. Diabetes Res Clin Pract. 2007;78:e1–6.CrossRefPubMed
21.
go back to reference Sale MM, Lu L, Spruill IJ, et al. Genome-wide linkage scan in Gullah-speaking African American families with type 2 diabetes: the Sea Islands Genetic African American Registry (project SuGAR). Diabetes. 2009;58:260–7.PubMedCentralCrossRefPubMed Sale MM, Lu L, Spruill IJ, et al. Genome-wide linkage scan in Gullah-speaking African American families with type 2 diabetes: the Sea Islands Genetic African American Registry (project SuGAR). Diabetes. 2009;58:260–7.PubMedCentralCrossRefPubMed
22.
go back to reference Malhotra A, Igo Jr RP, Thameem F, et al. Genome-wide linkage scans for type 2 diabetes mellitus in four ethnically diverse populations-significant evidence for linkage on chromosome 4q in African Americans: the Family Investigation of Nephropathy and Diabetes Research Group. Diabetes Metab Res Rev. 2009;25:740–7.PubMedCentralCrossRefPubMed Malhotra A, Igo Jr RP, Thameem F, et al. Genome-wide linkage scans for type 2 diabetes mellitus in four ethnically diverse populations-significant evidence for linkage on chromosome 4q in African Americans: the Family Investigation of Nephropathy and Diabetes Research Group. Diabetes Metab Res Rev. 2009;25:740–7.PubMedCentralCrossRefPubMed
23.
go back to reference Elbein SC, Das SK, Hallman DM, Hanis CL, Hasstedt SJ. Genome-wide linkage and admixture mapping of type 2 diabetes in African American families from the American diabetes association GENNID (genetics of NIDDM) study cohort. Diabetes. 2009;58:268–74.PubMedCentralCrossRefPubMed Elbein SC, Das SK, Hallman DM, Hanis CL, Hasstedt SJ. Genome-wide linkage and admixture mapping of type 2 diabetes in African American families from the American diabetes association GENNID (genetics of NIDDM) study cohort. Diabetes. 2009;58:268–74.PubMedCentralCrossRefPubMed
24.
go back to reference Hasstedt SJ, Highland HM, Elbein SC, Hanis CL, Das SK. Five linkage regions each harbor multiple type 2 diabetes genes in the African American subset of the GENNID Study. J Hum Genet. 2013;58:378–83.PubMedCentralCrossRefPubMed Hasstedt SJ, Highland HM, Elbein SC, Hanis CL, Das SK. Five linkage regions each harbor multiple type 2 diabetes genes in the African American subset of the GENNID Study. J Hum Genet. 2013;58:378–83.PubMedCentralCrossRefPubMed
25.
go back to reference Manning AK, Hivert MF, Scott RA, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44:659–69.PubMedCentralCrossRefPubMed Manning AK, Hivert MF, Scott RA, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44:659–69.PubMedCentralCrossRefPubMed
26.••
go back to reference Ng MC, Shriner D, Chen BH, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10:e1004517. Large-scale meta-analysis of GWAS for type 2 diabetes in African Americans.PubMedCentralCrossRefPubMed Ng MC, Shriner D, Chen BH, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10:e1004517. Large-scale meta-analysis of GWAS for type 2 diabetes in African Americans.PubMedCentralCrossRefPubMed
28.
go back to reference Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.CrossRefPubMed Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.CrossRefPubMed
29.
go back to reference Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–5.CrossRefPubMed Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–5.CrossRefPubMed
30.
go back to reference Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.PubMedCentralCrossRefPubMed Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.PubMedCentralCrossRefPubMed
31.
go back to reference Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.CrossRefPubMed Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.CrossRefPubMed
32.•
go back to reference Marullo L, El-Sayed Moustafa JS, Prokopenko I. Insights into the genetic susceptibility to type 2 diabetes from genome-wide association studies of glycaemic traits. Curr Diabet Rep. 2014;14:551. A review on the meta-analysis of GWAS for glycemic traits and their associations with T2D in European ancestry populations.CrossRef Marullo L, El-Sayed Moustafa JS, Prokopenko I. Insights into the genetic susceptibility to type 2 diabetes from genome-wide association studies of glycaemic traits. Curr Diabet Rep. 2014;14:551. A review on the meta-analysis of GWAS for glycemic traits and their associations with T2D in European ancestry populations.CrossRef
33.
go back to reference Grarup N, Sandholt CH, Hansen T, Pedersen O. Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia. 2014;57:1528–41.CrossRefPubMed Grarup N, Sandholt CH, Hansen T, Pedersen O. Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia. 2014;57:1528–41.CrossRefPubMed
34.
go back to reference Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.PubMedCentralCrossRefPubMed Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.PubMedCentralCrossRefPubMed
35.
go back to reference Scott RA, Lagou V, Welch RP, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44:991–1005.PubMedCentralCrossRefPubMed Scott RA, Lagou V, Welch RP, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44:991–1005.PubMedCentralCrossRefPubMed
36.
go back to reference Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives [review]. Endocr J. 2011;58:723–39.CrossRefPubMed Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives [review]. Endocr J. 2011;58:723–39.CrossRefPubMed
37.
go back to reference Hara K, Shojima N, Hosoe J, Kadowaki T. Genetic architecture of type 2 diabetes. Biochem Biophys Res Commun. 2014;452:213–20.CrossRefPubMed Hara K, Shojima N, Hosoe J, Kadowaki T. Genetic architecture of type 2 diabetes. Biochem Biophys Res Commun. 2014;452:213–20.CrossRefPubMed
38.
go back to reference Williams AL, Jacobs SB, Moreno-Macias H, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014;506:97–101.CrossRefPubMed Williams AL, Jacobs SB, Moreno-Macias H, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014;506:97–101.CrossRefPubMed
39.•
go back to reference Palmer ND, McDonough CW, Hicks PJ, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7:e29202. The first GWAS for type 2 diabetes in African Americans.PubMedCentralCrossRefPubMed Palmer ND, McDonough CW, Hicks PJ, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7:e29202. The first GWAS for type 2 diabetes in African Americans.PubMedCentralCrossRefPubMed
40.•
go back to reference Chen G, Bentley A, Adeyemo A, et al. Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans. Hum Mol Genet. 2012;21:4530–6. The first GWAS for glycemic traits in African Americans.PubMedCentralCrossRefPubMed Chen G, Bentley A, Adeyemo A, et al. Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans. Hum Mol Genet. 2012;21:4530–6. The first GWAS for glycemic traits in African Americans.PubMedCentralCrossRefPubMed
41.
go back to reference Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40:1098–102.CrossRefPubMed Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40:1098–102.CrossRefPubMed
42.
go back to reference Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7.CrossRefPubMed Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7.CrossRefPubMed
43.
go back to reference Yamauchi T, Hara K, Maeda S, et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010;42:864–8.CrossRefPubMed Yamauchi T, Hara K, Maeda S, et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010;42:864–8.CrossRefPubMed
44.
go back to reference Charles BA, Shriner D, Rotimi CN. Accounting for linkage disequilibrium in association analysis of diverse populations. Genet Epidemiol. 2014;38:265–73.CrossRefPubMed Charles BA, Shriner D, Rotimi CN. Accounting for linkage disequilibrium in association analysis of diverse populations. Genet Epidemiol. 2014;38:265–73.CrossRefPubMed
45.
go back to reference Abecasis GR, Auton A, Brooks LD, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.CrossRefPubMed Abecasis GR, Auton A, Brooks LD, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.CrossRefPubMed
46.
go back to reference Cooke JN, Ng MC, Palmer ND, et al. Genetic risk assessment of type 2 diabetes-associated polymorphisms in African Americans. Diabetes Care. 2012;35:287–92.PubMedCentralCrossRefPubMed Cooke JN, Ng MC, Palmer ND, et al. Genetic risk assessment of type 2 diabetes-associated polymorphisms in African Americans. Diabetes Care. 2012;35:287–92.PubMedCentralCrossRefPubMed
47.
go back to reference Palmer ND, Hester JM, An SS, et al. Resequencing and analysis of variation in the TCF7L2 gene in African Americans suggests that SNP rs7903146 is the causal diabetes susceptibility variant. Diabetes. 2011;60:662–8.PubMedCentralCrossRefPubMed Palmer ND, Hester JM, An SS, et al. Resequencing and analysis of variation in the TCF7L2 gene in African Americans suggests that SNP rs7903146 is the causal diabetes susceptibility variant. Diabetes. 2011;60:662–8.PubMedCentralCrossRefPubMed
48.
go back to reference Haiman CA, Fesinmeyer MD, Spencer KL, et al. Consistent directions of effect for established type 2 diabetes risk variants across populations: the population architecture using genomics and epidemiology (PAGE) consortium. Diabetes. 2012;61:1642–7.PubMedCentralCrossRefPubMed Haiman CA, Fesinmeyer MD, Spencer KL, et al. Consistent directions of effect for established type 2 diabetes risk variants across populations: the population architecture using genomics and epidemiology (PAGE) consortium. Diabetes. 2012;61:1642–7.PubMedCentralCrossRefPubMed
49.
go back to reference Waters KM, Stram DO, Hassanein MT, et al. Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet. 2010;6:e1001078.PubMedCentralCrossRefPubMed Waters KM, Stram DO, Hassanein MT, et al. Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet. 2010;6:e1001078.PubMedCentralCrossRefPubMed
50.
go back to reference Keaton JM, Cooke Bailey JN, Palmer ND, et al. A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Hum Genet. 2014;133:1487–95.CrossRefPubMed Keaton JM, Cooke Bailey JN, Palmer ND, et al. A comparison of type 2 diabetes risk allele load between African Americans and European Americans. Hum Genet. 2014;133:1487–95.CrossRefPubMed
51.
go back to reference Carlson CS, Matise TC, North KE, et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 2013;11:e1001661.PubMedCentralCrossRefPubMed Carlson CS, Matise TC, North KE, et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 2013;11:e1001661.PubMedCentralCrossRefPubMed
52.•
go back to reference Ng MC, Saxena R, Li J, et al. Transferability and fine mapping of type 2 diabetes loci in African Americans: the Candidate Gene Association Resource Plus Study. Diabetes. 2013;62:965–76. Transferability study of type 2 diabetes loci in African Americans.PubMedCentralCrossRefPubMed Ng MC, Saxena R, Li J, et al. Transferability and fine mapping of type 2 diabetes loci in African Americans: the Candidate Gene Association Resource Plus Study. Diabetes. 2013;62:965–76. Transferability study of type 2 diabetes loci in African Americans.PubMedCentralCrossRefPubMed
53.
go back to reference Teo YY, Ong RT, Sim X, Tai ES, Chia KS. Identifying candidate causal variants via trans-population fine-mapping. Genet Epidemiol. 2010;34:653–64.CrossRefPubMed Teo YY, Ong RT, Sim X, Tai ES, Chia KS. Identifying candidate causal variants via trans-population fine-mapping. Genet Epidemiol. 2010;34:653–64.CrossRefPubMed
54.••
go back to reference Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44. Large-scale trans-ancestry meta-analysis of GWAS for type 2 diabetes.CrossRefPubMed Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44. Large-scale trans-ancestry meta-analysis of GWAS for type 2 diabetes.CrossRefPubMed
55.
go back to reference Fesinmeyer MD, Meigs JB, North KE, et al. Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) Study. BMC Med Genet. 2013;14:98.PubMedCentralCrossRefPubMed Fesinmeyer MD, Meigs JB, North KE, et al. Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) Study. BMC Med Genet. 2013;14:98.PubMedCentralCrossRefPubMed
56.
go back to reference Ramos E, Chen G, Shriner D, et al. Replication of genome-wide association studies (GWAS) loci for fasting plasma glucose in African-Americans. Diabetologia. 2011;54:783–8.PubMedCentralCrossRefPubMed Ramos E, Chen G, Shriner D, et al. Replication of genome-wide association studies (GWAS) loci for fasting plasma glucose in African-Americans. Diabetologia. 2011;54:783–8.PubMedCentralCrossRefPubMed
57.•
go back to reference Liu CT, Ng MC, Rybin D, et al. Transferability and fine-mapping of glucose and insulin quantitative trait loci across populations: CARe, the Candidate Gene Association Resource. Diabetologia. 2012;55:2970–84. Transferability study glycemic loci in African Americans.PubMedCentralCrossRefPubMed Liu CT, Ng MC, Rybin D, et al. Transferability and fine-mapping of glucose and insulin quantitative trait loci across populations: CARe, the Candidate Gene Association Resource. Diabetologia. 2012;55:2970–84. Transferability study glycemic loci in African Americans.PubMedCentralCrossRefPubMed
58.
go back to reference Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.PubMedCentralCrossRefPubMed Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.PubMedCentralCrossRefPubMed
59.••
go back to reference Wessel J, Chu AY, Willems SM, et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun. 2015;6:5897. Large scale trans-ancestry exome chip study for type 2 diabetes and glycemic traits.PubMedCentralCrossRefPubMed Wessel J, Chu AY, Willems SM, et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun. 2015;6:5897. Large scale trans-ancestry exome chip study for type 2 diabetes and glycemic traits.PubMedCentralCrossRefPubMed
60.••
go back to reference Mahajan A, Sim X, Ng HJ, et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet. 2015;11:e1004876. Large scale exome chip study for glycemic traits in Europeans.PubMedCentralCrossRefPubMed Mahajan A, Sim X, Ng HJ, et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet. 2015;11:e1004876. Large scale exome chip study for glycemic traits in Europeans.PubMedCentralCrossRefPubMed
61.
63.
go back to reference Cheng CY, Reich D, Haiman CA, et al. African ancestry and its correlation to type 2 diabetes in African Americans: a genetic admixture analysis in three U.S. population cohorts. PLoS One. 2012;7:e32840.PubMedCentralCrossRefPubMed Cheng CY, Reich D, Haiman CA, et al. African ancestry and its correlation to type 2 diabetes in African Americans: a genetic admixture analysis in three U.S. population cohorts. PLoS One. 2012;7:e32840.PubMedCentralCrossRefPubMed
64.
go back to reference Jeff JM, Armstrong LL, Ritchie MD, et al. Admixture mapping and subsequent fine-mapping suggests a biologically relevant and novel association on chromosome 11 for type 2 diabetes in African Americans. PLoS One. 2014;9:e86931.PubMedCentralCrossRefPubMed Jeff JM, Armstrong LL, Ritchie MD, et al. Admixture mapping and subsequent fine-mapping suggests a biologically relevant and novel association on chromosome 11 for type 2 diabetes in African Americans. PLoS One. 2014;9:e86931.PubMedCentralCrossRefPubMed
65.
go back to reference Klimentidis YC, Abrams M, Wang J, Fernandez JR, Allison DB. Natural selection at genomic regions associated with obesity and type-2 diabetes: East Asians and sub-Saharan Africans exhibit high levels of differentiation at type-2 diabetes regions. Hum Genet. 2011;129:407–18.PubMedCentralCrossRefPubMed Klimentidis YC, Abrams M, Wang J, Fernandez JR, Allison DB. Natural selection at genomic regions associated with obesity and type-2 diabetes: East Asians and sub-Saharan Africans exhibit high levels of differentiation at type-2 diabetes regions. Hum Genet. 2011;129:407–18.PubMedCentralCrossRefPubMed
66.
go back to reference Chen R, Corona E, Sikora M, et al. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genet. 2012;8:e1002621.PubMedCentralCrossRefPubMed Chen R, Corona E, Sikora M, et al. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genet. 2012;8:e1002621.PubMedCentralCrossRefPubMed
67.•
go back to reference Ayub Q, Moutsianas L, Chen Y, et al. Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes. Am J Hum Genet. 2014;94:176–85. Comprehensive examination of positive selection for GWAS loci for type 2 diabetes.PubMedCentralCrossRefPubMed Ayub Q, Moutsianas L, Chen Y, et al. Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes. Am J Hum Genet. 2014;94:176–85. Comprehensive examination of positive selection for GWAS loci for type 2 diabetes.PubMedCentralCrossRefPubMed
68.
go back to reference Corona E, Chen R, Sikora M, et al. Analysis of the genetic basis of disease in the context of worldwide human relationships and migration. PLoS Genet. 2013;9:e1003447.PubMedCentralCrossRefPubMed Corona E, Chen R, Sikora M, et al. Analysis of the genetic basis of disease in the context of worldwide human relationships and migration. PLoS Genet. 2013;9:e1003447.PubMedCentralCrossRefPubMed
69.
go back to reference Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62.PubMedCentralPubMed Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62.PubMedCentralPubMed
Metadata
Title
Genetics of Type 2 Diabetes in African Americans
Author
Maggie C. Y. Ng
Publication date
01-10-2015
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 10/2015
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-015-0651-0

Other articles of this Issue 10/2015

Current Diabetes Reports 10/2015 Go to the issue

Microvascular Complications—Retinopathy (JK Sun, Section Editor)

Novel Therapies in Development for Diabetic Macular Edema

Pharmacologic Treatment of Type 2 Diabetes (HE Lebovitz and G Bahtiyar, Section Editors)

Targeting Inflammation Through a Physical Active Lifestyle and Pharmaceuticals for the Treatment of Type 2 Diabetes

Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)

Mechanisms of Beta Cell Dysfunction Associated With Viral Infection

Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)

Vascular Smooth Muscle as a Target for Novel Therapeutics

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.