Skip to main content
Top
Published in: Current Cardiology Reports 7/2016

01-07-2016 | Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)

How Well Can We Control Dyslipidemias Through Lifestyle Modifications?

Authors: Gabriele Riccardi, Olga Vaccaro, Giuseppina Costabile, Angela A. Rivellese

Published in: Current Cardiology Reports | Issue 7/2016

Login to get access

Abstract

The role for lifestyle modifications to correct dyslipidemia(s) is reviewed. Dietary composition is crucial. Replacing saturated fat with MUFA or n-6 PUFA lowers plasma low-density lipoproteins (LDL) cholesterol and ameliorates the LDL/HDL ratio. Replacing saturated fat with carbohydrates has diverging effects due to the heterogeneity of carbohydrate foods. Diets rich in refined carbohydrates increase fasting and postprandial triglycerides, whereas the consumption of fiber-rich, low GI foods lowers LDL cholesterol with no detrimental effects on triglycerides. The role of polyphenols is debated: available evidence suggests a lowering effect of polyphenol-rich foods on postprandial triglycerides. As for functional foods, health claims on a cholesterol lowering effect of psyllium, beta-glucans and phytosterols are accepted by regulatory agencies. The importance of alcohol intake, weight reduction, and physical activity is discussed. In conclusion, there is evidence that lifestyle affects plasma lipid. A multifactorial approach including multiple changes with additive effects is the best option. This may also ensure feasibility and durability. The traditional Mediterranean way of life can represent a useful model.
Literature
1.
go back to reference Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169:659–69.CrossRefPubMed Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169:659–69.CrossRefPubMed
2.
go back to reference Reiner Z, Catapano AL, De Backer G, et al. ESC committee for practice guidelines (CPG) 2008-2010 and 2010-2012 committees. ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European society of cardiology (ESC) and the European atherosclerosis society (EAS). Eur Heart J. 2011;32:1769–818.CrossRefPubMed Reiner Z, Catapano AL, De Backer G, et al. ESC committee for practice guidelines (CPG) 2008-2010 and 2010-2012 committees. ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European society of cardiology (ESC) and the European atherosclerosis society (EAS). Eur Heart J. 2011;32:1769–818.CrossRefPubMed
3.
go back to reference Eckel RH, Jakicic JM, Ard JD, et al. American college of cardiology/american heart association task force on practice guidelines. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the american college of cardiology/american heart association task force on practice guidelines. Circulation. 2014;129:S76–99.CrossRefPubMed Eckel RH, Jakicic JM, Ard JD, et al. American college of cardiology/american heart association task force on practice guidelines. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the american college of cardiology/american heart association task force on practice guidelines. Circulation. 2014;129:S76–99.CrossRefPubMed
4.
go back to reference Robinson JG, Wang S, Smith BJ, Jacobson TA. Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk. J Am Coll Cardiol. 2009;53(4):316–22.CrossRefPubMed Robinson JG, Wang S, Smith BJ, Jacobson TA. Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk. J Am Coll Cardiol. 2009;53(4):316–22.CrossRefPubMed
5.
go back to reference Mensink RP, Zock PL, Kester ADM, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77:1146–55.PubMed Mensink RP, Zock PL, Kester ADM, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77:1146–55.PubMed
6.
go back to reference EFSA. Panel on dietetic products, nutrition and allergies (NDA): scientific opinion on the substantiation of health claims related to the replacement of mixtures of saturated fatty acids (SFAs) as present in foods or diets with mixtures of monounsaturated fatty acids (MUFAs) and/or mixtures of polyunsaturated fatty acids (PUFAs), and maintenance of normal blood LDL-cholesterol concentrations. EFSA J. 2011;9(4):2069.CrossRef EFSA. Panel on dietetic products, nutrition and allergies (NDA): scientific opinion on the substantiation of health claims related to the replacement of mixtures of saturated fatty acids (SFAs) as present in foods or diets with mixtures of monounsaturated fatty acids (MUFAs) and/or mixtures of polyunsaturated fatty acids (PUFAs), and maintenance of normal blood LDL-cholesterol concentrations. EFSA J. 2011;9(4):2069.CrossRef
7.
go back to reference Vessby B, Uusitupa M, Hermansen K, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia. 2001;44(3):312–9.CrossRefPubMed Vessby B, Uusitupa M, Hermansen K, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia. 2001;44(3):312–9.CrossRefPubMed
8.
go back to reference Rasmussen BM, Vessby B, Uusitupa M, et al. Effects of dietary saturated, monounsaturated, and n-3 fatty acids on blood pressure in healthy subjects. Am J Clin Nutr. 2006;83:221–6.PubMed Rasmussen BM, Vessby B, Uusitupa M, et al. Effects of dietary saturated, monounsaturated, and n-3 fatty acids on blood pressure in healthy subjects. Am J Clin Nutr. 2006;83:221–6.PubMed
9.
10.•
go back to reference Augustin LS, Kendall CW, Jenkins DJ, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the international carbohydrate quality consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25(9):795–815. This scientific consensus statement recognized the importance of postprandial glycemia in overall health, and the GI as a valid and reproducible method of classifying carbohydrate foods for this purpose. Augustin LS, Kendall CW, Jenkins DJ, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the international carbohydrate quality consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25(9):795–815. This scientific consensus statement recognized the importance of postprandial glycemia in overall health, and the GI as a valid and reproducible method of classifying carbohydrate foods for this purpose.
11.
go back to reference Riccardi G, Rivellese AA, Giacco R. Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am J Clin Nutr. 2008;87(1):269S–74.PubMed Riccardi G, Rivellese AA, Giacco R. Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am J Clin Nutr. 2008;87(1):269S–74.PubMed
12.
go back to reference Rivellese A, Riccardi G, Giacco A, et al. Reduction of risk factors for atherosclerosis in diabetic patients treated with a high-fiber diet. Prev Med. 1983;12(1):128–32.CrossRefPubMed Rivellese A, Riccardi G, Giacco A, et al. Reduction of risk factors for atherosclerosis in diabetic patients treated with a high-fiber diet. Prev Med. 1983;12(1):128–32.CrossRefPubMed
13.
go back to reference Bazzano LA, Thompson AM, Tees MT, et al. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103.CrossRefPubMed Bazzano LA, Thompson AM, Tees MT, et al. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103.CrossRefPubMed
14.
go back to reference Goff LM, Cowland DE, Hooper L, Frost GS. Low glycaemic index diets and blood lipids: a systematic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2013;23(1):1–10.CrossRefPubMed Goff LM, Cowland DE, Hooper L, Frost GS. Low glycaemic index diets and blood lipids: a systematic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2013;23(1):1–10.CrossRefPubMed
15.
go back to reference Bernstein AM, Titgemeier B, Kirkpatrick K, et al. Major cereal grain fibers and psyllium in relation to cardiovascular health. Nutrients. 2013;5:1471–87.CrossRefPubMedPubMedCentral Bernstein AM, Titgemeier B, Kirkpatrick K, et al. Major cereal grain fibers and psyllium in relation to cardiovascular health. Nutrients. 2013;5:1471–87.CrossRefPubMedPubMedCentral
16.
go back to reference Ha V, Sievenpiper JL, de Souza RJ, et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. CMAJ. 2014;186(8):E252–62.CrossRefPubMedPubMedCentral Ha V, Sievenpiper JL, de Souza RJ, et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. CMAJ. 2014;186(8):E252–62.CrossRefPubMedPubMedCentral
17.•
go back to reference Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100(6):1413–21. This is a relevant meta-analysis of recently published randomized controlled trials (RCTs), comparing ≥3 g OBG/day with an appropriate control. Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100(6):1413–21. This is a relevant meta-analysis of recently published randomized controlled trials (RCTs), comparing ≥3 g OBG/day with an appropriate control.
18.
go back to reference Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309–16.CrossRefPubMed Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309–16.CrossRefPubMed
19.
go back to reference De Natale C, Annuzzi G, Bozzetto L, et al. Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients. Diabetes Care. 2009;32(12):2168–73.CrossRefPubMedPubMedCentral De Natale C, Annuzzi G, Bozzetto L, et al. Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients. Diabetes Care. 2009;32(12):2168–73.CrossRefPubMedPubMedCentral
20.•
go back to reference Giacco R, Costabile G, Della Pepa G, et al. A whole-grain cereal-based diet lowers postprandial plasma insulin and triglyceride levels in individuals with metabolic syndrome. Nutr Metab Cardiovasc Dis. 2014;24(8):837–44. In this study, the authors have shown that in people with the metabolic syndrome, a diet based on wholegrain cereals, as compared to a diet with refined cereals, is able to reduce postprandial triglyceride levels by as much as 40%, supporting the role played by cereal fiber in modulating postprandial metabolism. Giacco R, Costabile G, Della Pepa G, et al. A whole-grain cereal-based diet lowers postprandial plasma insulin and triglyceride levels in individuals with metabolic syndrome. Nutr Metab Cardiovasc Dis. 2014;24(8):837–44. In this study, the authors have shown that in people with the metabolic syndrome, a diet based on wholegrain cereals, as compared to a diet with refined cereals, is able to reduce postprandial triglyceride levels by as much as 40%, supporting the role played by cereal fiber in modulating postprandial metabolism.
21.
go back to reference Kelly S, Frost G, Whittaker V, Summerbell C. Low glycaemic index diets for coronary heart disease. Cochrane Database Syst Rev. 2004;4, CD004467.PubMed Kelly S, Frost G, Whittaker V, Summerbell C. Low glycaemic index diets for coronary heart disease. Cochrane Database Syst Rev. 2004;4, CD004467.PubMed
22.
go back to reference Lairon D, Play B, Jourdheuil-Rahmani D. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. J Nutr Biochem. 2007;18(4):217–27.CrossRefPubMed Lairon D, Play B, Jourdheuil-Rahmani D. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. J Nutr Biochem. 2007;18(4):217–27.CrossRefPubMed
23.
24.
go back to reference Lee AK, Binongo JN, Chowdhury R, et al. Consumption of less than 10% of total energy from added sugars is associated with increasing HDL in females during adolescence: a longitudinal analysis. J Am Heart Assoc. 2014;3(1), e000615.CrossRefPubMedPubMedCentral Lee AK, Binongo JN, Chowdhury R, et al. Consumption of less than 10% of total energy from added sugars is associated with increasing HDL in females during adolescence: a longitudinal analysis. J Am Heart Assoc. 2014;3(1), e000615.CrossRefPubMedPubMedCentral
25.
go back to reference Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34.CrossRefPubMedPubMedCentral Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34.CrossRefPubMedPubMedCentral
26.•
go back to reference Chiavaroli L, de Souza RJ, Ha V, et al. Effect of fructose on established lipid targets: a systematic review and meta-analysis of controlled feeding trials. J Am Heart Assoc. 2015;4(9):e001700. This is a systematic review and meta-analysis of controlled feeding trials showing that low-to-moderate doses of fructose (∼10% total energy) have no major impact on carbohydrate and lipid metabolism, while higher doses may induce adverse effects on fasting and postprandial triglyceride levels. Chiavaroli L, de Souza RJ, Ha V, et al. Effect of fructose on established lipid targets: a systematic review and meta-analysis of controlled feeding trials. J Am Heart Assoc. 2015;4(9):e001700. This is a systematic review and meta-analysis of controlled feeding trials showing that low-to-moderate doses of fructose (∼10% total energy) have no major impact on carbohydrate and lipid metabolism, while higher doses may induce adverse effects on fasting and postprandial triglyceride levels.
27.
go back to reference Del Rio D, Rodriguez-Mateos A, Spencer JP, et al. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818–92.CrossRefPubMedPubMedCentral Del Rio D, Rodriguez-Mateos A, Spencer JP, et al. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818–92.CrossRefPubMedPubMedCentral
28.
go back to reference Bladé C, Arola L, Salvadó MJ. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol Nutr Food Res. 2010;54(1):37–59.CrossRefPubMed Bladé C, Arola L, Salvadó MJ. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol Nutr Food Res. 2010;54(1):37–59.CrossRefPubMed
29.
go back to reference Jia L, Liu X, Bai YY, et al. Short-term effect of cocoa product consumption on lipid profile: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2010;92:218–25.CrossRefPubMed Jia L, Liu X, Bai YY, et al. Short-term effect of cocoa product consumption on lipid profile: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2010;92:218–25.CrossRefPubMed
30.
go back to reference Hooper L, Kay C, Abdelhamid A, et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95:740–51.CrossRefPubMed Hooper L, Kay C, Abdelhamid A, et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95:740–51.CrossRefPubMed
31.•
go back to reference Annuzzi G, Bozzetto L, Costabile G, et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial. Am J Clin Nutr. 2014;99(3):463–71. In this randomized controlled intervention study, the authors show that diets naturally rich in polyphenols positively influence fasting and postprandial triglycerides and reduce oxidative stress, without having any effect on LDL and HDL-cholesterol. Annuzzi G, Bozzetto L, Costabile G, et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial. Am J Clin Nutr. 2014;99(3):463–71. In this randomized controlled intervention study, the authors show that diets naturally rich in polyphenols positively influence fasting and postprandial triglycerides and reduce oxidative stress, without having any effect on LDL and HDL-cholesterol.
32.•
go back to reference Bozzetto L, Annuzzi G, Pacini G, et al. Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: a controlled randomised intervention trial. Diabetologia. 2015;58(7):1551–60. This controlled intervention study shows that diets naturally rich in polyphenols reduce blood glucose response, likely by increasing early insulin secretion and insulin sensitivity. These effects may favourably influence diabetes and cardiovascular risk. Bozzetto L, Annuzzi G, Pacini G, et al. Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: a controlled randomised intervention trial. Diabetologia. 2015;58(7):1551–60. This controlled intervention study shows that diets naturally rich in polyphenols reduce blood glucose response, likely by increasing early insulin secretion and insulin sensitivity. These effects may favourably influence diabetes and cardiovascular risk.
33.
go back to reference Gylling H, Plat J, Turley S, et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis. 2014;232:346–60.CrossRefPubMed Gylling H, Plat J, Turley S, et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis. 2014;232:346–60.CrossRefPubMed
34.
go back to reference AbuMweis SS, Jew S, Ames NP. Beta-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials. Eur J Clin Nutr. 2010;64:1472–80.CrossRefPubMed AbuMweis SS, Jew S, Ames NP. Beta-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials. Eur J Clin Nutr. 2010;64:1472–80.CrossRefPubMed
35.
go back to reference FDA, Final Rule: Food Labeling; Health Claims; Soluble Fiber from certain foods and risk of coronary heart disease (Psyllium husk) February 18, 1998.; Final rule: correction: Food Labeling: Health Claims; Soluble Fiber From Certain Foods and Coronary Heart Disease; Correction (Psyllium husk) April 9, 1998. http://www.fda.gov. FDA, Final Rule: Food Labeling; Health Claims; Soluble Fiber from certain foods and risk of coronary heart disease (Psyllium husk) February 18, 1998.; Final rule: correction: Food Labeling: Health Claims; Soluble Fiber From Certain Foods and Coronary Heart Disease; Correction (Psyllium husk) April 9, 1998. http://​www.​fda.​gov.
36.
go back to reference EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of health claims related to beta-glucans and maintenance of normal blood cholesterol concentrations (ID 754, 755, 757, 801, 1465, 2934) and maintenance or achievement of a normal body weight (ID 820, 823) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 on request from the European Commission. EFSA J. 2009;7(9):1254. 18 pp.CrossRef EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of health claims related to beta-glucans and maintenance of normal blood cholesterol concentrations (ID 754, 755, 757, 801, 1465, 2934) and maintenance or achievement of a normal body weight (ID 820, 823) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 on request from the European Commission. EFSA J. 2009;7(9):1254. 18 pp.CrossRef
37.
go back to reference Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56(2):320–8.PubMed Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56(2):320–8.PubMed
38.
go back to reference Kraus WE, Houmard JA, Duscha BD, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347(19):1483–92.CrossRefPubMed Kraus WE, Houmard JA, Duscha BD, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347(19):1483–92.CrossRefPubMed
39.
go back to reference Brien SE, Ronksley PE, Turner BJ, et al. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011;22:342–57. Brien SE, Ronksley PE, Turner BJ, et al. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011;22:342–57.
40.
go back to reference Farvid MS, Ding M, Pan A, et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation. 2014;130(18):1568–78.CrossRefPubMedPubMedCentral Farvid MS, Ding M, Pan A, et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation. 2014;130(18):1568–78.CrossRefPubMedPubMedCentral
41.
go back to reference Li Y, Hruby A, Bernstein AM, et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J Am Coll Cardiol. 2015;66(14):1538–48.CrossRefPubMed Li Y, Hruby A, Bernstein AM, et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J Am Coll Cardiol. 2015;66(14):1538–48.CrossRefPubMed
42.
go back to reference Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.CrossRefPubMed Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.CrossRefPubMed
43.
go back to reference Rivellese AA, Maffettone A, Vessby B, et al. Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atherosclerosis. 2003;167:149–58.CrossRefPubMed Rivellese AA, Maffettone A, Vessby B, et al. Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atherosclerosis. 2003;167:149–58.CrossRefPubMed
44.•
go back to reference Ramprasath VR, Jenkins DJ, Lamarche B, et al. Consumption of a dietary portfolio of cholesterol lowering foods improves blood lipids without affecting concentrations of fat soluble compounds. Nutr J. 2014;13:101. In this study, a so-called “portfolio diet” that included plant sterols, viscous fiber, soy proteins, and nuts was tested, demonstrating the additive effects of lifestyle changes on the reduction of LDL cholesterol and CVD risk. Ramprasath VR, Jenkins DJ, Lamarche B, et al. Consumption of a dietary portfolio of cholesterol lowering foods improves blood lipids without affecting concentrations of fat soluble compounds. Nutr J. 2014;13:101. In this study, a so-called “portfolio diet” that included plant sterols, viscous fiber, soy proteins, and nuts was tested, demonstrating the additive effects of lifestyle changes on the reduction of LDL cholesterol and CVD risk.
45.
go back to reference Jousilahti P, Laatikainen T, Peltonen M, et al. Primary prevention and risk factor reduction in coronary heart disease mortality among working aged men and women in eastern Finland over 40 years: population based observational study. BMJ. 2016;352:i721.CrossRefPubMedPubMedCentral Jousilahti P, Laatikainen T, Peltonen M, et al. Primary prevention and risk factor reduction in coronary heart disease mortality among working aged men and women in eastern Finland over 40 years: population based observational study. BMJ. 2016;352:i721.CrossRefPubMedPubMedCentral
46.
go back to reference Valsta LM, Tapanainen H, Sundvall J, et al. Explaining the 25-year decline of serum cholesterol by dietary changes and use of lipid-lowering medication in Finland. Public Health Nutr. 2010;13(6A):932–8.CrossRefPubMed Valsta LM, Tapanainen H, Sundvall J, et al. Explaining the 25-year decline of serum cholesterol by dietary changes and use of lipid-lowering medication in Finland. Public Health Nutr. 2010;13(6A):932–8.CrossRefPubMed
Metadata
Title
How Well Can We Control Dyslipidemias Through Lifestyle Modifications?
Authors
Gabriele Riccardi
Olga Vaccaro
Giuseppina Costabile
Angela A. Rivellese
Publication date
01-07-2016
Publisher
Springer US
Published in
Current Cardiology Reports / Issue 7/2016
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-016-0744-7

Other articles of this Issue 7/2016

Current Cardiology Reports 7/2016 Go to the issue

Invasive Electrophysiology and Pacing (EK Heist, Section Editor)

Multisite Pacing for Cardiac Resynchronization Therapy: Promise and Pitfalls

Management of Acute Coronary Syndromes (AS Jaffe, Section Editor)

Spontaneous Coronary Artery Dissection

Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)

Future Lipid-Altering Therapeutic Options Targeting Residual Cardiovascular Risk

Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)

Triglyceride-Rich Lipoproteins and Remnants: Targets for Therapy?