Skip to main content
Top
Published in: Current Cardiology Reports 1/2010

01-01-2010

In Vivo Imaging and Monitoring of Transplanted Stem Cells: Clinical Applications

Author: Martin Rodriguez-Porcel

Published in: Current Cardiology Reports | Issue 1/2010

Login to get access

Abstract

Regenerative medicine using stem cells has appeared as a potential therapeutic alternative for coronary artery disease, and stem cell clinical studies are currently on their way. However, initial results of these studies have provided mixed information, in part because of the inability to correlate organ functional information with the presence/absence of transplanted stem cells. Recent advances in molecular biology and imaging have allowed the successful noninvasive monitoring of transplanted stem cells in the living subject. In this article, different imaging strategies (direct labeling, indirect labeling with reporter genes) to study the viability and biology of stem cells are discussed. In addition, the limitations of each approach and imaging modality (eg, single photon emission computed tomography, positron emission tomography, and MRI) and their requirements for clinical use are addressed. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use.
Literature
1.
go back to reference Orlic D, Kajstura J, Chimenti S, et al.: Bone marrow cells regenerate infarcted myocardium. Nature 2001, 410:701–705.CrossRefPubMed Orlic D, Kajstura J, Chimenti S, et al.: Bone marrow cells regenerate infarcted myocardium. Nature 2001, 410:701–705.CrossRefPubMed
2.
go back to reference Gimble JM, Katz AJ, Bunnell BA: Adipose-derived stem cells for regenerative medicine. Circ Res 2007, 100:1249–1260.CrossRefPubMed Gimble JM, Katz AJ, Bunnell BA: Adipose-derived stem cells for regenerative medicine. Circ Res 2007, 100:1249–1260.CrossRefPubMed
3.
go back to reference Erbs S, Linke A, Schachinger V, et al.: Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 2007, 116:366–374.CrossRefPubMed Erbs S, Linke A, Schachinger V, et al.: Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 2007, 116:366–374.CrossRefPubMed
4.
go back to reference Lunde K, Solheim S, Aakhus S, et al.: Autologous stem cell transplantation in acute myocardial infarction: the ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J 2005, 39:150–158.CrossRefPubMed Lunde K, Solheim S, Aakhus S, et al.: Autologous stem cell transplantation in acute myocardial infarction: the ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J 2005, 39:150–158.CrossRefPubMed
5.
go back to reference Wollert KC, Meyer GP, Lotz J, et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004, 364:141–148.CrossRefPubMed Wollert KC, Meyer GP, Lotz J, et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004, 364:141–148.CrossRefPubMed
6.
go back to reference Dimmeler S, Zeiher AM: Cell therapy of acute myocardial infarction: open questions. Cardiology 2009, 113:155–160.CrossRefPubMed Dimmeler S, Zeiher AM: Cell therapy of acute myocardial infarction: open questions. Cardiology 2009, 113:155–160.CrossRefPubMed
7.
go back to reference • Forrester JS, Makkar RR, Marban E: Long-term outcome of stem cell therapy for acute myocardial infarction: right results, wrong reasons. J Am Coll Cardiol 2009, 53:2270–2272. This editorial discusses the principal challenges encountered by the field of stem cell therapy for cardiac diseases. • Forrester JS, Makkar RR, Marban E: Long-term outcome of stem cell therapy for acute myocardial infarction: right results, wrong reasons. J Am Coll Cardiol 2009, 53:2270–2272. This editorial discusses the principal challenges encountered by the field of stem cell therapy for cardiac diseases.
8.
go back to reference Bengel FM, Schachinger V, Dimmeler S: Cell-based therapies and imaging in cardiology. European journal of nuclear medicine and molecular imaging. 2005, 32(Suppl 2):S404–S416.CrossRefPubMed Bengel FM, Schachinger V, Dimmeler S: Cell-based therapies and imaging in cardiology. European journal of nuclear medicine and molecular imaging. 2005, 32(Suppl 2):S404–S416.CrossRefPubMed
9.
go back to reference Thakur ML, Lavender JP, Arnot RN, et al.: Indium-111-labeled autologous leukocytes in man. J Nucl Med 1977, 18:1014–1021.PubMed Thakur ML, Lavender JP, Arnot RN, et al.: Indium-111-labeled autologous leukocytes in man. J Nucl Med 1977, 18:1014–1021.PubMed
10.
go back to reference Lin S, Xie X, Patel MR, et al.: Quantum dot imaging for embryonic stem cells. BMC Biotechnol 2007, 7:67.CrossRefPubMed Lin S, Xie X, Patel MR, et al.: Quantum dot imaging for embryonic stem cells. BMC Biotechnol 2007, 7:67.CrossRefPubMed
11.
go back to reference Bos C, Delmas Y, Desmouliere A, et al.: In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004, 233:781–789.CrossRefPubMed Bos C, Delmas Y, Desmouliere A, et al.: In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004, 233:781–789.CrossRefPubMed
12.
go back to reference Kraitchman DL, Heldman AW, Atalar E, et al.: In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003, 107:2290–2293.CrossRefPubMed Kraitchman DL, Heldman AW, Atalar E, et al.: In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003, 107:2290–2293.CrossRefPubMed
13.
go back to reference Dick AJ, Guttman MA, Raman VK, et al.: Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 2003, 108:2899–2904.CrossRefPubMed Dick AJ, Guttman MA, Raman VK, et al.: Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 2003, 108:2899–2904.CrossRefPubMed
14.
go back to reference Massoud TF, Gambhir SS: Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003, 17:545–580.CrossRefPubMed Massoud TF, Gambhir SS: Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003, 17:545–580.CrossRefPubMed
15.
go back to reference Kraitchman DL, Tatsumi M, Gilson WD, et al.: Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 2005, 112:1451–1461.CrossRefPubMed Kraitchman DL, Tatsumi M, Gilson WD, et al.: Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 2005, 112:1451–1461.CrossRefPubMed
16.
go back to reference Li Z, Suzuki Y, Huang M, et al.: Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 2008, 26:864–873.CrossRefPubMed Li Z, Suzuki Y, Huang M, et al.: Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 2008, 26:864–873.CrossRefPubMed
17.
go back to reference Chen IY, Greve JM, Gheysens O, et al.: Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Mol Imaging Biol 2009, 11:178–187 .CrossRefPubMed Chen IY, Greve JM, Gheysens O, et al.: Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Mol Imaging Biol 2009, 11:178–187 .CrossRefPubMed
18.
go back to reference Kang WJ, Kang HJ, Kim HS, et al.: Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 2006, 47:1295–1301.PubMed Kang WJ, Kang HJ, Kim HS, et al.: Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 2006, 47:1295–1301.PubMed
19.
go back to reference Chin BB, Nakamoto Y, Bulte JW, et al.: 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun 2003, 24:1149–1154.CrossRefPubMed Chin BB, Nakamoto Y, Bulte JW, et al.: 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun 2003, 24:1149–1154.CrossRefPubMed
20.
go back to reference Wu JC, Tseng JR, Gambhir SS: Molecular imaging of cardiovascular gene products. J Nucl Cardiol 2004, 11:491–505.CrossRefPubMed Wu JC, Tseng JR, Gambhir SS: Molecular imaging of cardiovascular gene products. J Nucl Cardiol 2004, 11:491–505.CrossRefPubMed
21.
go back to reference Carr HM, Smyth JV, Rooney OB, et al.: Limitations of in-vitro labeling of endothelial cells with indium-111 oxine. Cell Transplant 1995, 4:291–296.CrossRefPubMed Carr HM, Smyth JV, Rooney OB, et al.: Limitations of in-vitro labeling of endothelial cells with indium-111 oxine. Cell Transplant 1995, 4:291–296.CrossRefPubMed
22.
go back to reference Zanzonico P, Koehne G, Gallardo HF, et al.: [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity. Eur J Nucl Med Mol Imaging 2006, 33:988–997.CrossRefPubMed Zanzonico P, Koehne G, Gallardo HF, et al.: [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity. Eur J Nucl Med Mol Imaging 2006, 33:988–997.CrossRefPubMed
23.
go back to reference Inubushi M, Tamaki N: Radionuclide reporter gene imaging for cardiac gene therapy. Eur J Nucl Med Mol Imaging 2007, 34(Suppl 1):S27–S33.CrossRefPubMed Inubushi M, Tamaki N: Radionuclide reporter gene imaging for cardiac gene therapy. Eur J Nucl Med Mol Imaging 2007, 34(Suppl 1):S27–S33.CrossRefPubMed
24.
go back to reference Phelps ME: Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 2000, 97:9226–9233.CrossRefPubMed Phelps ME: Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 2000, 97:9226–9233.CrossRefPubMed
25.
go back to reference Zhuo L, Sun B, Zhang CL, et al.: Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 1997, 187:36–42.CrossRefPubMed Zhuo L, Sun B, Zhang CL, et al.: Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 1997, 187:36–42.CrossRefPubMed
26.
go back to reference Contag CH, Jenkins D, Contag PR, et al.: Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000, 2:41–52.CrossRefPubMed Contag CH, Jenkins D, Contag PR, et al.: Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000, 2:41–52.CrossRefPubMed
27.
go back to reference Krishnan M, Park JM, Cao F, et al.: Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging. FASEB J 2006, 20:106–108.PubMed Krishnan M, Park JM, Cao F, et al.: Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging. FASEB J 2006, 20:106–108.PubMed
28.
go back to reference Cao F, Wagner RA, Wilson KD, et al.: Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One 2008, 3:e3474.CrossRefPubMed Cao F, Wagner RA, Wilson KD, et al.: Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One 2008, 3:e3474.CrossRefPubMed
29.
go back to reference Wu JC, Cao F, Dutta S, et al.: Proteomic analysis of reporter genes for molecular imaging of transplanted embryonic stem cells. Proteomics 2006, 6:6234–6249.CrossRefPubMed Wu JC, Cao F, Dutta S, et al.: Proteomic analysis of reporter genes for molecular imaging of transplanted embryonic stem cells. Proteomics 2006, 6:6234–6249.CrossRefPubMed
30.
go back to reference Wang F, Dennis JE, Awadallah A, et al.: Transcriptional profiling of human mesenchymal stem cells transduced with reporter genes for imaging. Physiol Genomics 2009, 37:23–34.CrossRefPubMed Wang F, Dennis JE, Awadallah A, et al.: Transcriptional profiling of human mesenchymal stem cells transduced with reporter genes for imaging. Physiol Genomics 2009, 37:23–34.CrossRefPubMed
31.
go back to reference Terrovitis J, Kwok KF, Lautamaki R, et al.: Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 2008, 52:1652–1660.CrossRefPubMed Terrovitis J, Kwok KF, Lautamaki R, et al.: Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 2008, 52:1652–1660.CrossRefPubMed
32.
go back to reference Rodriguez-Porcel M, Gheysens O, Chen IY, et al.: Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol Ther 2005, 12:1142–1147.CrossRefPubMed Rodriguez-Porcel M, Gheysens O, Chen IY, et al.: Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol Ther 2005, 12:1142–1147.CrossRefPubMed
33.
go back to reference Wu JC, Chen IY, Sundaresan G, et al.: Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 2003, 108:1302–1325. Wu JC, Chen IY, Sundaresan G, et al.: Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 2003, 108:1302–1325.
34.
go back to reference Li Z, Wu JC, Sheikh AY, et al.: Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 2007, 116:I46–I54. Li Z, Wu JC, Sheikh AY, et al.: Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 2007, 116:I46–I54.
35.
go back to reference MacLaren DC, Gambhir SS, Satyamurthy N, et al.: Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 1999, 6:785–791.CrossRefPubMed MacLaren DC, Gambhir SS, Satyamurthy N, et al.: Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 1999, 6:785–791.CrossRefPubMed
36.
go back to reference Liang Q, Satyamurthy N, Barrio JR, et al.: Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 2001, 8:1490–1498.CrossRefPubMed Liang Q, Satyamurthy N, Barrio JR, et al.: Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 2001, 8:1490–1498.CrossRefPubMed
37.
go back to reference Chen IY, Wu JC, Min JJ, et al.: Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 2004, 109:1415–1420. Chen IY, Wu JC, Min JJ, et al.: Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 2004, 109:1415–1420.
38.
go back to reference Kang JH, Lee DS, Paeng JC, et al.: Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 2005, 46:479–483.PubMed Kang JH, Lee DS, Paeng JC, et al.: Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 2005, 46:479–483.PubMed
39.
go back to reference Cohen B, Dafni H, Meir G, et al.: Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 2005, 7:109–117.CrossRefPubMed Cohen B, Dafni H, Meir G, et al.: Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 2005, 7:109–117.CrossRefPubMed
40.
go back to reference Gilad AA, Winnard PT Jr, van Zijl PC, et al.: Developing MR reporter genes: promises and pitfalls. NMR Biomed 2007, 20:275–290.CrossRefPubMed Gilad AA, Winnard PT Jr, van Zijl PC, et al.: Developing MR reporter genes: promises and pitfalls. NMR Biomed 2007, 20:275–290.CrossRefPubMed
41.
go back to reference Zinn KR, Chaudhuri TR: The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J Nucl Med Mol Imaging 2002, 29:388–399.CrossRefPubMed Zinn KR, Chaudhuri TR: The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J Nucl Med Mol Imaging 2002, 29:388–399.CrossRefPubMed
42.
go back to reference Sharma V, Luker GD, Piwnica-Worms D: Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J Magn Reson Imaging 2002, 16:336–351.CrossRefPubMed Sharma V, Luker GD, Piwnica-Worms D: Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J Magn Reson Imaging 2002, 16:336–351.CrossRefPubMed
43.
go back to reference Zhernosekov K, Aschoff P, Filosofov D, et al.: Visualisation of a somatostatin receptor-expressing tumour with 67 Ga-DOTATOC SPECT. Eur J Nucl Med Mol Imaging 2005, 32:1129.CrossRefPubMed Zhernosekov K, Aschoff P, Filosofov D, et al.: Visualisation of a somatostatin receptor-expressing tumour with 67 Ga-DOTATOC SPECT. Eur J Nucl Med Mol Imaging 2005, 32:1129.CrossRefPubMed
44.
go back to reference Alvarez-Maya I, Navarro-Quiroga I, Meraz-Rios MA, et al.: In vivo gene transfer to dopamine neurons of rat substantia nigra via the high-affinity neurotensin receptor. Mol Med 2001, 7:186–192.PubMed Alvarez-Maya I, Navarro-Quiroga I, Meraz-Rios MA, et al.: In vivo gene transfer to dopamine neurons of rat substantia nigra via the high-affinity neurotensin receptor. Mol Med 2001, 7:186–192.PubMed
45.
go back to reference Lee CH, Wu CL, Shiau AL: Hypoxia-induced cytosine deaminase gene expression for cancer therapy. Hum Gene Ther 2007, 18:27–38.CrossRefPubMed Lee CH, Wu CL, Shiau AL: Hypoxia-induced cytosine deaminase gene expression for cancer therapy. Hum Gene Ther 2007, 18:27–38.CrossRefPubMed
46.
go back to reference Bloor CM, White FC, Roth DM: The pig as a model of myocardial ischemia and gradual coronary artery occlusion. In Swine as Models in Biomedical Research. Edited by Swindle MM, Moody DC, Phillips LD. Ames, Iowa: Iowa State University Press; 1992:163–175. Bloor CM, White FC, Roth DM: The pig as a model of myocardial ischemia and gradual coronary artery occlusion. In Swine as Models in Biomedical Research. Edited by Swindle MM, Moody DC, Phillips LD. Ames, Iowa: Iowa State University Press; 1992:163–175.
47.
go back to reference Rodriguez-Porcel M, Brinton TJ, Chen IY, et al.: Reporter gene imaging following percutaneous delivery in swine moving toward clinical applications. J Am Coll Cardiol 2008, 51:595–597.CrossRefPubMed Rodriguez-Porcel M, Brinton TJ, Chen IY, et al.: Reporter gene imaging following percutaneous delivery in swine moving toward clinical applications. J Am Coll Cardiol 2008, 51:595–597.CrossRefPubMed
48.
go back to reference Bengel FM, Anton M, Richter T, et al.: Noninvasive imaging of transgene expression by use of positron emission tomography in a pig model of myocardial gene transfer. Circulation 2003, 108:2127–2133.CrossRefPubMed Bengel FM, Anton M, Richter T, et al.: Noninvasive imaging of transgene expression by use of positron emission tomography in a pig model of myocardial gene transfer. Circulation 2003, 108:2127–2133.CrossRefPubMed
49.
go back to reference •• Willmann JK, Paulmurugan R, Rodriguez-Porcel M, et al.: Imaging gene expression in human mesenchymal stem cells: from small to large animals. Radiology 2009, 252:117–127. In this study, the researchers used a PET reporter gene strategy to image, for the first time, stem cells after transplantation to the myocardium in a swine animal model. •• Willmann JK, Paulmurugan R, Rodriguez-Porcel M, et al.: Imaging gene expression in human mesenchymal stem cells: from small to large animals. Radiology 2009, 252:117–127. In this study, the researchers used a PET reporter gene strategy to image, for the first time, stem cells after transplantation to the myocardium in a swine animal model.
50.
go back to reference •• Yaghoubi SS, Jensen MC, Satyamurthy N, et al.: Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 2009, 6:53–58. The study by Yaghoubi et al. constitutes the first to image transplanted cells in a patient noninvasively. In this study, lymphocytic T cells, carrying a PET reporter gene, were delivered to patients with glioma and cell status imaged after the administration of the appropriate reporter probe. •• Yaghoubi SS, Jensen MC, Satyamurthy N, et al.: Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 2009, 6:53–58. The study by Yaghoubi et al. constitutes the first to image transplanted cells in a patient noninvasively. In this study, lymphocytic T cells, carrying a PET reporter gene, were delivered to patients with glioma and cell status imaged after the administration of the appropriate reporter probe.
Metadata
Title
In Vivo Imaging and Monitoring of Transplanted Stem Cells: Clinical Applications
Author
Martin Rodriguez-Porcel
Publication date
01-01-2010
Publisher
Current Science Inc.
Published in
Current Cardiology Reports / Issue 1/2010
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-009-0073-1

Other articles of this Issue 1/2010

Current Cardiology Reports 1/2010 Go to the issue