Skip to main content
Top
Published in: Current Cardiology Reports 9/2020

01-09-2020 | Diseases of the neuromuscular synapses and muscles | Myocardial Disease (A Abbate and G Sinagra, Section Editors)

Left Ventricular Noncompaction Syndrome: Genetic Insights and Therapeutic Perspectives

Authors: Josef Finsterer, Claudia Stöllberger

Published in: Current Cardiology Reports | Issue 9/2020

Login to get access

Abstract

Purpose of Review

To discuss the association of left ventricular hypertrabeculation/noncompaction (LVHT/LVNC/NCCM) with genetic disease and to outline the therapeutic options for non-symptomatic and symptomatic LVHT.

Recent Findings

A number of new mutated genes have been recently detected being associated with LVHT. There are indications that microtubules changing cell polarity, the transcription factor Nkx2-5, and NOTCH-1 signaling are involved in the pathogenesis of LVHT. There are also indications that the PKC signaling pathway, which is involved in the regulation of gap junction intercellular communication, is disturbed in LVHT.

Summary

LVHT is the same as LVNC and is associated with pathogenic variants in > 110 mtDNA or nDNA genes. LVHT has been also reported in > 15 chromosomal defects. However, a causal relation between any of these variants and LVHT has not been proven. There is no general agreement on the treatment of LVHT. According to expert opinions, LVHT patients require anticoagulation if they meet the criteria for anticoagulation or an ICD if they meet the appropriate criteria. Heart failure therapy is equal to patients with other causes of heart failure.
Literature
1.•
go back to reference Finsterer J, Stöllberger C, Towbin JA. Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol. 2017;14:224–37. Comprehensive review about the etiology, pathophysiology, diagnosis, and treatment of the phenomenon. Finsterer J, Stöllberger C, Towbin JA. Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol. 2017;14:224–37. Comprehensive review about the etiology, pathophysiology, diagnosis, and treatment of the phenomenon.
2.
go back to reference Finsterer J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr Cardiol. 2009;30:659–81.PubMed Finsterer J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr Cardiol. 2009;30:659–81.PubMed
3.
go back to reference Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82:507–13.PubMed Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82:507–13.PubMed
4.
go back to reference Oechslin E, Jenni R. Left Ventricular Noncompaction: From Physiologic Remodeling to Noncompaction Cardiomyopathy. J Am Coll Cardiol. 2018;71:723–6.PubMed Oechslin E, Jenni R. Left Ventricular Noncompaction: From Physiologic Remodeling to Noncompaction Cardiomyopathy. J Am Coll Cardiol. 2018;71:723–6.PubMed
5.
go back to reference Stöllberger C, Gerecke B, Finsterer J, Engberding R. Refinement of echocardiographic criteria for left ventricular noncompaction. Int J Cardiol. 2013;165:463–7.PubMed Stöllberger C, Gerecke B, Finsterer J, Engberding R. Refinement of echocardiographic criteria for left ventricular noncompaction. Int J Cardiol. 2013;165:463–7.PubMed
6.
go back to reference Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46:101–5.PubMed Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46:101–5.PubMed
7.
go back to reference Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert JY, et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J. 2010;31:1098–104.PubMed Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert JY, et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J. 2010;31:1098–104.PubMed
8.
go back to reference Thakur V, Jaeggi ET, Nield LE. A unique foetal case of left ventricular non-compaction associated with arrhythmia, structural cardiac anomalies, and agenesis of the ductus venosus. Cardiol Young. 2016;26:368–70.PubMed Thakur V, Jaeggi ET, Nield LE. A unique foetal case of left ventricular non-compaction associated with arrhythmia, structural cardiac anomalies, and agenesis of the ductus venosus. Cardiol Young. 2016;26:368–70.PubMed
9.
go back to reference Liu Y, Chen H, Shou W. Potential Common Pathogenic Pathways for the Left Ventricular Noncompaction Cardiomyopathy (LVNC). Pediatr Cardiol. 2018;39:1099–106.PubMedPubMedCentral Liu Y, Chen H, Shou W. Potential Common Pathogenic Pathways for the Left Ventricular Noncompaction Cardiomyopathy (LVNC). Pediatr Cardiol. 2018;39:1099–106.PubMedPubMedCentral
10.
go back to reference Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83:1223–67.PubMed Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83:1223–67.PubMed
11.
go back to reference Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, et al. Notch signaling is essential for ventricular chamber development. Dev Cell. 2007;12:415–29.PubMedPubMedCentral Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, et al. Notch signaling is essential for ventricular chamber development. Dev Cell. 2007;12:415–29.PubMedPubMedCentral
12.
go back to reference Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, et al. Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell. 2008;14:298–311.PubMedPubMedCentral Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, et al. Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell. 2008;14:298–311.PubMedPubMedCentral
13.
go back to reference Lai D, Liu X, Forrai A, Wolstein O, Michalicek J, Ahmed I, et al. Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ Res. 2010;107:715–27.PubMed Lai D, Liu X, Forrai A, Wolstein O, Michalicek J, Ahmed I, et al. Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ Res. 2010;107:715–27.PubMed
14.
go back to reference Luxán G, Casanova JC, Martínez-Poveda B, Prados B, D'Amato G, MacGrogan D, et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med. 2013;19:193–201.PubMed Luxán G, Casanova JC, Martínez-Poveda B, Prados B, D'Amato G, MacGrogan D, et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med. 2013;19:193–201.PubMed
16.••
go back to reference Choquet C, Nguyen THM, Sicard P, Buttigieg E, Tran TT, Kober F, et al. Deletion of Nkx2-5 in trabecular myocardium reveals the developmental origins of pathological heterogeneity associated with ventricular non-compaction cardiomyopathy. PLoS Genet. 2018;14, e1007502. https://doi.org/10.1371/journal.pgen.1007502. Provides insights into the mechanism by which the transcription factor Nkx2-5 causes hypertrabeculation in mice. Choquet C, Nguyen THM, Sicard P, Buttigieg E, Tran TT, Kober F, et al. Deletion of Nkx2-5 in trabecular myocardium reveals the developmental origins of pathological heterogeneity associated with ventricular non-compaction cardiomyopathy. PLoS Genet. 2018;14, e1007502. https://​doi.​org/​10.​1371/​journal.​pgen.​1007502. Provides insights into the mechanism by which the transcription factor Nkx2-5 causes hypertrabeculation in mice.
17.••
go back to reference Del Monte-Nieto G, Ramialison M, Adam AAS, Wu B, Aharonov A, D'Uva G, et al. Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature. 2018;557:439–45. Provides insights into the myocardial development mediated by NOTCH1 signaling. Del Monte-Nieto G, Ramialison M, Adam AAS, Wu B, Aharonov A, D'Uva G, et al. Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature. 2018;557:439–45. Provides insights into the myocardial development mediated by NOTCH1 signaling.
18.
go back to reference Xie Y, Liu S, Hu S, Wei Y. Cardiomyopathy-Associated Gene 1-Sensitive PKC-Dependent Connexin 43 Expression and Phosphorylation in Left Ventricular Noncompaction Cardiomyopathy. Cell Physiol Biochem. 2017;44:828–42.PubMed Xie Y, Liu S, Hu S, Wei Y. Cardiomyopathy-Associated Gene 1-Sensitive PKC-Dependent Connexin 43 Expression and Phosphorylation in Left Ventricular Noncompaction Cardiomyopathy. Cell Physiol Biochem. 2017;44:828–42.PubMed
20.
go back to reference Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, et al. Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation. 2014;130:475–83.PubMed Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, et al. Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation. 2014;130:475–83.PubMed
21.
go back to reference Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99:401–8.PubMed Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99:401–8.PubMed
22.
go back to reference Finsterer J, Stöllberger C, Fazio G. Neuromuscular disorders in left ventricular hypertrabeculation/noncompaction. Curr Pharm Des. 2010;16:2895–904.PubMed Finsterer J, Stöllberger C, Fazio G. Neuromuscular disorders in left ventricular hypertrabeculation/noncompaction. Curr Pharm Des. 2010;16:2895–904.PubMed
23.
go back to reference Finsterer J, Stöllberger C, Wegmann R, Janssen LA. Acquired left ventricular hypertrabeculation/noncompaction in myotonic dystrophy type 1. Int J Cardiol. 2009;137:310–3.PubMed Finsterer J, Stöllberger C, Wegmann R, Janssen LA. Acquired left ventricular hypertrabeculation/noncompaction in myotonic dystrophy type 1. Int J Cardiol. 2009;137:310–3.PubMed
24.
go back to reference Finsterer J, Stöllberger C, Schubert B. Acquired left ventricular noncompaction as a cardiac manifestation of neuromuscular disorders. Scand Cardiovasc J. 2008;42:25–30.PubMed Finsterer J, Stöllberger C, Schubert B. Acquired left ventricular noncompaction as a cardiac manifestation of neuromuscular disorders. Scand Cardiovasc J. 2008;42:25–30.PubMed
25.
go back to reference Finsterer J, Stöllberger C, Gaismayer K, Janssen B. Acquired noncompaction in Duchenne muscular dystrophy. Int J Cardiol. 2006;106:420–1.PubMed Finsterer J, Stöllberger C, Gaismayer K, Janssen B. Acquired noncompaction in Duchenne muscular dystrophy. Int J Cardiol. 2006;106:420–1.PubMed
26.
go back to reference Finsterer J, Stöllberger C, Schubert B. Acquired left ventricular hypertrabeculation/noncompaction in mitochondriopathy. Cardiology. 2004;102:228–30.PubMed Finsterer J, Stöllberger C, Schubert B. Acquired left ventricular hypertrabeculation/noncompaction in mitochondriopathy. Cardiology. 2004;102:228–30.PubMed
27.
go back to reference Ciolli A, de Matteis G, Trambaiolo P, Castro A, Stingone A, Altamura G. Is Left Ventricular Noncompaction Only a Morphological Feature? A Case of Disappearance of Noncompaction after Surgical Correction of Aorto-Right Ventricular Fistula, Interventricular Septal Defect and Aortic Stenosis. J Cardiovasc Echogr. 2015;25:26–8.PubMedPubMedCentral Ciolli A, de Matteis G, Trambaiolo P, Castro A, Stingone A, Altamura G. Is Left Ventricular Noncompaction Only a Morphological Feature? A Case of Disappearance of Noncompaction after Surgical Correction of Aorto-Right Ventricular Fistula, Interventricular Septal Defect and Aortic Stenosis. J Cardiovasc Echogr. 2015;25:26–8.PubMedPubMedCentral
28.
go back to reference Møller DV, Andersen PS, Hedley P, Ersbøll MK, Bundgaard H, Moolman-Smook J, et al. The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy. Eur J Hum Genet. 2009;17:1241–9.PubMedPubMedCentral Møller DV, Andersen PS, Hedley P, Ersbøll MK, Bundgaard H, Moolman-Smook J, et al. The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy. Eur J Hum Genet. 2009;17:1241–9.PubMedPubMedCentral
29.
go back to reference Al Senaidi K, Joshi N, Al-Nabhani M, Al-Kasbi G, Al Farqani A, Al-Thihli K, et al. Phenotypic spectrum of ALPK3-related cardiomyopathy. Am J Med Genet A. 2019;179:1235–40.PubMed Al Senaidi K, Joshi N, Al-Nabhani M, Al-Kasbi G, Al Farqani A, Al-Thihli K, et al. Phenotypic spectrum of ALPK3-related cardiomyopathy. Am J Med Genet A. 2019;179:1235–40.PubMed
30.
go back to reference Miszalski-Jamka K, Jefferies JL, Mazur W, Głowacki J, Hu J, Lazar M, Gibbs RA, Liczko J, Kłyś J, Venner E, Muzny DM, Rycaj J, Białkowski J, Kluczewska E, Kalarus Z, Jhangiani S, Al-Khalidi H, Kukulski T, Lupski JR, Craigen WJ, Bainbridge MN. Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients With Left Ventricular Noncompaction. Circ Cardiovasc Genet 2017;10(4). doi: 10.1161/CIRCGENETICS.117.001763. Miszalski-Jamka K, Jefferies JL, Mazur W, Głowacki J, Hu J, Lazar M, Gibbs RA, Liczko J, Kłyś J, Venner E, Muzny DM, Rycaj J, Białkowski J, Kluczewska E, Kalarus Z, Jhangiani S, Al-Khalidi H, Kukulski T, Lupski JR, Craigen WJ, Bainbridge MN. Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients With Left Ventricular Noncompaction. Circ Cardiovasc Genet 2017;10(4). doi: 10.1161/CIRCGENETICS.117.001763.
31.
go back to reference Tian T, Wang J, Wang H, Sun K, Wang Y, Jia L, et al. A low prevalence of sarcomeric gene variants in a Chinese cohort with left ventricular non-compaction. Heart Vessels. 2015;30:258–64.PubMed Tian T, Wang J, Wang H, Sun K, Wang Y, Jia L, et al. A low prevalence of sarcomeric gene variants in a Chinese cohort with left ventricular non-compaction. Heart Vessels. 2015;30:258–64.PubMed
32.
go back to reference Finsterer J, Stöllberger C, Grassberger M, Gerger D. Noncompaction in mitochondrial myopathy: visible on microscopy but absent on macroscopic inspection. Cardiology. 2013;125:146–9.PubMed Finsterer J, Stöllberger C, Grassberger M, Gerger D. Noncompaction in mitochondrial myopathy: visible on microscopy but absent on macroscopic inspection. Cardiology. 2013;125:146–9.PubMed
33.
go back to reference Grothoff M, Pachowsky M, Hoffmann J, Posch M, Klaassen S, Lehmkuhl L, et al. Value of cardiovascular MR in diagnosing left ventricular non-compaction cardiomyopathy and in discriminating between other cardiomyopathies. Eur Radiol. 2012;22:2699–709.PubMedPubMedCentral Grothoff M, Pachowsky M, Hoffmann J, Posch M, Klaassen S, Lehmkuhl L, et al. Value of cardiovascular MR in diagnosing left ventricular non-compaction cardiomyopathy and in discriminating between other cardiomyopathies. Eur Radiol. 2012;22:2699–709.PubMedPubMedCentral
34.
go back to reference Boban M, Pesa V, Beck N, Manola S, Zulj M, Rotim A, et al. Supplementary Diagnostic Landmarks of Left Ventricular Non-Compaction on Magnetic Resonance Imaging. Yonsei Med J. 2018;59:63–71.PubMed Boban M, Pesa V, Beck N, Manola S, Zulj M, Rotim A, et al. Supplementary Diagnostic Landmarks of Left Ventricular Non-Compaction on Magnetic Resonance Imaging. Yonsei Med J. 2018;59:63–71.PubMed
36.
go back to reference Stöllberger C, Blazek G, Gessner M, Bichler K, Wegner C, Finsterer J. Neuromuscular comorbidity, heart failure, and atrial fibrillation as prognostic factors in left ventricular hypertrabeculation/noncompaction. Herz. 2015;40:906–11.PubMed Stöllberger C, Blazek G, Gessner M, Bichler K, Wegner C, Finsterer J. Neuromuscular comorbidity, heart failure, and atrial fibrillation as prognostic factors in left ventricular hypertrabeculation/noncompaction. Herz. 2015;40:906–11.PubMed
37.
go back to reference Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.PubMed Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.PubMed
38.
go back to reference Bavishi A, Lima K, Choudhury L. A New Diagnosis of Left Ventricular Non-Compaction in a Patient Presenting with Acute Heart Failure. J Radiol Case Rep. 2018;12:10–5.PubMedPubMedCentral Bavishi A, Lima K, Choudhury L. A New Diagnosis of Left Ventricular Non-Compaction in a Patient Presenting with Acute Heart Failure. J Radiol Case Rep. 2018;12:10–5.PubMedPubMedCentral
39.
go back to reference Li J, Franke J, Pribe-Wolferts R, Meder B, Ehlermann P, Mereles D, et al. Effects of β-blocker therapy on electrocardiographic and echocardiographic characteristics of left ventricular noncompaction. Clin Res Cardiol. 2015;104:241–9.PubMed Li J, Franke J, Pribe-Wolferts R, Meder B, Ehlermann P, Mereles D, et al. Effects of β-blocker therapy on electrocardiographic and echocardiographic characteristics of left ventricular noncompaction. Clin Res Cardiol. 2015;104:241–9.PubMed
40.
go back to reference Kido K, Guglin M. Anticoagulation Therapy in Specific Cardiomyopathies: Isolated Left Ventricular Noncompaction and Peripartum Cardiomyopathy. J Cardiovasc Pharmacol Ther. 2019;24:31–6.PubMed Kido K, Guglin M. Anticoagulation Therapy in Specific Cardiomyopathies: Isolated Left Ventricular Noncompaction and Peripartum Cardiomyopathy. J Cardiovasc Pharmacol Ther. 2019;24:31–6.PubMed
42.
go back to reference Stöllberger C, Wegner C, Finsterer J. CHADS2- and CHA2DS2VASc scores and embolic risk in left ventricular hypertrabeculation/noncompaction. J Stroke Cerebrovasc Dis. 2013;22:709–12.PubMed Stöllberger C, Wegner C, Finsterer J. CHADS2- and CHA2DS2VASc scores and embolic risk in left ventricular hypertrabeculation/noncompaction. J Stroke Cerebrovasc Dis. 2013;22:709–12.PubMed
43.
go back to reference Stöllberger C, Finsterer J. New oral anticoagulants for stroke prevention in left ventricular hypertrabeculation/noncompaction? Int J Cardiol. 2013;168:2910–1.PubMed Stöllberger C, Finsterer J. New oral anticoagulants for stroke prevention in left ventricular hypertrabeculation/noncompaction? Int J Cardiol. 2013;168:2910–1.PubMed
44.
go back to reference Sakai Y, Sato Y, Matsuo S, Imai S, Kunimasa T, Matsumoto N, et al. Perforation of the right ventricular free wall by an ICD lead in a patient with isolated noncompaction of the ventricular myocardium. Int J Cardiol. 2007;117:e104–6.PubMed Sakai Y, Sato Y, Matsuo S, Imai S, Kunimasa T, Matsumoto N, et al. Perforation of the right ventricular free wall by an ICD lead in a patient with isolated noncompaction of the ventricular myocardium. Int J Cardiol. 2007;117:e104–6.PubMed
45.
go back to reference Gleva MJ, Wang Y, Curtis JP, Berul CI, Huddleston CB, Poole JE. Complications Associated With Implantable Cardioverter Defibrillators in Adults With Congenital Heart Disease or Left Ventricular Noncompaction Cardiomyopathy (From the NCDR® Implantable Cardioverter-Defibrillator Registry). Am J Cardiol. 2017;120:1891–8.PubMed Gleva MJ, Wang Y, Curtis JP, Berul CI, Huddleston CB, Poole JE. Complications Associated With Implantable Cardioverter Defibrillators in Adults With Congenital Heart Disease or Left Ventricular Noncompaction Cardiomyopathy (From the NCDR® Implantable Cardioverter-Defibrillator Registry). Am J Cardiol. 2017;120:1891–8.PubMed
46.
go back to reference Bertini M, Balla C, Pavasini R, Boriani G. Efficacy of cardiac resynchronization therapy in patients with isolated ventricular noncompaction with dilated cardiomyopathy: a systematic review of the literature. J Cardiovasc Med (Hagerstown). 2018;19:324–8. Bertini M, Balla C, Pavasini R, Boriani G. Efficacy of cardiac resynchronization therapy in patients with isolated ventricular noncompaction with dilated cardiomyopathy: a systematic review of the literature. J Cardiovasc Med (Hagerstown). 2018;19:324–8.
47.
go back to reference Minamisawa M, Koyama J, Kozuka A, Miura T, Ebisawa S, Motoki H, et al. Regression of left ventricular hypertrabeculation is associated with improvement in systolic function and favorable prognosis in adult patients with non-ischemic cardiomyopathy. J Cardiol. 2016;68:431–8.PubMed Minamisawa M, Koyama J, Kozuka A, Miura T, Ebisawa S, Motoki H, et al. Regression of left ventricular hypertrabeculation is associated with improvement in systolic function and favorable prognosis in adult patients with non-ischemic cardiomyopathy. J Cardiol. 2016;68:431–8.PubMed
48.
go back to reference Vinardell JM, Avila MD, Santana O. Isolated Left Ventricular Noncompaction Cardiomyopathy: A Transient Disease? Rev Cardiovasc Med. 2016;17:80–4.PubMed Vinardell JM, Avila MD, Santana O. Isolated Left Ventricular Noncompaction Cardiomyopathy: A Transient Disease? Rev Cardiovasc Med. 2016;17:80–4.PubMed
49.
go back to reference Stöllberger C, Keller H, Finsterer J. Disappearance of left ventricular hypertrabeculation/noncompaction after biventricular pacing in a patient with polyneuropathy. J Card Fail. 2007;13:211–4.PubMed Stöllberger C, Keller H, Finsterer J. Disappearance of left ventricular hypertrabeculation/noncompaction after biventricular pacing in a patient with polyneuropathy. J Card Fail. 2007;13:211–4.PubMed
50.
go back to reference Uribarri A, Rojas SV, Avsar M, Hanke JS, Napp LC, Berliner D, et al. First series of mechanical circulatory support in non-compaction cardiomyopathy: Is LVAD implantation a safe alternative? Int J Cardiol. 2015;197:128–32.PubMed Uribarri A, Rojas SV, Avsar M, Hanke JS, Napp LC, Berliner D, et al. First series of mechanical circulatory support in non-compaction cardiomyopathy: Is LVAD implantation a safe alternative? Int J Cardiol. 2015;197:128–32.PubMed
52.
go back to reference Epstein AE, Abraham WT, Bianco NR, Kern KB, Mirro M, Rao SV, et al. Wearable cardioverter-defibrillator use in patients perceived to be at high risk early post-myocardial infarction. J Am Coll Cardiol. 2013;62:2000–7.PubMed Epstein AE, Abraham WT, Bianco NR, Kern KB, Mirro M, Rao SV, et al. Wearable cardioverter-defibrillator use in patients perceived to be at high risk early post-myocardial infarction. J Am Coll Cardiol. 2013;62:2000–7.PubMed
54.
go back to reference Stöllberger C, Finsterer J. Wearable cardioverter-defibrillator in a patient with left ventricular noncompaction/hypertrabeculation, coronary artery disease, and polyneuropathy. Ann Noninvasive Electrocardiol. 2015;20:79–81.PubMed Stöllberger C, Finsterer J. Wearable cardioverter-defibrillator in a patient with left ventricular noncompaction/hypertrabeculation, coronary artery disease, and polyneuropathy. Ann Noninvasive Electrocardiol. 2015;20:79–81.PubMed
55.
go back to reference Reuschel E, Baessler A, Stöllberger C, Finsterer J, Maier L, Fischer M, et al. Interdisciplinary management of left ventricular hypertrabeculation/noncompaction during pregnancy with a wearable defibrillator. Int J Cardiol. 2016;223:154–8.PubMed Reuschel E, Baessler A, Stöllberger C, Finsterer J, Maier L, Fischer M, et al. Interdisciplinary management of left ventricular hypertrabeculation/noncompaction during pregnancy with a wearable defibrillator. Int J Cardiol. 2016;223:154–8.PubMed
67.
go back to reference Smith JGW, Owen T, Bhagwan JR, Mosqueira D, Scott E, Mannhardt I, et al. Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits. Stem Cell Reports. 2018;11:1226–43.PubMedPubMedCentral Smith JGW, Owen T, Bhagwan JR, Mosqueira D, Scott E, Mannhardt I, et al. Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits. Stem Cell Reports. 2018;11:1226–43.PubMedPubMedCentral
68.
go back to reference Grigoratos C, Barison A, Ivanov A, et al. Meta-Analysis of the Prognostic Role of Late Gadolinium Enhancement and Global Systolic Impairment in Left Ventricular Noncompaction. JACC Cardiovasc Imaging. 2019;12:2141–51.PubMed Grigoratos C, Barison A, Ivanov A, et al. Meta-Analysis of the Prognostic Role of Late Gadolinium Enhancement and Global Systolic Impairment in Left Ventricular Noncompaction. JACC Cardiovasc Imaging. 2019;12:2141–51.PubMed
69.
go back to reference Zhou H, Lin X, Fang L, et al. Prolonged QTc indicates the clinical severity and poor prognosis in patients with isolated left ventricular non-compaction. Int J Cardiovasc Imaging. 2017;33:2013–20.PubMed Zhou H, Lin X, Fang L, et al. Prolonged QTc indicates the clinical severity and poor prognosis in patients with isolated left ventricular non-compaction. Int J Cardiovasc Imaging. 2017;33:2013–20.PubMed
70.
go back to reference Takasaki A, Hirono K, Hata Y, Wang C, Takeda M, Yamashita JK, et al. Sarcomere gene variants act as a genetic trigger underlying the development of left ventricular noncompaction. Pediatr Res. 2018;84:733–42.PubMed Takasaki A, Hirono K, Hata Y, Wang C, Takeda M, Yamashita JK, et al. Sarcomere gene variants act as a genetic trigger underlying the development of left ventricular noncompaction. Pediatr Res. 2018;84:733–42.PubMed
71.
go back to reference Yilmaz S, Gokben S, Serdaroglu G, Eraslan C, Mancini GM, Tekin H, et al. The expanding phenotypic spectrum of ARFGEF2 gene mutation: Cardiomyopathy and movement disorder. Brain Dev. 2016;38:124–7.PubMed Yilmaz S, Gokben S, Serdaroglu G, Eraslan C, Mancini GM, Tekin H, et al. The expanding phenotypic spectrum of ARFGEF2 gene mutation: Cardiomyopathy and movement disorder. Brain Dev. 2016;38:124–7.PubMed
72.
go back to reference Hirono K, Saito K, Munkhsaikhan U, Xu F, Wang C, Lu L, et al. Familial Left Ventricular Non-Compaction Is Associated With a Rare p.V407I Variant in Bone Morphogenetic Protein 10. Circ J. 2019;83:1737–46.PubMed Hirono K, Saito K, Munkhsaikhan U, Xu F, Wang C, Lu L, et al. Familial Left Ventricular Non-Compaction Is Associated With a Rare p.V407I Variant in Bone Morphogenetic Protein 10. Circ J. 2019;83:1737–46.PubMed
73.
go back to reference Lan NSR, Fietz M, Pachter N, Paul V, Playford D. A case of vascular Ehlers-Danlos Syndrome with a cardiomyopathy and multi-system involvement. Cardiovasc Pathol. 2018;35:48–51.PubMed Lan NSR, Fietz M, Pachter N, Paul V, Playford D. A case of vascular Ehlers-Danlos Syndrome with a cardiomyopathy and multi-system involvement. Cardiovasc Pathol. 2018;35:48–51.PubMed
74.
go back to reference Olgac A, Öztoprak Ü, Kasapkara ÇS, Kılıç M, Yüksel D, Derinkuyu EB, et al. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab. 2020;33:165–70.PubMed Olgac A, Öztoprak Ü, Kasapkara ÇS, Kılıç M, Yüksel D, Derinkuyu EB, et al. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab. 2020;33:165–70.PubMed
75.
go back to reference Bohrer T, Klein HG, Elert O. Left ventricular non-compaction associated with a genetic variant of the CYP2C9 gene. Heart Lung Circ. 2006;15:269–71.PubMed Bohrer T, Klein HG, Elert O. Left ventricular non-compaction associated with a genetic variant of the CYP2C9 gene. Heart Lung Circ. 2006;15:269–71.PubMed
76.
go back to reference Fan P, Lu CX, Dong XQ, Zhu D, Yang KQ, Liu KQ, et al. A novel phenotype with splicing mutation identified in a Chinese family with desminopathy. Chin Med J (Engl). 2019;132:127–34. Fan P, Lu CX, Dong XQ, Zhu D, Yang KQ, Liu KQ, et al. A novel phenotype with splicing mutation identified in a Chinese family with desminopathy. Chin Med J (Engl). 2019;132:127–34.
77.
go back to reference Williams T, Machann W, Kühler L, Hamm H, Müller-Höcker J, Zimmer M, et al. Novel desmoplakin mutation: juvenile biventricular cardiomyopathy with left ventricular non-compaction and acantholytic palmoplantar keratoderma. Clin Res Cardiol. 2011;100:1087–93.PubMedPubMedCentral Williams T, Machann W, Kühler L, Hamm H, Müller-Höcker J, Zimmer M, et al. Novel desmoplakin mutation: juvenile biventricular cardiomyopathy with left ventricular non-compaction and acantholytic palmoplantar keratoderma. Clin Res Cardiol. 2011;100:1087–93.PubMedPubMedCentral
78.
go back to reference Ader F, De Groote P, Réant P, Rooryck-Thambo C, Dupin-Deguine D, Rambaud C, et al. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clin Genet. 2019;96:317–29.PubMed Ader F, De Groote P, Réant P, Rooryck-Thambo C, Dupin-Deguine D, Rambaud C, et al. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clin Genet. 2019;96:317–29.PubMed
79.
go back to reference Amiya E, Morita H, Hatano M, Nitta D, Hosoya Y, Maki H, et al. Fukutin gene mutations that cause left ventricular noncompaction. Int J Cardiol. 2016;222:727–9.PubMed Amiya E, Morita H, Hatano M, Nitta D, Hosoya Y, Maki H, et al. Fukutin gene mutations that cause left ventricular noncompaction. Int J Cardiol. 2016;222:727–9.PubMed
81.
go back to reference Ojala T, Nupponen I, Saloranta C, Sarkola T, Sekar P, Breilin A, et al. Fetal left ventricular noncompaction cardiomyopathy and fatal outcome due to complete deficiency of mitochondrial trifunctional protein. Eur J Pediatr. 2015;174:1689–92.PubMed Ojala T, Nupponen I, Saloranta C, Sarkola T, Sekar P, Breilin A, et al. Fetal left ventricular noncompaction cardiomyopathy and fatal outcome due to complete deficiency of mitochondrial trifunctional protein. Eur J Pediatr. 2015;174:1689–92.PubMed
82.
go back to reference Yokoyama R, Kinoshita K, Hata Y, Abe M, Matsuoka K, Hirono K, et al. A mutant HCN4 channel in a family with bradycardia, left bundle branch block, and left ventricular noncompaction. Heart Vessels. 2018;33:802–19.PubMed Yokoyama R, Kinoshita K, Hata Y, Abe M, Matsuoka K, Hirono K, et al. A mutant HCN4 channel in a family with bradycardia, left bundle branch block, and left ventricular noncompaction. Heart Vessels. 2018;33:802–19.PubMed
83.
go back to reference Codron P, Pautot V, Tassin A, Sternberg D, Letournel F, Richard P, et al. Abundant electrical myotonia and left ventricular noncompaction: Unusual features of Danon disease due to a novel mutation in LAMP2 gene. Rev Neurol (Paris). 2019;175:201–3. Codron P, Pautot V, Tassin A, Sternberg D, Letournel F, Richard P, et al. Abundant electrical myotonia and left ventricular noncompaction: Unusual features of Danon disease due to a novel mutation in LAMP2 gene. Rev Neurol (Paris). 2019;175:201–3.
84.
go back to reference Hachiya A, Motoki N, Akazawa Y, Matsuzaki S, Hirono K, Hata Y, et al. Left ventricular non-compaction revealed by aortic regurgitation due to Kawasaki disease in a boy with LDB3 mutation. Pediatr Int. 2016;58:797–800.PubMed Hachiya A, Motoki N, Akazawa Y, Matsuzaki S, Hirono K, Hata Y, et al. Left ventricular non-compaction revealed by aortic regurgitation due to Kawasaki disease in a boy with LDB3 mutation. Pediatr Int. 2016;58:797–800.PubMed
85.
go back to reference Piccolo P, Attanasio S, Secco I, Sangermano R, Strisciuglio C, Limongelli G, et al. MIB2 variants altering NOTCH signalling result in left ventricle hypertrabeculation/non-compaction and are associated with Ménétrier-like gastropathy. Hum Mol Genet. 2017;26:33–43.PubMed Piccolo P, Attanasio S, Secco I, Sangermano R, Strisciuglio C, Limongelli G, et al. MIB2 variants altering NOTCH signalling result in left ventricle hypertrabeculation/non-compaction and are associated with Ménétrier-like gastropathy. Hum Mol Genet. 2017;26:33–43.PubMed
86.
go back to reference Eldomery MK, Akdemir ZC, Vögtle FN, Charng WL, Mulica P, Rosenfeld JA, et al. MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med. 2016;8:106.PubMedPubMedCentral Eldomery MK, Akdemir ZC, Vögtle FN, Charng WL, Mulica P, Rosenfeld JA, et al. MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med. 2016;8:106.PubMedPubMedCentral
87.
go back to reference Prada CE, Jefferies JL, Grenier MA, Huth CM, Page KI, Spicer RL, et al. Malonyl coenzyme A decarboxylase deficiency: early dietary restriction and time course of cardiomyopathy. Pediatrics. 2012;130:e456–60.PubMed Prada CE, Jefferies JL, Grenier MA, Huth CM, Page KI, Spicer RL, et al. Malonyl coenzyme A decarboxylase deficiency: early dietary restriction and time course of cardiomyopathy. Pediatrics. 2012;130:e456–60.PubMed
88.
go back to reference García-García J, Fernández-García MA, Blanco-Arias P, Díaz-Maroto-Cicuendez MI, Salmerón-Martínez F, Hidalgo-Olivares VM, et al. Non-compaction cardiomyopathy and early respiratory failure in an adult symptomatic female carrier of centronuclear myopathy caused by a MTM1 mutation. Neuromuscul Disord. 2018;28:952–5.PubMed García-García J, Fernández-García MA, Blanco-Arias P, Díaz-Maroto-Cicuendez MI, Salmerón-Martínez F, Hidalgo-Olivares VM, et al. Non-compaction cardiomyopathy and early respiratory failure in an adult symptomatic female carrier of centronuclear myopathy caused by a MTM1 mutation. Neuromuscul Disord. 2018;28:952–5.PubMed
89.
go back to reference Hirono K, Hata Y, Ibuki K, Yoshimura N. Familial Ebstein's anomaly, left ventricular noncompaction, and ventricular septal defect associated with an MYH7 mutation. J Thorac Cardiovasc Surg. 2014;148:e223–6.PubMed Hirono K, Hata Y, Ibuki K, Yoshimura N. Familial Ebstein's anomaly, left ventricular noncompaction, and ventricular septal defect associated with an MYH7 mutation. J Thorac Cardiovasc Surg. 2014;148:e223–6.PubMed
91.
go back to reference Ouyang P, Saarel E, Bai Y, Luo C, Lv Q, Xu Y, et al. A de novo mutation in NKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. Clin Chim Acta. 2011;412:170–5.PubMed Ouyang P, Saarel E, Bai Y, Luo C, Lv Q, Xu Y, et al. A de novo mutation in NKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. Clin Chim Acta. 2011;412:170–5.PubMed
92.
go back to reference Bainbridge MN, Davis EE, Choi WY, Dickson A, Martinez HR, Wang M, et al. Loss of Function Mutations in NNT Are Associated With Left Ventricular Noncompaction. Circ Cardiovasc Genet. 2015;8:544–52.PubMedPubMedCentral Bainbridge MN, Davis EE, Choi WY, Dickson A, Martinez HR, Wang M, et al. Loss of Function Mutations in NNT Are Associated With Left Ventricular Noncompaction. Circ Cardiovasc Genet. 2015;8:544–52.PubMedPubMedCentral
93.
go back to reference Brndiarova M, Antonyova M, Dedinska I, Havlicekova Z, Jesenak M. Nephronophthisis type I, left ventricular non-compaction cardiomyopathy and reduced cilia motility-atypical manifestations of one disease. J Nephrol. 2020;33:183–6.PubMed Brndiarova M, Antonyova M, Dedinska I, Havlicekova Z, Jesenak M. Nephronophthisis type I, left ventricular non-compaction cardiomyopathy and reduced cilia motility-atypical manifestations of one disease. J Nephrol. 2020;33:183–6.PubMed
94.
go back to reference Rowland TJ, Graw SL, Sweet ME, Gigli M, Taylor MR, Mestroni L. Obscurin Variants in Patients With Left Ventricular Noncompaction. J Am Coll Cardiol. 2016;68:2237–8.PubMedPubMedCentral Rowland TJ, Graw SL, Sweet ME, Gigli M, Taylor MR, Mestroni L. Obscurin Variants in Patients With Left Ventricular Noncompaction. J Am Coll Cardiol. 2016;68:2237–8.PubMedPubMedCentral
95.
go back to reference Lubrano R, Versacci P, Guido G, Bellelli E, Andreoli G, Elli M. Might there be an association between polycystic kidney disease and noncompaction of the ventricular myocardium? Nephrol Dial Transplant. 2009;24:3884–6.PubMed Lubrano R, Versacci P, Guido G, Bellelli E, Andreoli G, Elli M. Might there be an association between polycystic kidney disease and noncompaction of the ventricular myocardium? Nephrol Dial Transplant. 2009;24:3884–6.PubMed
96.
go back to reference Ramond F, Janin A, Di Filippo S, Chanavat V, Chalabreysse L, Roux-Buisson N, et al. Homozygous PKP2 deletion associated with neonatal left ventricle noncompaction. Clin Genet. 2017;91:126–30.PubMed Ramond F, Janin A, Di Filippo S, Chanavat V, Chalabreysse L, Roux-Buisson N, et al. Homozygous PKP2 deletion associated with neonatal left ventricle noncompaction. Clin Genet. 2017;91:126–30.PubMed
97.
go back to reference Villa CR, Ryan TD, Collins JJ, Taylor MD, Lucky AW, Jefferies JL. Left ventricular non-compaction cardiomyopathy associated with epidermolysis bullosa simplex with muscular dystrophy and PLEC1 mutation. Neuromuscul Disord. 2015;25:165–8.PubMed Villa CR, Ryan TD, Collins JJ, Taylor MD, Lucky AW, Jefferies JL. Left ventricular non-compaction cardiomyopathy associated with epidermolysis bullosa simplex with muscular dystrophy and PLEC1 mutation. Neuromuscul Disord. 2015;25:165–8.PubMed
98.
go back to reference Abdullah S, Hawkins C, Wilson G, Yoon G, Mertens L, Carter MT, et al. Noncompaction cardiomyopathy in an infant with Walker-Warburg syndrome. Am J Med Genet A. 2017;173:3082–6.PubMed Abdullah S, Hawkins C, Wilson G, Yoon G, Mertens L, Carter MT, et al. Noncompaction cardiomyopathy in an infant with Walker-Warburg syndrome. Am J Med Genet A. 2017;173:3082–6.PubMed
99.
go back to reference Delplancq G, Tarris G, Vitobello A, Nambot S, Sorlin A, Philippe C, et al. Cardiomyopathy due to PRDM16 mutation: First description of a fetal presentation, with possible modifier genes. Am J Med Genet C Semin Med Genet. 2020;184:129–35.PubMed Delplancq G, Tarris G, Vitobello A, Nambot S, Sorlin A, Philippe C, et al. Cardiomyopathy due to PRDM16 mutation: First description of a fetal presentation, with possible modifier genes. Am J Med Genet C Semin Med Genet. 2020;184:129–35.PubMed
100.
go back to reference Kayvanpour E, Sedaghat-Hamedani F, Gi WT, Tugrul OF, Amr A, Haas J, et al. Clinical and genetic insights into non-compaction: a meta-analysis and systematic review on 7598 individuals. Clin Res Cardiol. 2019;108:1297–308.PubMed Kayvanpour E, Sedaghat-Hamedani F, Gi WT, Tugrul OF, Amr A, Haas J, et al. Clinical and genetic insights into non-compaction: a meta-analysis and systematic review on 7598 individuals. Clin Res Cardiol. 2019;108:1297–308.PubMed
101.
go back to reference Nozaki Y, Kato Y, Uike K, Yamamura K, Kikuchi M, Yasuda M, et al. Co-Phenotype of Left Ventricular Non-Compaction Cardiomyopathy and Atypical Catecholaminergic Polymorphic Ventricular Tachycardia in Association With R169Q, a Ryanodine Receptor Type 2 Missense Mutation. Circ J. 2020;84:226–34.PubMed Nozaki Y, Kato Y, Uike K, Yamamura K, Kikuchi M, Yasuda M, et al. Co-Phenotype of Left Ventricular Non-Compaction Cardiomyopathy and Atypical Catecholaminergic Polymorphic Ventricular Tachycardia in Association With R169Q, a Ryanodine Receptor Type 2 Missense Mutation. Circ J. 2020;84:226–34.PubMed
102.
go back to reference Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N, Robinson B, et al. Complex II deficiency--a case report and review of the literature. Am J Med Genet A. 2013;161A:285–94.PubMed Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N, Robinson B, et al. Complex II deficiency--a case report and review of the literature. Am J Med Genet A. 2013;161A:285–94.PubMed
103.
go back to reference Wenger TL, Chow P, Randle SC, Rosen A, Birgfeld C, Wrede J, et al. Novel findings of left ventricular non-compaction cardiomyopathy, microform cleft lip and poor vision in patient with SMC1A-associated Cornelia de Lange syndrome. Am J Med Genet A. 2017;173:414–20.PubMed Wenger TL, Chow P, Randle SC, Rosen A, Birgfeld C, Wrede J, et al. Novel findings of left ventricular non-compaction cardiomyopathy, microform cleft lip and poor vision in patient with SMC1A-associated Cornelia de Lange syndrome. Am J Med Genet A. 2017;173:414–20.PubMed
104.
go back to reference Hirono K, Ichida F, Nishio N, Ogawa-Tominaga M, Fushimi T, Feichtinger RG, et al. Mitochondrial complex deficiency by novel compound heterozygous TMEM70 variants and correlation with developmental delay, undescended testicle, and left ventricular noncompaction in a Japanese patient: A case report. Clin Case Rep. 2019;7:553–7.PubMedPubMedCentral Hirono K, Ichida F, Nishio N, Ogawa-Tominaga M, Fushimi T, Feichtinger RG, et al. Mitochondrial complex deficiency by novel compound heterozygous TMEM70 variants and correlation with developmental delay, undescended testicle, and left ventricular noncompaction in a Japanese patient: A case report. Clin Case Rep. 2019;7:553–7.PubMedPubMedCentral
105.
go back to reference Fujino M, Tsuda E, Hirono K, Nakata M, Ichida F, Hata Y, et al. The TNNI3 Arg192His mutation in a 13-year-old girl with left ventricular noncompaction. J Cardiol Cases. 2018;18:33–6.PubMedPubMedCentral Fujino M, Tsuda E, Hirono K, Nakata M, Ichida F, Hata Y, et al. The TNNI3 Arg192His mutation in a 13-year-old girl with left ventricular noncompaction. J Cardiol Cases. 2018;18:33–6.PubMedPubMedCentral
106.
go back to reference Hastings R, de Villiers CP, Hooper C, Ormondroyd L, Pagnamenta A, Lise S, et al. Combination of Whole Genome Sequencing, Linkage, and Functional Studies Implicates a Missense Mutation in Titin as a Cause of Autosomal Dominant Cardiomyopathy With Features of Left Ventricular Noncompaction. Circ Cardiovasc Genet. 2016;9:426–35.PubMedPubMedCentral Hastings R, de Villiers CP, Hooper C, Ormondroyd L, Pagnamenta A, Lise S, et al. Combination of Whole Genome Sequencing, Linkage, and Functional Studies Implicates a Missense Mutation in Titin as a Cause of Autosomal Dominant Cardiomyopathy With Features of Left Ventricular Noncompaction. Circ Cardiovasc Genet. 2016;9:426–35.PubMedPubMedCentral
Metadata
Title
Left Ventricular Noncompaction Syndrome: Genetic Insights and Therapeutic Perspectives
Authors
Josef Finsterer
Claudia Stöllberger
Publication date
01-09-2020
Publisher
Springer US
Published in
Current Cardiology Reports / Issue 9/2020
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-020-01339-5

Other articles of this Issue 9/2020

Current Cardiology Reports 9/2020 Go to the issue

Cardiac PET, CT, and MRI (P Schoenhagen and P-H Chen, Section Editor)

Radiomics in Echocardiography: Deep Learning and Echocardiographic Analysis

Management of Acute Coronary Syndromes (H Jneid, Section Editor)

Ethnic and Racial Disparities in Acute Myocardial Infarction

Echocardiography (JM Gardin and AH Waller, Section Editor)

The Role of Artificial Intelligence in Echocardiography