Skip to main content
Top
Published in: Current Diabetes Reports 9/2015

Open Access 01-09-2015 | Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (E Mayer-Davis and C Shay, Section Editors)

The Role of Dietary Protein and Fat in Glycaemic Control in Type 1 Diabetes: Implications for Intensive Diabetes Management

Authors: Megan Paterson, Kirstine J. Bell, Susan M. O’Connell, Carmel E. Smart, Amir Shafat, Bruce King

Published in: Current Diabetes Reports | Issue 9/2015

Login to get access

Abstract

A primary focus of the management of type 1 diabetes has been on matching prandial insulin therapy with carbohydrate amount consumed. However, even with the introduction of more flexible intensive insulin regimes, people with type 1 diabetes still struggle to achieve optimal glycaemic control. More recently, dietary fat and protein have been recognised as having a significant impact on postprandial blood glucose levels. Fat and protein independently increase the postprandial glucose excursions and together their effect is additive. This article reviews how the fat and protein in a meal impact the postprandial glycaemic response and discusses practical approaches to managing this in clinical practice. These insights have significant implications for patient education, mealtime insulin dose calculations and dosing strategies.
Literature
1.
go back to reference The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.CrossRef The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.CrossRef
2.
go back to reference Hoey H, Aanstoot HJ, Chiarelli F, et al. Good metabolic control is associated with better quality of life in 2,101 adolescents with type 1 diabetes. Diabetes Care. 2001;24(11):1923–8.CrossRefPubMed Hoey H, Aanstoot HJ, Chiarelli F, et al. Good metabolic control is associated with better quality of life in 2,101 adolescents with type 1 diabetes. Diabetes Care. 2001;24(11):1923–8.CrossRefPubMed
3.
go back to reference DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ. 2002;325(7367):746.PubMedCentralCrossRef DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ. 2002;325(7367):746.PubMedCentralCrossRef
4.
go back to reference Lowe J, Linjawi S, Mensch M, et al. Flexible eating and flexible insulin dosing in patients with diabetes: results of an intensive self-management course. Diabetes Res Clin Pract. 2008;80(3):439–43.CrossRefPubMed Lowe J, Linjawi S, Mensch M, et al. Flexible eating and flexible insulin dosing in patients with diabetes: results of an intensive self-management course. Diabetes Res Clin Pract. 2008;80(3):439–43.CrossRefPubMed
5.
go back to reference Laurenzi A, Bolla AM, Panigoni G, et al. Effects of carbohydrate counting on glucose control and quality of life over 24 weeks in adult patients with type 1 diabetes on continuous subcutaneous insulin infusion: a randomized, prospective clinical trial (GIOCAR). Diabetes Care. 2011;34(4):823–7.PubMedCentralCrossRefPubMed Laurenzi A, Bolla AM, Panigoni G, et al. Effects of carbohydrate counting on glucose control and quality of life over 24 weeks in adult patients with type 1 diabetes on continuous subcutaneous insulin infusion: a randomized, prospective clinical trial (GIOCAR). Diabetes Care. 2011;34(4):823–7.PubMedCentralCrossRefPubMed
6.
go back to reference McIntyre HD, Knight BA, Harvey DM, et al. Dose adjustment for normal eating (DAFNE)—an audit of outcomes in Australia. Med J Aust. 2010;192(11):637–40.PubMed McIntyre HD, Knight BA, Harvey DM, et al. Dose adjustment for normal eating (DAFNE)—an audit of outcomes in Australia. Med J Aust. 2010;192(11):637–40.PubMed
7.
go back to reference Samann A, Muhlhauser I, Bender R, et al. Glycaemic control and severe hypoglycaemia following training in flexible, intensive insulin therapy to enable dietary freedom in people with type 1 diabetes: a prospective implementation study. Diabetologia. 2005;48(10):1965–70.CrossRefPubMed Samann A, Muhlhauser I, Bender R, et al. Glycaemic control and severe hypoglycaemia following training in flexible, intensive insulin therapy to enable dietary freedom in people with type 1 diabetes: a prospective implementation study. Diabetologia. 2005;48(10):1965–70.CrossRefPubMed
8.
go back to reference Scavone G, Manto A, Pitocco D, et al. Effect of carbohydrate counting and medical nutritional therapy on glycaemic control in type 1 diabetic subjects: a pilot study. Diabet Med. 2010;27(4):477–9.CrossRefPubMed Scavone G, Manto A, Pitocco D, et al. Effect of carbohydrate counting and medical nutritional therapy on glycaemic control in type 1 diabetic subjects: a pilot study. Diabet Med. 2010;27(4):477–9.CrossRefPubMed
9.
go back to reference Choleau C, Aubert C, Cahane M, et al. High day-to-day glucose variability: a frequent phenomenon in children and adolescents with type 1 diabetes attending summer camp. Diabetes Metab. 2008;34(1):46–51.CrossRefPubMed Choleau C, Aubert C, Cahane M, et al. High day-to-day glucose variability: a frequent phenomenon in children and adolescents with type 1 diabetes attending summer camp. Diabetes Metab. 2008;34(1):46–51.CrossRefPubMed
10.
go back to reference Cameron FJ, de Beaufort C, Aanstoot HJ, et al. Lessons from the Hvidoere International Study Group on childhood diabetes: be dogmatic about outcome and flexible in approach. Pediatr Diabetes. 2013;14(7):473–80.CrossRefPubMed Cameron FJ, de Beaufort C, Aanstoot HJ, et al. Lessons from the Hvidoere International Study Group on childhood diabetes: be dogmatic about outcome and flexible in approach. Pediatr Diabetes. 2013;14(7):473–80.CrossRefPubMed
11.
go back to reference Mortensen HB, Robertson KJ, Aanstoot HJ, et al. Insulin management and metabolic control of type 1 diabetes mellitus in childhood and adolescence in 18 countries. Hvidore Study Group on childhood diabetes. Diabet Med. 1998;15(9):752–9.CrossRefPubMed Mortensen HB, Robertson KJ, Aanstoot HJ, et al. Insulin management and metabolic control of type 1 diabetes mellitus in childhood and adolescence in 18 countries. Hvidore Study Group on childhood diabetes. Diabet Med. 1998;15(9):752–9.CrossRefPubMed
12.
go back to reference Bell KJ, Barclay AW, Petocz P, et al. Efficacy of carbohydrate counting in type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2014;2(2):133–40.CrossRefPubMed Bell KJ, Barclay AW, Petocz P, et al. Efficacy of carbohydrate counting in type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2014;2(2):133–40.CrossRefPubMed
13.
go back to reference Borg R, Kuenen JC, Carstensen B, et al. Associations between features of glucose exposure and A1C: the A1C-derived average glucose (ADAG) study. Diabetes. 2010;59(7):1585–90.PubMedCentralCrossRefPubMed Borg R, Kuenen JC, Carstensen B, et al. Associations between features of glucose exposure and A1C: the A1C-derived average glucose (ADAG) study. Diabetes. 2010;59(7):1585–90.PubMedCentralCrossRefPubMed
14.
go back to reference Borg R, Kuenen JC, Carstensen B, et al. HbA(1)(c) and mean blood glucose show stronger associations with cardiovascular disease risk factors than do postprandial glycaemia or glucose variability in persons with diabetes: the A1C-derived average glucose (ADAG) study. Diabetologia. 2011;54(1):69–72.PubMedCentralCrossRefPubMed Borg R, Kuenen JC, Carstensen B, et al. HbA(1)(c) and mean blood glucose show stronger associations with cardiovascular disease risk factors than do postprandial glycaemia or glucose variability in persons with diabetes: the A1C-derived average glucose (ADAG) study. Diabetologia. 2011;54(1):69–72.PubMedCentralCrossRefPubMed
15.
go back to reference Smart C. Counting fat and protein: a dietitian’s perspective. Diabetes Care Child Young People. 2013;2(2):71–3. Smart C. Counting fat and protein: a dietitian’s perspective. Diabetes Care Child Young People. 2013;2(2):71–3.
16.
go back to reference Pankowska E, Blazik M, Groele L. Does the fat-protein meal increase postprandial glucose level in type 1 diabetes patients on insulin pump: the conclusion of a randomized study. Diabetes Technol Ther. 2012;14(1):16–22.CrossRefPubMed Pankowska E, Blazik M, Groele L. Does the fat-protein meal increase postprandial glucose level in type 1 diabetes patients on insulin pump: the conclusion of a randomized study. Diabetes Technol Ther. 2012;14(1):16–22.CrossRefPubMed
17.
go back to reference Peters AL, Davidson MB. Protein and fat effects on glucose responses and insulin requirements in subjects with insulin-dependent diabetes mellitus. Am J Clin Nutr. 1993;58(4):555–60.PubMed Peters AL, Davidson MB. Protein and fat effects on glucose responses and insulin requirements in subjects with insulin-dependent diabetes mellitus. Am J Clin Nutr. 1993;58(4):555–60.PubMed
18.••
go back to reference Smart CE, Evans M, O’Connell SM, et al. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care. 2013;36(12):3897–902. This study suggests that the insulin requirements of CHO, fat and protein could be calculated independently and be added together. Smart CE, Evans M, O’Connell SM, et al. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care. 2013;36(12):3897–902. This study suggests that the insulin requirements of CHO, fat and protein could be calculated independently and be added together.
19.••
go back to reference Wolpert HA, Atakov-Castillo A, Smith SA, et al. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care. 2013;36(4):810–6. This research attempts to quantify the impact of fat on insulin requirements and gives the potential to develop recommendations for insulin strategies. Wolpert HA, Atakov-Castillo A, Smith SA, et al. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care. 2013;36(4):810–6. This research attempts to quantify the impact of fat on insulin requirements and gives the potential to develop recommendations for insulin strategies.
20.••
go back to reference Kordonouri O, Hartmann R, Remus K, et al. Benefit of supplementary fat plus protein counting as compared with conventional carbohydrate counting for insulin bolus calculation in children with pump therapy. Pediatr Diabetes. 2012;13(7):540–4. This study confirmed that additional insulin for fat and protein improved glycaemic control but highlighted a high rate of hypoglycaemia suggesting refinement is required. Kordonouri O, Hartmann R, Remus K, et al. Benefit of supplementary fat plus protein counting as compared with conventional carbohydrate counting for insulin bolus calculation in children with pump therapy. Pediatr Diabetes. 2012;13(7):540–4. This study confirmed that additional insulin for fat and protein improved glycaemic control but highlighted a high rate of hypoglycaemia suggesting refinement is required.
21.
go back to reference Slama G, Klein J, Delage A, et al. Correlation between the nature and amount of carbohydrate in meal intake and insulin delivery by the artificial pancreas in 24 insulin-dependent diabetics. Diabetes. 1981;30:101–5.CrossRefPubMed Slama G, Klein J, Delage A, et al. Correlation between the nature and amount of carbohydrate in meal intake and insulin delivery by the artificial pancreas in 24 insulin-dependent diabetics. Diabetes. 1981;30:101–5.CrossRefPubMed
22.
go back to reference Service FJ, Rizza RA, Hall L, et al. Prandial insulin requirements in insulin-dependent diabetics: effects of size, time of day and sequence of meals. J Clin Endocrinol Metab. 1983;57:931–6.CrossRefPubMed Service FJ, Rizza RA, Hall L, et al. Prandial insulin requirements in insulin-dependent diabetics: effects of size, time of day and sequence of meals. J Clin Endocrinol Metab. 1983;57:931–6.CrossRefPubMed
23.
go back to reference Halfon P, Belkhadir J, Slama G. Correlation between amount of carbohydrate in mixed meals and insulin delivery by artificial pancreas in seven IDDM subjects. Diabetes Care. 1989;12:427–9.CrossRefPubMed Halfon P, Belkhadir J, Slama G. Correlation between amount of carbohydrate in mixed meals and insulin delivery by artificial pancreas in seven IDDM subjects. Diabetes Care. 1989;12:427–9.CrossRefPubMed
24.
go back to reference Vlachokosta FV, Piper CM, Gleason R, et al. Dietary carbohydrate, a Big Mac, and insulin requirements in type I diabetes. Diabetes Care. 1988;11(4):330–6.CrossRefPubMed Vlachokosta FV, Piper CM, Gleason R, et al. Dietary carbohydrate, a Big Mac, and insulin requirements in type I diabetes. Diabetes Care. 1988;11(4):330–6.CrossRefPubMed
25.
go back to reference Schrezenmeir J, Tato F, Tato S, et al. Comparison of glycemic response and insulin requirements after mixed meals of equal carbohydrate content in healthy, type-1, and type-2 diabetic man. Klin Wochenschr. 1989;67(19):985–94.CrossRefPubMed Schrezenmeir J, Tato F, Tato S, et al. Comparison of glycemic response and insulin requirements after mixed meals of equal carbohydrate content in healthy, type-1, and type-2 diabetic man. Klin Wochenschr. 1989;67(19):985–94.CrossRefPubMed
26.
go back to reference Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37 Suppl 1:S120–43.CrossRefPubMed Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37 Suppl 1:S120–43.CrossRefPubMed
27.
go back to reference Smart CE, Annan F, Bruno LP, et al. Nutritional management in children and adolescents with diabetes. Pediatr Diabetes. 2014;15 Suppl 20:135–53.CrossRefPubMed Smart CE, Annan F, Bruno LP, et al. Nutritional management in children and adolescents with diabetes. Pediatr Diabetes. 2014;15 Suppl 20:135–53.CrossRefPubMed
28.
go back to reference Freckmann G, Hagenlocher S, Baumstark A, et al. Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals. J Diabetes Sci Technol. 2007;1(5):695–703.PubMedCentralCrossRefPubMed Freckmann G, Hagenlocher S, Baumstark A, et al. Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals. J Diabetes Sci Technol. 2007;1(5):695–703.PubMedCentralCrossRefPubMed
29.
go back to reference Desjardins K, Brazeau AS, Strychar I, et al. Association between post-dinner dietary intakes and nocturnal hypoglycemic risk in adult patients with type 1 diabetes. Diabetes Res Clin Pract. 2014;106(3):420–7.CrossRefPubMed Desjardins K, Brazeau AS, Strychar I, et al. Association between post-dinner dietary intakes and nocturnal hypoglycemic risk in adult patients with type 1 diabetes. Diabetes Res Clin Pract. 2014;106(3):420–7.CrossRefPubMed
30.
go back to reference Berg JM, Tymoczko J, Stryer L. Biochemistry. 7th ed. Basinstoke: W. H. Freeman; 2012. Berg JM, Tymoczko J, Stryer L. Biochemistry. 7th ed. Basinstoke: W. H. Freeman; 2012.
31.
go back to reference Turner N, Cooney GJ, Kraegen EW, et al. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol. 2014;220(2):T61–79.CrossRefPubMed Turner N, Cooney GJ, Kraegen EW, et al. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol. 2014;220(2):T61–79.CrossRefPubMed
32.
go back to reference Grygiel-Gorniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J. 2014;13:17.PubMedCentralCrossRefPubMed Grygiel-Gorniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J. 2014;13:17.PubMedCentralCrossRefPubMed
33.
go back to reference Radulescu A, Gannon MC, Nuttall FQ. The effect on glucagon, glucagon-like peptide-1, total and acyl-ghrelin of dietary fats ingested with and without potato. J Clin Endocrinol Metab. 2010;95(7):3385–91.PubMedCentralCrossRefPubMed Radulescu A, Gannon MC, Nuttall FQ. The effect on glucagon, glucagon-like peptide-1, total and acyl-ghrelin of dietary fats ingested with and without potato. J Clin Endocrinol Metab. 2010;95(7):3385–91.PubMedCentralCrossRefPubMed
34.
go back to reference Lodefalk M, Carlsson-Skwirut C, Holst JJ, et al. Effects of fat supplementation on postprandial GIP, GLP-1, ghrelin and IGFBP-1 levels: a pilot study on adolescents with type 1 diabetes. Horm Res Paediatr. 2010;73(5):355–62.CrossRefPubMed Lodefalk M, Carlsson-Skwirut C, Holst JJ, et al. Effects of fat supplementation on postprandial GIP, GLP-1, ghrelin and IGFBP-1 levels: a pilot study on adolescents with type 1 diabetes. Horm Res Paediatr. 2010;73(5):355–62.CrossRefPubMed
35.
go back to reference Karhunen LJ, Juvonen KR, Huotari A, et al. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008;149(1–3):70–8.CrossRefPubMed Karhunen LJ, Juvonen KR, Huotari A, et al. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008;149(1–3):70–8.CrossRefPubMed
36.
go back to reference Ferraris RP, Diamond J. Regulation of intestinal sugar transport. Physiol Rev. 1997;77(1):257–302.PubMed Ferraris RP, Diamond J. Regulation of intestinal sugar transport. Physiol Rev. 1997;77(1):257–302.PubMed
37.
go back to reference Horowitz M, Edelbroek MA, Wishart JM, et al. Relationship between oral glucose tolerance and gastric emptying in normal healthy subjects. Diabetologia. 1993;36(9):857–62.CrossRefPubMed Horowitz M, Edelbroek MA, Wishart JM, et al. Relationship between oral glucose tolerance and gastric emptying in normal healthy subjects. Diabetologia. 1993;36(9):857–62.CrossRefPubMed
38.
go back to reference Carbonnel F, Lemann M, Rambaud JC, et al. Effect of the energy density of a solid-liquid meal on gastric emptying and satiety. Am J Clin Nutr. 1994;60(3):307–11.PubMed Carbonnel F, Lemann M, Rambaud JC, et al. Effect of the energy density of a solid-liquid meal on gastric emptying and satiety. Am J Clin Nutr. 1994;60(3):307–11.PubMed
39.
go back to reference Welch IM, Bruce C, Hill SE, et al. Duodenal and ileal lipid suppresses postprandial blood glucose and insulin responses in man: possible implications for the dietary management of diabetes mellitus. Clin Sci (Lond). 1987;72(2):209–16.CrossRef Welch IM, Bruce C, Hill SE, et al. Duodenal and ileal lipid suppresses postprandial blood glucose and insulin responses in man: possible implications for the dietary management of diabetes mellitus. Clin Sci (Lond). 1987;72(2):209–16.CrossRef
40.
go back to reference Clegg M, Pratt M, Markey O, et al. Addition of different fats to a carbohydrate food: Impact on gastric emptying, glycaemic and satiety responses and comparison with in vitro digestion. Food Res Int. 2012;48(1):91–7.CrossRef Clegg M, Pratt M, Markey O, et al. Addition of different fats to a carbohydrate food: Impact on gastric emptying, glycaemic and satiety responses and comparison with in vitro digestion. Food Res Int. 2012;48(1):91–7.CrossRef
41.
go back to reference Clegg M, Shafat A. Energy and macronutrient composition of breakfast affect gastric emptying of lunch and subsequent food intake, satiety and satiation. Appetite. 2010;54(3):517–23.CrossRefPubMed Clegg M, Shafat A. Energy and macronutrient composition of breakfast affect gastric emptying of lunch and subsequent food intake, satiety and satiation. Appetite. 2010;54(3):517–23.CrossRefPubMed
42.
go back to reference Clegg M, Shafat A. Conference on “Multidisciplinary Approaches to Nutritional Problems”. Postgraduate Symposium. The role of fat in gastric emptying and satiety: acute and chronic effects. Proc Nutr Soc. 2009;68(1):89–97.CrossRefPubMed Clegg M, Shafat A. Conference on “Multidisciplinary Approaches to Nutritional Problems”. Postgraduate Symposium. The role of fat in gastric emptying and satiety: acute and chronic effects. Proc Nutr Soc. 2009;68(1):89–97.CrossRefPubMed
43.
go back to reference Khan MA, Gannon MC, Nuttall FQ. Glucose appearance rate following protein ingestion in normal subjects. J Am Coll Nutr. 1992;11(6):701–6.CrossRefPubMed Khan MA, Gannon MC, Nuttall FQ. Glucose appearance rate following protein ingestion in normal subjects. J Am Coll Nutr. 1992;11(6):701–6.CrossRefPubMed
44.
go back to reference van Loon LJ, Saris WH, Verhagen H, et al. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96–105.PubMed van Loon LJ, Saris WH, Verhagen H, et al. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96–105.PubMed
45.
go back to reference Winiger G, Keller U, Laager R, et al. Protein content of the evening meal and nocturnal plasma glucose regulation in type-I diabetic subjects. Horm Res. 1995;44(3):101–4.CrossRefPubMed Winiger G, Keller U, Laager R, et al. Protein content of the evening meal and nocturnal plasma glucose regulation in type-I diabetic subjects. Horm Res. 1995;44(3):101–4.CrossRefPubMed
46.
go back to reference Krezowski PA, Nuttall FQ, Gannon MC, et al. The effect of protein ingestion on the metabolic response to oral glucose in normal individuals. Am J Clin Nutr. 1986;44(6):847–56.PubMed Krezowski PA, Nuttall FQ, Gannon MC, et al. The effect of protein ingestion on the metabolic response to oral glucose in normal individuals. Am J Clin Nutr. 1986;44(6):847–56.PubMed
47.
go back to reference Nordt TK, Besenthal I, Eggstein M, et al. Influence of breakfasts with different nutrient contents on glucose, C peptide, insulin, glucagon, triglycerides, and GIP in non-insulin-dependent diabetics. Am J Clin Nutr. 1991;53(1):155–60.PubMed Nordt TK, Besenthal I, Eggstein M, et al. Influence of breakfasts with different nutrient contents on glucose, C peptide, insulin, glucagon, triglycerides, and GIP in non-insulin-dependent diabetics. Am J Clin Nutr. 1991;53(1):155–60.PubMed
48.
go back to reference Garcia-Lopez JM, Gonzalez-Rodriguez M, Pazos-Couselo M, et al. Should the amounts of fat and protein be taken into consideration to calculate the lunch prandial insulin bolus? Results from a randomized crossover trial. Diabetes Technol Ther. 2013;15(2):166–71.PubMedCentralCrossRefPubMed Garcia-Lopez JM, Gonzalez-Rodriguez M, Pazos-Couselo M, et al. Should the amounts of fat and protein be taken into consideration to calculate the lunch prandial insulin bolus? Results from a randomized crossover trial. Diabetes Technol Ther. 2013;15(2):166–71.PubMedCentralCrossRefPubMed
49.
go back to reference Paterson MA, Smart CE, McElduff P, et al. Influence of pure protein on postprandial blood glucose levels in individuals with type 1 diabetes mellitus (abstract). Diabetes. 2014;63(S1):A15. Paterson MA, Smart CE, McElduff P, et al. Influence of pure protein on postprandial blood glucose levels in individuals with type 1 diabetes mellitus (abstract). Diabetes. 2014;63(S1):A15.
50.
go back to reference Wilson D, Chase HP, Kollman C, et al. Low-fat vs. high-fat bedtime snacks in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2008;9(4 Pt 1):320–5.CrossRefPubMed Wilson D, Chase HP, Kollman C, et al. Low-fat vs. high-fat bedtime snacks in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2008;9(4 Pt 1):320–5.CrossRefPubMed
51.
go back to reference Brown RJ, Sinaii N, Rother KI. Too much glucagon, too little insulin: time course of pancreatic islet dysfunction in new-onset type 1 diabetes. Diabetes Care. 2008;31(7):1403–4.PubMedCentralCrossRefPubMed Brown RJ, Sinaii N, Rother KI. Too much glucagon, too little insulin: time course of pancreatic islet dysfunction in new-onset type 1 diabetes. Diabetes Care. 2008;31(7):1403–4.PubMedCentralCrossRefPubMed
52.
go back to reference Slag MF, Ahmad M, Gannon MC, et al. Meal stimulation of cortisol secretion: a protein induced effect. Metabolism. 1981;30(11):1104–8.CrossRefPubMed Slag MF, Ahmad M, Gannon MC, et al. Meal stimulation of cortisol secretion: a protein induced effect. Metabolism. 1981;30(11):1104–8.CrossRefPubMed
53.
go back to reference van Vught AJ, Nieuwenhuizen AG, Brummer RJ, et al. Somatotropic responses to soy protein alone and as part of a meal. Eur J Endocrinol. 2008;159(1):15–8.CrossRefPubMed van Vught AJ, Nieuwenhuizen AG, Brummer RJ, et al. Somatotropic responses to soy protein alone and as part of a meal. Eur J Endocrinol. 2008;159(1):15–8.CrossRefPubMed
54.
go back to reference Koliaki C, Kokkinos A, Tentolouris N et al. The effect of ingested macronutrients on postprandial ghrelin response: a critical review of existing literature data. Int J Pept. 2010;2010. Koliaki C, Kokkinos A, Tentolouris N et al. The effect of ingested macronutrients on postprandial ghrelin response: a critical review of existing literature data. Int J Pept. 2010;2010.
56.
go back to reference Felig P, Wahren J, Sherwin R, et al. Amino acid and protein metabolism in diabetes mellitus. Arch Intern Med. 1977;137(4):507–13.CrossRefPubMed Felig P, Wahren J, Sherwin R, et al. Amino acid and protein metabolism in diabetes mellitus. Arch Intern Med. 1977;137(4):507–13.CrossRefPubMed
57.
go back to reference Linn T, Geyer R, Prassek S, et al. Effect of dietary protein intake on insulin secretion and glucose metabolism in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81(11):3938–43.PubMed Linn T, Geyer R, Prassek S, et al. Effect of dietary protein intake on insulin secretion and glucose metabolism in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1996;81(11):3938–43.PubMed
58.
go back to reference Wahren J, Felig P, Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest. 1976;57(4):987–99.PubMedCentralCrossRefPubMed Wahren J, Felig P, Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest. 1976;57(4):987–99.PubMedCentralCrossRefPubMed
59.
go back to reference Pankowska E, Blazik M. Bolus calculator with nutrition database software, a new concept of prandial insulin programming for pump users. J Diabetes Sci Technol. 2010;4(3):571–6.PubMedCentralCrossRefPubMed Pankowska E, Blazik M. Bolus calculator with nutrition database software, a new concept of prandial insulin programming for pump users. J Diabetes Sci Technol. 2010;4(3):571–6.PubMedCentralCrossRefPubMed
60.
go back to reference Neu A, Behret F, Braun R et al. Higher glucose concentrations following protein- and fat-rich meals—the Tuebingen Grill Study: a pilot study in adolescents with type 1 diabetes. Pediatr Diabetes. 2014. Neu A, Behret F, Braun R et al. Higher glucose concentrations following protein- and fat-rich meals—the Tuebingen Grill Study: a pilot study in adolescents with type 1 diabetes. Pediatr Diabetes. 2014.
61.
go back to reference Ryan RL, King BR, Anderson DG, et al. Influence of and optimal insulin therapy for a low-glycemic index meal in children with type 1 diabetes receiving intensive insulin therapy. Diabetes Care. 2008;31(8):1485–90.PubMedCentralCrossRefPubMed Ryan RL, King BR, Anderson DG, et al. Influence of and optimal insulin therapy for a low-glycemic index meal in children with type 1 diabetes receiving intensive insulin therapy. Diabetes Care. 2008;31(8):1485–90.PubMedCentralCrossRefPubMed
62.
go back to reference Scaramuzza AE, Iafusco D, Santoro L, et al. Timing of bolus in children with type 1 diabetes using continuous subcutaneous insulin infusion (TiBoDi Study). Diabetes Technol Ther. 2010;12(2):149–52.CrossRefPubMed Scaramuzza AE, Iafusco D, Santoro L, et al. Timing of bolus in children with type 1 diabetes using continuous subcutaneous insulin infusion (TiBoDi Study). Diabetes Technol Ther. 2010;12(2):149–52.CrossRefPubMed
63.
go back to reference Jovanovic L, Giammattei J, Acquistapace M, et al. Efficacy comparison between preprandial and postprandial insulin aspart administration with dose adjustment for unpredictable meal size. Clin Ther. 2004;26(9):1492–7.CrossRefPubMed Jovanovic L, Giammattei J, Acquistapace M, et al. Efficacy comparison between preprandial and postprandial insulin aspart administration with dose adjustment for unpredictable meal size. Clin Ther. 2004;26(9):1492–7.CrossRefPubMed
64.
go back to reference Cobry E, McFann K, Messer L, et al. Timing of meal insulin boluses to achieve optimal postprandial glycemic control in patients with type 1 diabetes. Diabetes Technol Ther. 2010;12(3):173–7.CrossRefPubMed Cobry E, McFann K, Messer L, et al. Timing of meal insulin boluses to achieve optimal postprandial glycemic control in patients with type 1 diabetes. Diabetes Technol Ther. 2010;12(3):173–7.CrossRefPubMed
65.
go back to reference Chase HP, Saib SZ, MacKenzie T, et al. Post-prandial glucose excursions following four methods of bolus insulin administration in subjects with type 1 diabetes. Diabet Med. 2002;19(4):317–21.CrossRefPubMed Chase HP, Saib SZ, MacKenzie T, et al. Post-prandial glucose excursions following four methods of bolus insulin administration in subjects with type 1 diabetes. Diabet Med. 2002;19(4):317–21.CrossRefPubMed
66.
go back to reference Lopez P, Smart C, Morbey C, et al. Extended insulin boluses cannot control postprandial glycemia as well as a standard bolus in children and adults using insulin pump therapy. BMJ Open Diabetes Res Care. 2014;2(1), e000050.PubMedCentralCrossRefPubMed Lopez P, Smart C, Morbey C, et al. Extended insulin boluses cannot control postprandial glycemia as well as a standard bolus in children and adults using insulin pump therapy. BMJ Open Diabetes Res Care. 2014;2(1), e000050.PubMedCentralCrossRefPubMed
67.
go back to reference Bao J, Gilbertson HR, Gray R, et al. Improving the estimation of mealtime insulin dose in adults with type 1 diabetes: the Normal Insulin Demand for Dose Adjustment (NIDDA) study. Diabetes Care. 2011;34(10):2146–51.PubMedCentralCrossRefPubMed Bao J, Gilbertson HR, Gray R, et al. Improving the estimation of mealtime insulin dose in adults with type 1 diabetes: the Normal Insulin Demand for Dose Adjustment (NIDDA) study. Diabetes Care. 2011;34(10):2146–51.PubMedCentralCrossRefPubMed
68.
go back to reference Bell KJ, Gray R, Munns D, et al. Estimating insulin demand for protein-containing foods using the food insulin index. Eur J Clin Nutr. 2014;68(9):1055–9.CrossRefPubMed Bell KJ, Gray R, Munns D, et al. Estimating insulin demand for protein-containing foods using the food insulin index. Eur J Clin Nutr. 2014;68(9):1055–9.CrossRefPubMed
69.
go back to reference Bell K, Toschi, E, Wolpert, H, Steil, G. Use of model predicted bolus estimation (mpb) to optimize insulin dosing strategies covering high fat meals. 8th International Conference on Advanced Technologies and Treatments for Diabetes; Paris, France 2015. Bell K, Toschi, E, Wolpert, H, Steil, G. Use of model predicted bolus estimation (mpb) to optimize insulin dosing strategies covering high fat meals. 8th International Conference on Advanced Technologies and Treatments for Diabetes; Paris, France 2015.
70.
go back to reference Lindholm-Olinder ARJ, Smide B, Kernell A. Post-prandial glucose levels following three methods of insulin bolusing: a study in adolescent girls and in comparison with girls without diabetes. Pract Diabetes Int. 2009;26(3):110–5.CrossRef Lindholm-Olinder ARJ, Smide B, Kernell A. Post-prandial glucose levels following three methods of insulin bolusing: a study in adolescent girls and in comparison with girls without diabetes. Pract Diabetes Int. 2009;26(3):110–5.CrossRef
71.
go back to reference Jones SM, Quarry JL, Caldwell-McMillan M, et al. Optimal insulin pump dosing and postprandial glycemia following a pizza meal using the continuous glucose monitoring system. Diabetes Technol Ther. 2005;7(2):233–40.CrossRefPubMed Jones SM, Quarry JL, Caldwell-McMillan M, et al. Optimal insulin pump dosing and postprandial glycemia following a pizza meal using the continuous glucose monitoring system. Diabetes Technol Ther. 2005;7(2):233–40.CrossRefPubMed
Metadata
Title
The Role of Dietary Protein and Fat in Glycaemic Control in Type 1 Diabetes: Implications for Intensive Diabetes Management
Authors
Megan Paterson
Kirstine J. Bell
Susan M. O’Connell
Carmel E. Smart
Amir Shafat
Bruce King
Publication date
01-09-2015
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 9/2015
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-015-0630-5

Other articles of this Issue 9/2015

Current Diabetes Reports 9/2015 Go to the issue

Microvascular Complications—Nephropathy (T Isakova, Section Editor)

Impact of Lifestyle Modification on Diabetic Kidney Disease

Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (E Mayer-Davis and C Shay, Section Editors)

Infant Feeding and Timing of Complementary Foods in the Development of Type 1 Diabetes

Microvascular Complications—Nephropathy (T Isakova, Section Editor)

Update on Estimation of Kidney Function in Diabetic Kidney Disease

Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)

Transcriptional Regulation of the Pancreatic Islet: Implications for Islet Function

Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (E Mayer-Davis and C Shay, Section Editors)

Salt Restriction in Diabetes

Health Care Delivery Systems and Implementation in Diabetes (EB Morton-Eggleston, Section Editor)

National Strategies to Decrease the Burden of Diabetes and Its Complications

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.