Skip to main content
Top
Published in: Current Atherosclerosis Reports 3/2021

01-03-2021 | Arterial Occlusive Disease | Vascular Biology (H. Pownall, Section Editor)

The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis

Authors: Xian-Cheng Jiang, Yang Yu

Published in: Current Atherosclerosis Reports | Issue 3/2021

Login to get access

Abstract

Purpose of Review

Phospholipid transfer protein (PLTP), a member of lipid transfer protein family, is an important protein involved in lipid metabolism in the circulation. This article reviews recent PLTP research progresses, involving lipoprotein metabolism and atherogenesis.

Recent Findings

PLTP activity influences atherogenic and anti-atherogenic lipoprotein levels. Human serum PLTP activity is a risk factor for human cardiovascular disease and is an independent predictor of all-cause mortality. PLTP deficiency reduces VLDL and LDL levels and attenuates atherosclerosis in mouse models, while PLTP overexpression exerts an opposite effect. Both PLTP deficiency and overexpression result in reduction of HDL which has different size, inflammatory index, and lipid composition. Moreover, although both PLTP deficiency and overexpression reduce cholesterol efflux capacity, but this effect has no impact in macrophage reverse cholesterol transport in mice. Furthermore, PLTP activity is related with metabolic syndrome, thrombosis, and inflammation.

Summary

PLTP could be target for the treatment of dyslipidemia and atherosclerosis, although some potential off-target effects should be noted.
Literature
1.
go back to reference Bruce C, Beamer LJ, Tall AR. The implications of the structure of the bactericidal/permeability-increasing protein on the lipid-transfer function of the cholesteryl ester transfer protein. Curr Opin Struct Biol. 1998;8:426–34.PubMedCrossRef Bruce C, Beamer LJ, Tall AR. The implications of the structure of the bactericidal/permeability-increasing protein on the lipid-transfer function of the cholesteryl ester transfer protein. Curr Opin Struct Biol. 1998;8:426–34.PubMedCrossRef
2.
go back to reference Kleiger G, Beamer LJ, Grothe R, Mallick P, Eisenberg D. The 1.7 A crystal structure of BPI: a study of how two dissimilar amino acid sequences can adopt the same fold. J Mol Biol. 2000;299:1019–34.PubMedCrossRef Kleiger G, Beamer LJ, Grothe R, Mallick P, Eisenberg D. The 1.7 A crystal structure of BPI: a study of how two dissimilar amino acid sequences can adopt the same fold. J Mol Biol. 2000;299:1019–34.PubMedCrossRef
3.
go back to reference Qiu X, Mistry A, Ammirati MJ, Chrunyk BA, Clark RW, Cong Y, et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat Struct Mol Biol. 2007;14:106–13.PubMedCrossRef Qiu X, Mistry A, Ammirati MJ, Chrunyk BA, Clark RW, Cong Y, et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat Struct Mol Biol. 2007;14:106–13.PubMedCrossRef
4.
go back to reference Eckert JK, Kim YJ, Kim JI, Gurtler K, Oh DY, Sur S, et al. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent mutation that impairs innate immunity. Immunity. 2013;39:647–60.PubMedCrossRef Eckert JK, Kim YJ, Kim JI, Gurtler K, Oh DY, Sur S, et al. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent mutation that impairs innate immunity. Immunity. 2013;39:647–60.PubMedCrossRef
5.
go back to reference Day JR, Albers JJ, Lofton-Day CE, Gilbert TL, Ching AF, Grant FJ, et al. Complete cDNA encoding human phospholipid transfer protein from human endothelial cells. J Biol Chem. 1994;269:9388–91.PubMedCrossRef Day JR, Albers JJ, Lofton-Day CE, Gilbert TL, Ching AF, Grant FJ, et al. Complete cDNA encoding human phospholipid transfer protein from human endothelial cells. J Biol Chem. 1994;269:9388–91.PubMedCrossRef
6.
go back to reference Jiang XC, Bruce C. Regulation of murine plasma phospholipid transfer protein activity and mRNA levels by lipopolysaccharide and high cholesterol diet. J Biol Chem. 1995;270:17133–8.PubMedCrossRef Jiang XC, Bruce C. Regulation of murine plasma phospholipid transfer protein activity and mRNA levels by lipopolysaccharide and high cholesterol diet. J Biol Chem. 1995;270:17133–8.PubMedCrossRef
7.
go back to reference Massey JB, Hickson D, She HS, Sparrow JT, Via DP, Gotto AM Jr, et al. Measurement and prediction of the rates of spontaneous transfer of phospholipids between plasma lipoproteins. Biochim Biophys Acta. 1984;794:274–80.PubMedCrossRef Massey JB, Hickson D, She HS, Sparrow JT, Via DP, Gotto AM Jr, et al. Measurement and prediction of the rates of spontaneous transfer of phospholipids between plasma lipoproteins. Biochim Biophys Acta. 1984;794:274–80.PubMedCrossRef
8.
go back to reference Yu Y, Guo S, Feng Y, Feng L, Cui Y, Song G, et al. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. Lipids. 2014;49:183–90.PubMedCrossRef Yu Y, Guo S, Feng Y, Feng L, Cui Y, Song G, et al. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. Lipids. 2014;49:183–90.PubMedCrossRef
9.
go back to reference Desrumaux CM, Mak PA, Boisvert WA, Masson D, Stupack D, Jauhiainen M, et al. Phospholipid transfer protein is present in human atherosclerotic lesions and is expressed by macrophages and foam cells. J Lipid Res. 2003;44:1453–61.PubMedCrossRef Desrumaux CM, Mak PA, Boisvert WA, Masson D, Stupack D, Jauhiainen M, et al. Phospholipid transfer protein is present in human atherosclerotic lesions and is expressed by macrophages and foam cells. J Lipid Res. 2003;44:1453–61.PubMedCrossRef
10.
go back to reference O’Brien KD, Vuletic S, McDonald TO, Wolfbauer G, Lewis K, Tu AY, et al. Cell-associated and extracellular phospholipid transfer protein in human coronary atherosclerosis. Circulation. 2003;108:270–4.PubMedCrossRef O’Brien KD, Vuletic S, McDonald TO, Wolfbauer G, Lewis K, Tu AY, et al. Cell-associated and extracellular phospholipid transfer protein in human coronary atherosclerosis. Circulation. 2003;108:270–4.PubMedCrossRef
11.
go back to reference Oka T, Kujiraoka T, Ito M, Egashira T, Takahashi S, Nanjee MN, et al. Distribution of phospholipid transfer protein in human plasma: presence of two forms of phospholipid transfer protein, one catalytically active and the other inactive. J Lipid Res. 2000;41:1651–7.PubMedCrossRef Oka T, Kujiraoka T, Ito M, Egashira T, Takahashi S, Nanjee MN, et al. Distribution of phospholipid transfer protein in human plasma: presence of two forms of phospholipid transfer protein, one catalytically active and the other inactive. J Lipid Res. 2000;41:1651–7.PubMedCrossRef
12.
go back to reference Cheung MC, Albers JJ. Active plasma phospholipid transfer protein is associated with apoA-I- but not apoE-containing lipoproteins. J Lipid Res. 2006;47:1315–21.PubMedCrossRef Cheung MC, Albers JJ. Active plasma phospholipid transfer protein is associated with apoA-I- but not apoE-containing lipoproteins. J Lipid Res. 2006;47:1315–21.PubMedCrossRef
13.
go back to reference Siggins S, Karkkainen M, Tenhunen J, Metso J, Tahvanainen E, Olkkonen VM, et al. Quantitation of the active and low-active forms of human plasma phospholipid transfer protein by ELISA. J Lipid Res. 2004;45:387–95.PubMedCrossRef Siggins S, Karkkainen M, Tenhunen J, Metso J, Tahvanainen E, Olkkonen VM, et al. Quantitation of the active and low-active forms of human plasma phospholipid transfer protein by ELISA. J Lipid Res. 2004;45:387–95.PubMedCrossRef
14.
go back to reference Yazdanyar A, Jiang XC. Liver phospholipid transfer protein (PLTP) expression with a PLTP-null background promotes very low-density lipoprotein production in mice. Hepatology. 2012;56:576–84.PubMedCrossRef Yazdanyar A, Jiang XC. Liver phospholipid transfer protein (PLTP) expression with a PLTP-null background promotes very low-density lipoprotein production in mice. Hepatology. 2012;56:576–84.PubMedCrossRef
15.
go back to reference Vikstedt R, Ye D, Metso J, Hildebrand RB, Van Berkel TJ, Ehnholm C, et al. Macrophage phospholipid transfer protein contributes significantly to total plasma phospholipid transfer activity and its deficiency leads to diminished atherosclerotic lesion development. Arterioscler Thromb Vasc Biol. 2007;27:578–86.PubMedCrossRef Vikstedt R, Ye D, Metso J, Hildebrand RB, Van Berkel TJ, Ehnholm C, et al. Macrophage phospholipid transfer protein contributes significantly to total plasma phospholipid transfer activity and its deficiency leads to diminished atherosclerotic lesion development. Arterioscler Thromb Vasc Biol. 2007;27:578–86.PubMedCrossRef
16.
go back to reference Jiang H, Yazdanyar A, Lou B, Chen Y, Zhao X, Li R, et al. Adipocyte phospholipid transfer protein and lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2015;35:316–22.PubMedCrossRef Jiang H, Yazdanyar A, Lou B, Chen Y, Zhao X, Li R, et al. Adipocyte phospholipid transfer protein and lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2015;35:316–22.PubMedCrossRef
17.
go back to reference Sponton CH, Hosono T, Taura J, Jedrychowski MP, Yoneshiro T, Wang Q, et al. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication. EMBO Rep. 2020;21:e49828.PubMedCrossRefPubMedCentral Sponton CH, Hosono T, Taura J, Jedrychowski MP, Yoneshiro T, Wang Q, et al. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication. EMBO Rep. 2020;21:e49828.PubMedCrossRefPubMedCentral
18.
go back to reference Jiang XC, D’Armiento J, Mallampalli RK, Mar J, Yan SF, Lin M. Expression of plasma phospholipid transfer protein mRNA in normal and emphysematous lungs and regulation by hypoxia. J Biol Chem. 1998;273:15714–8.PubMedCrossRef Jiang XC, D’Armiento J, Mallampalli RK, Mar J, Yan SF, Lin M. Expression of plasma phospholipid transfer protein mRNA in normal and emphysematous lungs and regulation by hypoxia. J Biol Chem. 1998;273:15714–8.PubMedCrossRef
20.
go back to reference Vuletic S, Kennedy H, Albers JJ, Killestein J, Vrenken H, Lutjohann D, et al. Cerebrospinal fluid apolipoprotein E and phospholipid transfer protein activity are reduced in multiple sclerosis; relationships with the brain MRI and CSF lipid variables. Mult Scler Relat Disord. 2014;3:533–41.PubMedPubMedCentralCrossRef Vuletic S, Kennedy H, Albers JJ, Killestein J, Vrenken H, Lutjohann D, et al. Cerebrospinal fluid apolipoprotein E and phospholipid transfer protein activity are reduced in multiple sclerosis; relationships with the brain MRI and CSF lipid variables. Mult Scler Relat Disord. 2014;3:533–41.PubMedPubMedCentralCrossRef
21.
go back to reference Vuletic S, Jin LW, Marcovina SM, Peskind ER, Moller T, Albers JJ. Widespread distribution of PLTP in human CNS: evidence for PLTP synthesis by glia and neurons, and increased levels in Alzheimer’s disease. J Lipid Res. 2003;44:1113–23.PubMedCrossRef Vuletic S, Jin LW, Marcovina SM, Peskind ER, Moller T, Albers JJ. Widespread distribution of PLTP in human CNS: evidence for PLTP synthesis by glia and neurons, and increased levels in Alzheimer’s disease. J Lipid Res. 2003;44:1113–23.PubMedCrossRef
22.
go back to reference Vuletic S, Peskind ER, Marcovina SM, Quinn JF, Cheung MC, Kennedy H, et al. Reduced CSF PLTP activity in Alzheimer’s disease and other neurologic diseases; PLTP induces ApoE secretion in primary human astrocytes in vitro. J Neurosci Res. 2005;80:406–13.PubMedCrossRef Vuletic S, Peskind ER, Marcovina SM, Quinn JF, Cheung MC, Kennedy H, et al. Reduced CSF PLTP activity in Alzheimer’s disease and other neurologic diseases; PLTP induces ApoE secretion in primary human astrocytes in vitro. J Neurosci Res. 2005;80:406–13.PubMedCrossRef
23.
go back to reference Desrumaux C, Pisoni A, Meunier J, Deckert V, Athias A, Perrier V, et al. Increased amyloid-beta peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology. 2013;38:817–25.PubMedPubMedCentralCrossRef Desrumaux C, Pisoni A, Meunier J, Deckert V, Athias A, Perrier V, et al. Increased amyloid-beta peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology. 2013;38:817–25.PubMedPubMedCentralCrossRef
24.
go back to reference Chirackal Manavalan AP, Kober A, Metso J, Lang I, Becker T, Hasslitzer K, et al. Phospholipid transfer protein is expressed in cerebrovascular endothelial cells and involved in high density lipoprotein biogenesis and remodeling at the blood-brain barrier. J Biol Chem. 2014;289:4683–98.PubMedCrossRef Chirackal Manavalan AP, Kober A, Metso J, Lang I, Becker T, Hasslitzer K, et al. Phospholipid transfer protein is expressed in cerebrovascular endothelial cells and involved in high density lipoprotein biogenesis and remodeling at the blood-brain barrier. J Biol Chem. 2014;289:4683–98.PubMedCrossRef
25.
go back to reference Zhou T, He Q, Tong Y, Zhan R, Xu F, Fan D, et al. Phospholipid transfer protein (PLTP) deficiency impaired blood-brain barrier integrity by increasing cerebrovascular oxidative stress. Biochem Biophys Res Commun. 2014;445:352–6.PubMedCrossRef Zhou T, He Q, Tong Y, Zhan R, Xu F, Fan D, et al. Phospholipid transfer protein (PLTP) deficiency impaired blood-brain barrier integrity by increasing cerebrovascular oxidative stress. Biochem Biophys Res Commun. 2014;445:352–6.PubMedCrossRef
26.
go back to reference Tu AY, Albers JJ. Functional analysis of the transcriptional activity of the mouse phospholipid transfer protein gene. Biochem Biophys Res Commun. 2001;287:921–6.PubMedCrossRef Tu AY, Albers JJ. Functional analysis of the transcriptional activity of the mouse phospholipid transfer protein gene. Biochem Biophys Res Commun. 2001;287:921–6.PubMedCrossRef
27.
go back to reference Cao G, Beyer TP, Yang XP, Schmidt RJ, Zhang Y, Bensch WR, et al. Phospholipid transfer protein is regulated by liver X receptors in vivo. J Biol Chem. 2002;277:39561–5.PubMedCrossRef Cao G, Beyer TP, Yang XP, Schmidt RJ, Zhang Y, Bensch WR, et al. Phospholipid transfer protein is regulated by liver X receptors in vivo. J Biol Chem. 2002;277:39561–5.PubMedCrossRef
28.
go back to reference Laffitte BA, Joseph SB, Chen M, Castrillo A, Repa J, Wilpitz D, et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol. 2003;23:2182–91.PubMedPubMedCentralCrossRef Laffitte BA, Joseph SB, Chen M, Castrillo A, Repa J, Wilpitz D, et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol. 2003;23:2182–91.PubMedPubMedCentralCrossRef
29.
go back to reference Urizar NL, Dowhan DH, Moore DD. The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem. 2000;275:39313–7.PubMedCrossRef Urizar NL, Dowhan DH, Moore DD. The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem. 2000;275:39313–7.PubMedCrossRef
30.
go back to reference Riemens SC, van Tol A, Sluiter WJ, Dullaart RP. Plasma phospholipid transfer protein activity is lowered by 24-h insulin and acipimox administration: blunted response to insulin in type 2 diabetic patients. Diabetes. 1999;48:1631–7.PubMedCrossRef Riemens SC, van Tol A, Sluiter WJ, Dullaart RP. Plasma phospholipid transfer protein activity is lowered by 24-h insulin and acipimox administration: blunted response to insulin in type 2 diabetic patients. Diabetes. 1999;48:1631–7.PubMedCrossRef
31.
go back to reference Lalanne F, Motta C, Pafumi Y, Lairon D, Ponsin G. Modulation of the phospholipid transfer protein-mediated transfer of phospholipids by diacylglycerols. J Lipid Res. 2001;42:142–9.PubMedCrossRef Lalanne F, Motta C, Pafumi Y, Lairon D, Ponsin G. Modulation of the phospholipid transfer protein-mediated transfer of phospholipids by diacylglycerols. J Lipid Res. 2001;42:142–9.PubMedCrossRef
32.
go back to reference Jin W, Wang X, Millar JS, Quertermous T, Rothblat GH, Glick JM, et al. Hepatic proprotein convertases modulate HDL metabolism. Cell Metab. 2007;6:129–36.PubMedPubMedCentralCrossRef Jin W, Wang X, Millar JS, Quertermous T, Rothblat GH, Glick JM, et al. Hepatic proprotein convertases modulate HDL metabolism. Cell Metab. 2007;6:129–36.PubMedPubMedCentralCrossRef
33.
go back to reference • Yu Y, Lei X, Jiang H, Li Z, Creemers JWM, Zhang M, et al. Prodomain of furin promotes phospholipid transfer protein proteasomal degradation in hepatocytes. J Am Heart Assoc. 2018;7(9):e008526. This paper indicated that profurin-mediated PLTP hepatocyte intracellular degradation plays an important role in VLDL production. • Yu Y, Lei X, Jiang H, Li Z, Creemers JWM, Zhang M, et al. Prodomain of furin promotes phospholipid transfer protein proteasomal degradation in hepatocytes. J Am Heart Assoc. 2018;7(9):e008526. This paper indicated that profurin-mediated PLTP hepatocyte intracellular degradation plays an important role in VLDL production.
34.
go back to reference Guo LL, Chen YJ, Wang T, An J, Wang CN, Shen YC, et al. Ox-LDL-induced TGF-beta1 production in human alveolar epithelial cells: involvement of the Ras/ERK/PLTP pathway. J Cell Physiol. 2012;227:3185–91.PubMedCrossRef Guo LL, Chen YJ, Wang T, An J, Wang CN, Shen YC, et al. Ox-LDL-induced TGF-beta1 production in human alveolar epithelial cells: involvement of the Ras/ERK/PLTP pathway. J Cell Physiol. 2012;227:3185–91.PubMedCrossRef
35.
go back to reference Chai XM, Li YL, Chen H, Guo SL, Shui LL, Chen YJ. Cigarette smoke extract alters the cell cycle via the phospholipid transfer protein/transforming growth factor-beta1/CyclinD1/CDK4 pathway. Eur J Pharmacol. 2016;786:85–93.PubMedCrossRef Chai XM, Li YL, Chen H, Guo SL, Shui LL, Chen YJ. Cigarette smoke extract alters the cell cycle via the phospholipid transfer protein/transforming growth factor-beta1/CyclinD1/CDK4 pathway. Eur J Pharmacol. 2016;786:85–93.PubMedCrossRef
36.
go back to reference Schlitt A, Bickel C, Thumma P, Blankenberg S, Rupprecht HJ, Meyer J, et al. High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23:1857–62.PubMedCrossRef Schlitt A, Bickel C, Thumma P, Blankenberg S, Rupprecht HJ, Meyer J, et al. High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23:1857–62.PubMedCrossRef
37.
go back to reference de Vries R, Dallinga-Thie GM, Smit AJ, Wolffenbuttel BH, van Tol A, Dullaart RP. Elevated plasma phospholipid transfer protein activity is a determinant of carotid intima-media thickness in type 2 diabetes mellitus. Diabetologia. 2006;49:398–404.PubMedCrossRef de Vries R, Dallinga-Thie GM, Smit AJ, Wolffenbuttel BH, van Tol A, Dullaart RP. Elevated plasma phospholipid transfer protein activity is a determinant of carotid intima-media thickness in type 2 diabetes mellitus. Diabetologia. 2006;49:398–404.PubMedCrossRef
38.
go back to reference Dullaart RP, van Tol A, Dallinga-Thie GM. Phospholipid transfer protein, an emerging cardiometabolic risk marker: is it time to intervene? Atherosclerosis. 2013;228:38–41.PubMedCrossRef Dullaart RP, van Tol A, Dallinga-Thie GM. Phospholipid transfer protein, an emerging cardiometabolic risk marker: is it time to intervene? Atherosclerosis. 2013;228:38–41.PubMedCrossRef
39.
go back to reference Colhoun HM, Scheek LM, Rubens MB, Van Gent T, Underwood SR, Fuller JH, et al. Lipid transfer protein activities in type 1 diabetic patients without renal failure and nondiabetic control subjects and their association with coronary artery calcification. Diabetes. 2001;50:652–9.PubMedCrossRef Colhoun HM, Scheek LM, Rubens MB, Van Gent T, Underwood SR, Fuller JH, et al. Lipid transfer protein activities in type 1 diabetic patients without renal failure and nondiabetic control subjects and their association with coronary artery calcification. Diabetes. 2001;50:652–9.PubMedCrossRef
40.
go back to reference Schlitt A, Blankenberg S, Bickel C, Lackner KJ, Heine GH, Buerke M, et al. PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J Lipid Res. 2009;50:723–9.PubMedPubMedCentralCrossRef Schlitt A, Blankenberg S, Bickel C, Lackner KJ, Heine GH, Buerke M, et al. PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J Lipid Res. 2009;50:723–9.PubMedPubMedCentralCrossRef
41.
go back to reference Vergeer M, Boekholdt SM, Sandhu MS, Ricketts SL, Wareham NJ, Brown MJ, et al. Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation. 2010;122:470–7.PubMedCrossRef Vergeer M, Boekholdt SM, Sandhu MS, Ricketts SL, Wareham NJ, Brown MJ, et al. Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation. 2010;122:470–7.PubMedCrossRef
42.
go back to reference Robins SJ, Lyass A, Brocia RW, Massaro JM, Vasan RS. Plasma lipid transfer proteins and cardiovascular disease. The Framingham Heart Study Atherosclerosis. 2013;228:230–6.PubMed Robins SJ, Lyass A, Brocia RW, Massaro JM, Vasan RS. Plasma lipid transfer proteins and cardiovascular disease. The Framingham Heart Study Atherosclerosis. 2013;228:230–6.PubMed
43.
go back to reference Cavusoglu E, Marmur JD, Chhabra S, Chopra V, Eng C, Jiang XC. Relation of baseline plasma phospholipid transfer protein (PLTP) activity to left ventricular systolic dysfunction in patients referred for coronary angiography. Atherosclerosis. 2009;207:261–5.PubMedPubMedCentralCrossRef Cavusoglu E, Marmur JD, Chhabra S, Chopra V, Eng C, Jiang XC. Relation of baseline plasma phospholipid transfer protein (PLTP) activity to left ventricular systolic dysfunction in patients referred for coronary angiography. Atherosclerosis. 2009;207:261–5.PubMedPubMedCentralCrossRef
44.
go back to reference Chen X, Sun A, Zou Y, Ge J, Kamran H, Jiang XC, et al. High PLTP activity is associated with depressed left ventricular systolic function. Atherosclerosis. 2013;228:438–42.PubMedCrossRef Chen X, Sun A, Zou Y, Ge J, Kamran H, Jiang XC, et al. High PLTP activity is associated with depressed left ventricular systolic function. Atherosclerosis. 2013;228:438–42.PubMedCrossRef
45.
go back to reference Cavusoglu E, Marmur JD, Chhabra S, Hojjati MR, Yanamadala S, Chopra V, et al. Elevated baseline plasma phospholipid protein (PLTP) levels are an independent predictor of long-term all-cause mortality in patients with diabetes mellitus and known or suspected coronary artery disease. Atherosclerosis. 2015;239:503–8.PubMedPubMedCentralCrossRef Cavusoglu E, Marmur JD, Chhabra S, Hojjati MR, Yanamadala S, Chopra V, et al. Elevated baseline plasma phospholipid protein (PLTP) levels are an independent predictor of long-term all-cause mortality in patients with diabetes mellitus and known or suspected coronary artery disease. Atherosclerosis. 2015;239:503–8.PubMedPubMedCentralCrossRef
46.
go back to reference Yatsuya H, Tamakoshi K, Hattori H, Otsuka R, Wada K, Zhang H, et al. Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases. Circ J. 2004;68:11–6.PubMedCrossRef Yatsuya H, Tamakoshi K, Hattori H, Otsuka R, Wada K, Zhang H, et al. Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases. Circ J. 2004;68:11–6.PubMedCrossRef
47.
go back to reference Huuskonen J, Ekstrom M, Tahvanainen E, Vainio A, Metso J, Pussinen P, et al. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis. 2000;151:451–61.PubMedCrossRef Huuskonen J, Ekstrom M, Tahvanainen E, Vainio A, Metso J, Pussinen P, et al. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis. 2000;151:451–61.PubMedCrossRef
48.
go back to reference Dullaart RP, De Vries R, Scheek L, Borggreve SE, Van Gent T, Dallinga-Thie GM, et al. Type 2 diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations. Scand J Clin Lab Invest. 2004;64:205–15.PubMedCrossRef Dullaart RP, De Vries R, Scheek L, Borggreve SE, Van Gent T, Dallinga-Thie GM, et al. Type 2 diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations. Scand J Clin Lab Invest. 2004;64:205–15.PubMedCrossRef
49.
go back to reference Ruhling K, Lang A, Richard F, Van Tol A, Eisele B, Herzberg V, et al. Net mass transfer of plasma cholesteryl esters and lipid transfer proteins in normolipidemic patients with peripheral vascular disease. Metabolism. 1999;48:1361–6.PubMedCrossRef Ruhling K, Lang A, Richard F, Van Tol A, Eisele B, Herzberg V, et al. Net mass transfer of plasma cholesteryl esters and lipid transfer proteins in normolipidemic patients with peripheral vascular disease. Metabolism. 1999;48:1361–6.PubMedCrossRef
50.
go back to reference Schgoer W, Mueller T, Jauhiainen M, Wehinger A, Gander R, Tancevski I, et al. Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis. Atherosclerosis. 2008;196:219–26.PubMedCrossRef Schgoer W, Mueller T, Jauhiainen M, Wehinger A, Gander R, Tancevski I, et al. Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis. Atherosclerosis. 2008;196:219–26.PubMedCrossRef
51.
go back to reference Jiang XC, Qin S, Qiao C, Kawano K, Lin M, Skold A, et al. Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency. Nat Med. 2001;7:847–52.PubMedCrossRef Jiang XC, Qin S, Qiao C, Kawano K, Lin M, Skold A, et al. Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency. Nat Med. 2001;7:847–52.PubMedCrossRef
52.
go back to reference Yang XP, Yan D, Qiao C, Liu RJ, Chen JG, Li J, et al. Increased atherosclerotic lesions in apoE mice with plasma phospholipid transfer protein overexpression. Arterioscler Thromb Vasc Biol. 2003;23:1601–7.PubMedCrossRef Yang XP, Yan D, Qiao C, Liu RJ, Chen JG, Li J, et al. Increased atherosclerotic lesions in apoE mice with plasma phospholipid transfer protein overexpression. Arterioscler Thromb Vasc Biol. 2003;23:1601–7.PubMedCrossRef
53.
go back to reference van Haperen R, van Tol A, van Gent T, Scheek L, Visser P, van der Kamp A, et al. Increased risk of atherosclerosis by elevated plasma levels of phospholipid transfer protein. J Biol Chem. 2002;277:48938–43.PubMedCrossRef van Haperen R, van Tol A, van Gent T, Scheek L, Visser P, van der Kamp A, et al. Increased risk of atherosclerosis by elevated plasma levels of phospholipid transfer protein. J Biol Chem. 2002;277:48938–43.PubMedCrossRef
54.
go back to reference van Haperen R, van Gent T, van Tol A, de Crom R. Elevated expression of PLTP is atherogenic in apolipoprotein E deficient mice. Atherosclerosis. 2013;227:37–42.PubMedCrossRef van Haperen R, van Gent T, van Tol A, de Crom R. Elevated expression of PLTP is atherogenic in apolipoprotein E deficient mice. Atherosclerosis. 2013;227:37–42.PubMedCrossRef
55.
go back to reference Desrumaux C, Deckert V, Lemaire-Ewing S, Mossiat C, Athias A, Vandroux D, et al. Plasma phospholipid transfer protein deficiency in mice is associated with a reduced thrombotic response to acute intravascular oxidative stress. Arterioscler Thromb Vasc Biol. 2010;30:2452–7.PubMedCrossRef Desrumaux C, Deckert V, Lemaire-Ewing S, Mossiat C, Athias A, Vandroux D, et al. Plasma phospholipid transfer protein deficiency in mice is associated with a reduced thrombotic response to acute intravascular oxidative stress. Arterioscler Thromb Vasc Biol. 2010;30:2452–7.PubMedCrossRef
56.
go back to reference Deckert V, Kretz B, Habbout A, Raghay K, Labbe J, Abello N, et al. Development of abdominal aortic aneurysm is decreased in mice with plasma phospholipid transfer protein deficiency. Am J Pathol. 2013;183:975–86.PubMedCrossRef Deckert V, Kretz B, Habbout A, Raghay K, Labbe J, Abello N, et al. Development of abdominal aortic aneurysm is decreased in mice with plasma phospholipid transfer protein deficiency. Am J Pathol. 2013;183:975–86.PubMedCrossRef
57.
go back to reference Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, et al. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol. 2011;31:766–74.PubMedCrossRef Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, et al. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol. 2011;31:766–74.PubMedCrossRef
58.
go back to reference Van Eck M, Twisk J, Hoekstra M, Van Rij BT, Van der Lans CA, Bos IS, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem. 2003;278:23699–705.PubMedCrossRef Van Eck M, Twisk J, Hoekstra M, Van Rij BT, Van der Lans CA, Bos IS, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem. 2003;278:23699–705.PubMedCrossRef
59.
go back to reference Hoekstra M, van der Sluis RJ, Hildebrand RB, Lammers B, Zhao Y, Pratico D, et al. Disruption of phospholipid transfer protein-mediated high-density lipoprotein maturation reduces scavenger receptor BI deficiency-driven atherosclerosis susceptibility despite unexpected metabolic complications. Arterioscler Thromb Vasc Biol. 2020;40:611–23.PubMedCrossRef Hoekstra M, van der Sluis RJ, Hildebrand RB, Lammers B, Zhao Y, Pratico D, et al. Disruption of phospholipid transfer protein-mediated high-density lipoprotein maturation reduces scavenger receptor BI deficiency-driven atherosclerosis susceptibility despite unexpected metabolic complications. Arterioscler Thromb Vasc Biol. 2020;40:611–23.PubMedCrossRef
60.
go back to reference Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.PubMedPubMedCentralCrossRef Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.PubMedPubMedCentralCrossRef
61.
go back to reference Lie J, de Crom R, van Gent T, van Haperen R, Scheek L, Lankhuizen I, et al. Elevation of plasma phospholipid transfer protein in transgenic mice increases VLDL secretion. J Lipid Res. 2002;43:1875–80.PubMedCrossRef Lie J, de Crom R, van Gent T, van Haperen R, Scheek L, Lankhuizen I, et al. Elevation of plasma phospholipid transfer protein in transgenic mice increases VLDL secretion. J Lipid Res. 2002;43:1875–80.PubMedCrossRef
62.
go back to reference van Haperen R, Samyn H, van Gent T, Zonneveld AJ, Moerland M, Grosveld F, et al. Novel roles of hepatic lipase and phospholipid transfer protein in VLDL as well as HDL metabolism. Biochim Biophys Acta. 1791;2009:1031–6. van Haperen R, Samyn H, van Gent T, Zonneveld AJ, Moerland M, Grosveld F, et al. Novel roles of hepatic lipase and phospholipid transfer protein in VLDL as well as HDL metabolism. Biochim Biophys Acta. 1791;2009:1031–6.
63.
go back to reference Okazaki H, Goldstein JL, Brown MS, Liang G. LXR-SREBP-1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J Biol Chem. 2010;285:6801–10.PubMedCrossRef Okazaki H, Goldstein JL, Brown MS, Liang G. LXR-SREBP-1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J Biol Chem. 2010;285:6801–10.PubMedCrossRef
64.
go back to reference Manchekar M, Liu Y, Sun Z, Richardson PE, Dashti N. Phospholipid transfer protein plays a major role in the initiation of apolipoprotein B-containing lipoprotein assembly in mouse primary hepatocytes. J Biol Chem. 2015;290:8196–205. Manchekar M, Liu Y, Sun Z, Richardson PE, Dashti N. Phospholipid transfer protein plays a major role in the initiation of apolipoprotein B-containing lipoprotein assembly in mouse primary hepatocytes. J Biol Chem. 2015;290:8196–205.
65.
go back to reference Yazdanyar A, Quan W, Jin W, Jiang XC. Liver-specific phospholipid transfer protein deficiency reduces high-density lipoprotein and non-high-density lipoprotein production in mice. Arterioscler Thromb Vasc Biol. 2013;33:2058–64.PubMedPubMedCentralCrossRef Yazdanyar A, Quan W, Jin W, Jiang XC. Liver-specific phospholipid transfer protein deficiency reduces high-density lipoprotein and non-high-density lipoprotein production in mice. Arterioscler Thromb Vasc Biol. 2013;33:2058–64.PubMedPubMedCentralCrossRef
66.
go back to reference Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, et al. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol. 2011;31:766–74 Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, et al. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol. 2011;31:766–74
67.
go back to reference Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarkis A, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356:148–56.PubMedCrossRef Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarkis A, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356:148–56.PubMedCrossRef
69.
go back to reference Jiang XC, Bruce C, Mar J, Lin M, Ji Y, Francone OL, et al. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J Clin Invest. 1999;103:907–14.PubMedPubMedCentralCrossRef Jiang XC, Bruce C, Mar J, Lin M, Ji Y, Francone OL, et al. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J Clin Invest. 1999;103:907–14.PubMedPubMedCentralCrossRef
70.
go back to reference Qin S, Kawano K, Bruce C, Lin M, Bisgaier C, Tall AR, et al. Phospholipid transfer protein gene knock-out mice have low high density lipoprotein levels, due to hypercatabolism, and accumulate apoA-IV-rich lamellar lipoproteins. J Lipid Res. 2000;41:269–76.PubMedCrossRef Qin S, Kawano K, Bruce C, Lin M, Bisgaier C, Tall AR, et al. Phospholipid transfer protein gene knock-out mice have low high density lipoprotein levels, due to hypercatabolism, and accumulate apoA-IV-rich lamellar lipoproteins. J Lipid Res. 2000;41:269–76.PubMedCrossRef
71.
go back to reference Yan D, Navab M, Bruce C, Fogelman AM, Jiang XC. PLTP deficiency improves the anti-inflammatory properties of HDL and reduces the ability of LDL to induce monocyte chemotactic activity. J Lipid Res. 2004;45:1852–8.PubMedCrossRef Yan D, Navab M, Bruce C, Fogelman AM, Jiang XC. PLTP deficiency improves the anti-inflammatory properties of HDL and reduces the ability of LDL to induce monocyte chemotactic activity. J Lipid Res. 2004;45:1852–8.PubMedCrossRef
72.
go back to reference Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010;30:139–43.PubMedCrossRef Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010;30:139–43.PubMedCrossRef
73.
go back to reference Oram JF, Wolfbauer G, Vaughan AM, Tang C, Albers JJ. Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J Biol Chem. 2003;278:52379–85.PubMedCrossRef Oram JF, Wolfbauer G, Vaughan AM, Tang C, Albers JJ. Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J Biol Chem. 2003;278:52379–85.PubMedCrossRef
74.
go back to reference Jauhiainen M, Metso J, Pahlman R, Blomqvist S, van Tol A, Ehnholm C. Human plasma phospholipid transfer protein causes high density lipoprotein conversion. J Biol Chem. 1993;268:4032–6.PubMedCrossRef Jauhiainen M, Metso J, Pahlman R, Blomqvist S, van Tol A, Ehnholm C. Human plasma phospholipid transfer protein causes high density lipoprotein conversion. J Biol Chem. 1993;268:4032–6.PubMedCrossRef
75.
go back to reference Huuskonen J, Olkkonen VM, Ehnholm C, Metso J, Julkunen I, Jauhiainen M. Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion. Biochemistry. 2000;39:16092–8.PubMedCrossRef Huuskonen J, Olkkonen VM, Ehnholm C, Metso J, Julkunen I, Jauhiainen M. Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion. Biochemistry. 2000;39:16092–8.PubMedCrossRef
76.
go back to reference Rye KA, Jauhiainen M, Barter PJ, Ehnholm C. Triglyceride-enrichment of high density lipoproteins enhances their remodelling by phospholipid transfer protein. J Lipid Res. 1998;39:613–22.PubMedCrossRef Rye KA, Jauhiainen M, Barter PJ, Ehnholm C. Triglyceride-enrichment of high density lipoproteins enhances their remodelling by phospholipid transfer protein. J Lipid Res. 1998;39:613–22.PubMedCrossRef
77.
go back to reference Tall AR, Hogan V, Askinazi L, Small DM. Interaction of plasma high density lipoproteins with dimyristoyllecithin multilamellar liposomes. Biochemistry. 1978;17:322–6.PubMedCrossRef Tall AR, Hogan V, Askinazi L, Small DM. Interaction of plasma high density lipoproteins with dimyristoyllecithin multilamellar liposomes. Biochemistry. 1978;17:322–6.PubMedCrossRef
78.
go back to reference Tall AR, Krumholz S, Olivecrona T, Deckelbaum RJ. Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis. J Lipid Res. 1985;26:842–51.PubMedCrossRef Tall AR, Krumholz S, Olivecrona T, Deckelbaum RJ. Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis. J Lipid Res. 1985;26:842–51.PubMedCrossRef
79.
go back to reference Foger B, Santamarina-Fojo S, Shamburek RD, Parrot CL, Talley GD, Brewer HB Jr. Plasma phospholipid transfer protein. Adenovirus-mediated overexpression in mice leads to decreased plasma high density lipoprotein (HDL) and enhanced hepatic uptake of phospholipids and cholesteryl esters from HDL. J Biol Chem. 1997;272:27393–400.PubMed Foger B, Santamarina-Fojo S, Shamburek RD, Parrot CL, Talley GD, Brewer HB Jr. Plasma phospholipid transfer protein. Adenovirus-mediated overexpression in mice leads to decreased plasma high density lipoprotein (HDL) and enhanced hepatic uptake of phospholipids and cholesteryl esters from HDL. J Biol Chem. 1997;272:27393–400.PubMed
80.
go back to reference van Haperen R, van Tol A, Vermeulen P, Jauhiainen M, van Gent T, van den Berg P, et al. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice. Arterioscler Thromb Vasc Biol. 2000;20:1082–8.PubMedCrossRef van Haperen R, van Tol A, Vermeulen P, Jauhiainen M, van Gent T, van den Berg P, et al. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice. Arterioscler Thromb Vasc Biol. 2000;20:1082–8.PubMedCrossRef
81.
go back to reference Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298:1180–8.PubMedCrossRef Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298:1180–8.PubMedCrossRef
82.
go back to reference Kastelein JJ, van Leuven SI, Burgess L, Evans GW, Kuivenhoven JA, Barter PJ, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. 2007;356:1620–30.PubMedCrossRef Kastelein JJ, van Leuven SI, Burgess L, Evans GW, Kuivenhoven JA, Barter PJ, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. 2007;356:1620–30.PubMedCrossRef
83.
go back to reference Bots ML, Visseren FL, Evans GW, Riley WA, Revkin JH, Tegeler CH, et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet. 2007;370:153–60.PubMedCrossRef Bots ML, Visseren FL, Evans GW, Riley WA, Revkin JH, Tegeler CH, et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet. 2007;370:153–60.PubMedCrossRef
84.
go back to reference Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378:1547–59.PubMedPubMedCentralCrossRef Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378:1547–59.PubMedPubMedCentralCrossRef
85.
86.
go back to reference Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–80.PubMedPubMedCentralCrossRef Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–80.PubMedPubMedCentralCrossRef
87.
go back to reference Kuwano T, Bi X, Cipollari E, Yasuda T, Lagor WR, Szapary HJ, et al. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport. J Lipid Res. 2017;58:731–41.PubMedPubMedCentralCrossRef Kuwano T, Bi X, Cipollari E, Yasuda T, Lagor WR, Szapary HJ, et al. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport. J Lipid Res. 2017;58:731–41.PubMedPubMedCentralCrossRef
88.
go back to reference Sachinidis A, Kettenhofen R, Seewald S, Gouni-Berthold I, Schmitz U, Seul C, et al. Evidence that lipoproteins are carriers of bioactive factors. Arterioscler Thromb Vasc Biol. 1999;19:2412–21.PubMedCrossRef Sachinidis A, Kettenhofen R, Seewald S, Gouni-Berthold I, Schmitz U, Seul C, et al. Evidence that lipoproteins are carriers of bioactive factors. Arterioscler Thromb Vasc Biol. 1999;19:2412–21.PubMedCrossRef
89.
go back to reference Kimura T, Sato K, Kuwabara A, Tomura H, Ishiwara M, Kobayashi I, et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem. 2001;276:31780–5.PubMedCrossRef Kimura T, Sato K, Kuwabara A, Tomura H, Ishiwara M, Kobayashi I, et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem. 2001;276:31780–5.PubMedCrossRef
90.
go back to reference Zhang B, Tomura H, Kuwabara A, Kimura T, Miura S, Noda K, et al. Correlation of high density lipoprotein (HDL)-associated sphingosine 1-phosphate with serum levels of HDL-cholesterol and apolipoproteins. Atherosclerosis. 2005;178:199–205.PubMedCrossRef Zhang B, Tomura H, Kuwabara A, Kimura T, Miura S, Noda K, et al. Correlation of high density lipoprotein (HDL)-associated sphingosine 1-phosphate with serum levels of HDL-cholesterol and apolipoproteins. Atherosclerosis. 2005;178:199–205.PubMedCrossRef
91.
go back to reference Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012;22:50–60.PubMedCrossRef Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012;22:50–60.PubMedCrossRef
93.
go back to reference Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A. 2011;108:9613–8.PubMedPubMedCentralCrossRef Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A. 2011;108:9613–8.PubMedPubMedCentralCrossRef
94.
go back to reference Bosteen MH, Madsen Svarrer EM, Bisgaard LS, Martinussen T, Madsen M, Nielsen LB, et al. Effects of apolipoprotein M in uremic atherosclerosis. Atherosclerosis. 2017;265:93–101.PubMedCrossRef Bosteen MH, Madsen Svarrer EM, Bisgaard LS, Martinussen T, Madsen M, Nielsen LB, et al. Effects of apolipoprotein M in uremic atherosclerosis. Atherosclerosis. 2017;265:93–101.PubMedCrossRef
95.
go back to reference Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, et al. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J Lipid Res. 2019;60:1912–21.PubMedPubMedCentralCrossRef Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, et al. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J Lipid Res. 2019;60:1912–21.PubMedPubMedCentralCrossRef
96.
go back to reference Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin N Am. 2014;43:1–23.CrossRef Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin N Am. 2014;43:1–23.CrossRef
97.
go back to reference Dullaart RP, Sluiter WJ, Dikkeschei LD, Hoogenberg K, Van Tol A. Effect of adiposity on plasma lipid transfer protein activities: a possible link between insulin resistance and high density lipoprotein metabolism. Eur J Clin Investig. 1994;24:188–94.CrossRef Dullaart RP, Sluiter WJ, Dikkeschei LD, Hoogenberg K, Van Tol A. Effect of adiposity on plasma lipid transfer protein activities: a possible link between insulin resistance and high density lipoprotein metabolism. Eur J Clin Investig. 1994;24:188–94.CrossRef
98.
go back to reference Murdoch SJ, Carr MC, Hokanson JE, Brunzell JD, Albers JJ. PLTP activity in premenopausal women. Relationship with lipoprotein lipase, HDL, LDL, body fat, and insulin resistance. J Lipid Res. 2000;41:237–44.PubMedCrossRef Murdoch SJ, Carr MC, Hokanson JE, Brunzell JD, Albers JJ. PLTP activity in premenopausal women. Relationship with lipoprotein lipase, HDL, LDL, body fat, and insulin resistance. J Lipid Res. 2000;41:237–44.PubMedCrossRef
99.
go back to reference Kaser S, Sandhofer A, Foger B, Ebenbichler CF, Igelseder B, Malaimare L, et al. Influence of obesity and insulin sensitivity on phospholipid transfer protein activity. Diabetologia. 2001;44:1111–7.PubMedCrossRef Kaser S, Sandhofer A, Foger B, Ebenbichler CF, Igelseder B, Malaimare L, et al. Influence of obesity and insulin sensitivity on phospholipid transfer protein activity. Diabetologia. 2001;44:1111–7.PubMedCrossRef
100.
go back to reference Silver DL, Jiang XC, Tall AR. Increased high density lipoprotein (HDL), defective hepatic catabolism of ApoA-I and ApoA-II, and decreased ApoA-I mRNA in ob/ob mice. Possible role of leptin in stimulation of HDL turnover. J Biol Chem. 1999;274:4140–6.PubMedCrossRef Silver DL, Jiang XC, Tall AR. Increased high density lipoprotein (HDL), defective hepatic catabolism of ApoA-I and ApoA-II, and decreased ApoA-I mRNA in ob/ob mice. Possible role of leptin in stimulation of HDL turnover. J Biol Chem. 1999;274:4140–6.PubMedCrossRef
101.
go back to reference Jiang XC, Li Z, Liu R, Yang XP, Pan M, Lagrost L, et al. Phospholipid transfer protein deficiency impairs apolipoprotein-B secretion from hepatocytes by stimulating a proteolytic pathway through a relative deficiency of vitamin E and an increase in intracellular oxidants. J Biol Chem. 2005;280:18336–40.PubMedCrossRef Jiang XC, Li Z, Liu R, Yang XP, Pan M, Lagrost L, et al. Phospholipid transfer protein deficiency impairs apolipoprotein-B secretion from hepatocytes by stimulating a proteolytic pathway through a relative deficiency of vitamin E and an increase in intracellular oxidants. J Biol Chem. 2005;280:18336–40.PubMedCrossRef
102.
go back to reference Song G, Zong C, Shao M, Yu Y, Liu Q, Wang H, et al. Phospholipid transfer protein (PLTP) deficiency attenuates high fat diet induced obesity and insulin resistance. Biochim Biophys Acta Mol Cell Biol Lipids. 1864;2019:1305–13. Song G, Zong C, Shao M, Yu Y, Liu Q, Wang H, et al. Phospholipid transfer protein (PLTP) deficiency attenuates high fat diet induced obesity and insulin resistance. Biochim Biophys Acta Mol Cell Biol Lipids. 1864;2019:1305–13.
103.
go back to reference Sponton CH, Hosono T, Taura J, Jedrychowski MP, Yoneshiro T, Wang Q, et al. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication. EMBO Rep. 2020;21:e49828. Sponton CH, Hosono T, Taura J, Jedrychowski MP, Yoneshiro T, Wang Q, et al. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication. EMBO Rep. 2020;21:e49828.
104.
go back to reference Klein A, Deckert V, Schneider M, Dutrillaux F, Hammann A, Athias A, et al. Alpha-tocopherol modulates phosphatidylserine externalization in erythrocytes: relevance in phospholipid transfer protein-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:2160–7.PubMedCrossRef Klein A, Deckert V, Schneider M, Dutrillaux F, Hammann A, Athias A, et al. Alpha-tocopherol modulates phosphatidylserine externalization in erythrocytes: relevance in phospholipid transfer protein-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:2160–7.PubMedCrossRef
105.
go back to reference Oslakovic C, Krisinger MJ, Andersson A, Jauhiainen M, Ehnholm C, Dahlback B. Anionic phospholipids lose their procoagulant properties when incorporated into high density lipoproteins. J Biol Chem. 2009;284:5896–904.PubMedCrossRef Oslakovic C, Krisinger MJ, Andersson A, Jauhiainen M, Ehnholm C, Dahlback B. Anionic phospholipids lose their procoagulant properties when incorporated into high density lipoproteins. J Biol Chem. 2009;284:5896–904.PubMedCrossRef
106.
go back to reference Deguchi H, Wolfbauer G, Cheung MC, Banerjee Y, Elias DJ, Fernandez JA, et al. Inhibition of thrombin generation in human plasma by phospholipid transfer protein. Thromb J. 2015;13:24.PubMedPubMedCentralCrossRef Deguchi H, Wolfbauer G, Cheung MC, Banerjee Y, Elias DJ, Fernandez JA, et al. Inhibition of thrombin generation in human plasma by phospholipid transfer protein. Thromb J. 2015;13:24.PubMedPubMedCentralCrossRef
107.
go back to reference •• Zhao XM, Wang Y, Yu Y, Jiang H, Babinska A, Chen XY, et al. Plasma phospholipid transfer protein promotes platelet aggregation. Thromb Haemost. 2018;118:2086–97 This paper showed that PLTP can promote platelet aggregation and PLTP is a factor mediating hypercoagulation.PubMedCrossRefPubMedCentral •• Zhao XM, Wang Y, Yu Y, Jiang H, Babinska A, Chen XY, et al. Plasma phospholipid transfer protein promotes platelet aggregation. Thromb Haemost. 2018;118:2086–97 This paper showed that PLTP can promote platelet aggregation and PLTP is a factor mediating hypercoagulation.PubMedCrossRefPubMedCentral
108.
go back to reference Schlitt A, Liu J, Yan D, Mondragon-Escorpizo M, Norin AJ, Jiang XC. Anti-inflammatory effects of phospholipid transfer protein (PLTP) deficiency in mice. Biochim Biophys Acta. 1733;2005:187–91. Schlitt A, Liu J, Yan D, Mondragon-Escorpizo M, Norin AJ, Jiang XC. Anti-inflammatory effects of phospholipid transfer protein (PLTP) deficiency in mice. Biochim Biophys Acta. 1733;2005:187–91.
109.
go back to reference Shelly L, Royer L, Sand T, Jensen H, Luo Y. Phospholipid transfer protein deficiency ameliorates diet-induced hypercholesterolemia and inflammation in mice. J Lipid Res. 2008;49:773–81.PubMedCrossRef Shelly L, Royer L, Sand T, Jensen H, Luo Y. Phospholipid transfer protein deficiency ameliorates diet-induced hypercholesterolemia and inflammation in mice. J Lipid Res. 2008;49:773–81.PubMedCrossRef
110.
go back to reference Desrumaux C, Lemaire-Ewing S, Ogier N, Yessoufou A, Hammann A, Sequeira-Le Grand A, et al. Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization. Cell Mol Immunol. 2016;13:795–804.PubMedCrossRef Desrumaux C, Lemaire-Ewing S, Ogier N, Yessoufou A, Hammann A, Sequeira-Le Grand A, et al. Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization. Cell Mol Immunol. 2016;13:795–804.PubMedCrossRef
111.
go back to reference Gautier T, Klein A, Deckert V, Desrumaux C, Ogier N, Sberna AL, et al. Effect of plasma phospholipid transfer protein deficiency on lethal endotoxemia in mice. J Biol Chem. 2008;283:18702–10.PubMedCrossRef Gautier T, Klein A, Deckert V, Desrumaux C, Ogier N, Sberna AL, et al. Effect of plasma phospholipid transfer protein deficiency on lethal endotoxemia in mice. J Biol Chem. 2008;283:18702–10.PubMedCrossRef
112.
go back to reference Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, et al. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J. 2014;28:2318–31.PubMedPubMedCentralCrossRef Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, et al. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J. 2014;28:2318–31.PubMedPubMedCentralCrossRef
113.
go back to reference Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFkappaB in differentiated THP1 cells and human monocyte-derived macrophages. Biochim Biophys Acta. 1813;2011:1917–24. Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFkappaB in differentiated THP1 cells and human monocyte-derived macrophages. Biochim Biophys Acta. 1813;2011:1917–24.
114.
go back to reference Yu Y, Cui Y, Zhao Y, Liu S, Song G, Jiao P, et al. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation. Sci Rep. 2016;6:20845.PubMedPubMedCentralCrossRef Yu Y, Cui Y, Zhao Y, Liu S, Song G, Jiao P, et al. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation. Sci Rep. 2016;6:20845.PubMedPubMedCentralCrossRef
115.
go back to reference Oram JF, Wolfbauer G, Tang C, Davidson WS, Albers JJ. An amphipathic helical region of the N-terminal barrel of phospholipid transfer protein is critical for ABCA1-dependent cholesterol efflux. J Biol Chem. 2008;283:11541–9.PubMedPubMedCentralCrossRef Oram JF, Wolfbauer G, Tang C, Davidson WS, Albers JJ. An amphipathic helical region of the N-terminal barrel of phospholipid transfer protein is critical for ABCA1-dependent cholesterol efflux. J Biol Chem. 2008;283:11541–9.PubMedPubMedCentralCrossRef
Metadata
Title
The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis
Authors
Xian-Cheng Jiang
Yang Yu
Publication date
01-03-2021
Publisher
Springer US
Published in
Current Atherosclerosis Reports / Issue 3/2021
Print ISSN: 1523-3804
Electronic ISSN: 1534-6242
DOI
https://doi.org/10.1007/s11883-021-00907-6