Skip to main content
Top
Published in: Current Atherosclerosis Reports 3/2021

01-03-2021 | Insulins | Vascular Biology (H. Pownall, Section Editor)

APOA1: a Protein with Multiple Therapeutic Functions

Authors: Blake J. Cochran, Kwok-Leung Ong, Bikash Manandhar, Kerry-Anne Rye

Published in: Current Atherosclerosis Reports | Issue 3/2021

Login to get access

Abstract

Purpose of the Review

Apolipoprotein (APO) A1, the main apolipoprotein of plasma high-density lipoproteins (HDLs), has several well documented cardioprotective functions. A number of additional potentially beneficial functions of APOA1 have recently been identified. This review is concerned with the therapeutic potential of all of these functions in multiple disease states.

Recent Findings

Knowledge of the beneficial functions of APOA1 in atherosclerosis, thrombosis, diabetes, cancer, and neurological disorders is increasing exponentially. These insights have led to the development of clinically relevant peptides and APOA1-containing, synthetic reconstituted HDL (rHDL) preparations that mimic the functions of full-length APOA1.

Summary

APOA1 is a multifunctional apolipoprotein that has therapeutic potential in several diseases. Translation of this knowledge into the clinic is likely to be dependent on the efficacy and bioavailability of small peptides and synthetic rHDL preparations that are currently under investigation, or in development.
Literature
1.
go back to reference Soutar AK, Garner CW, Baker HN, Sparrow JT, Jackson RL, Gotto AM, et al. Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase. Biochemistry. 1975;14(14):3057–64.PubMedCrossRef Soutar AK, Garner CW, Baker HN, Sparrow JT, Jackson RL, Gotto AM, et al. Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase. Biochemistry. 1975;14(14):3057–64.PubMedCrossRef
2.
go back to reference Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.PubMedPubMedCentralCrossRef Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.PubMedPubMedCentralCrossRef
3.
go back to reference Neary RH, Gowland E. Stability of free apolipoprotein A-1 concentration in serum, and its measurement in normal and hyperlipidemic subjects. Clin Chem. 1987;33(7):1163–9.PubMedCrossRef Neary RH, Gowland E. Stability of free apolipoprotein A-1 concentration in serum, and its measurement in normal and hyperlipidemic subjects. Clin Chem. 1987;33(7):1163–9.PubMedCrossRef
4.
go back to reference Kee P, Rye KA, Taylor JL, Barrett PH, Barter PJ. Metabolism of apoA-I as lipid-free protein or as component of discoidal and spherical reconstituted HDLs: studies in wild-type and hepatic lipase transgenic rabbits. Arterioscler Thromb Vasc Biol. 2002;22(11):1912–7.PubMedCrossRef Kee P, Rye KA, Taylor JL, Barrett PH, Barter PJ. Metabolism of apoA-I as lipid-free protein or as component of discoidal and spherical reconstituted HDLs: studies in wild-type and hepatic lipase transgenic rabbits. Arterioscler Thromb Vasc Biol. 2002;22(11):1912–7.PubMedCrossRef
5.
go back to reference Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJP, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.PubMedCrossRef Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJP, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.PubMedCrossRef
6.
go back to reference Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.PubMedCrossRef Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.PubMedCrossRef
7.
go back to reference Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376(20):1933–42.PubMedCrossRef Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376(20):1933–42.PubMedCrossRef
8.
go back to reference HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12.CrossRef HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12.CrossRef
9.
go back to reference Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000.CrossRef Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000.CrossRef
10.
go back to reference Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature. 1991;353(6341):265–7.PubMedCrossRef Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature. 1991;353(6341):265–7.PubMedCrossRef
11.
go back to reference Moore RE, Navab M, Millar JS, Zimetti F, Hama S, Rothblat GH, et al. Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res. 2005;97(8):763–71.PubMedCrossRef Moore RE, Navab M, Millar JS, Zimetti F, Hama S, Rothblat GH, et al. Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res. 2005;97(8):763–71.PubMedCrossRef
12.
go back to reference Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.PubMedCrossRef Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.PubMedCrossRef
13.
go back to reference Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15(11):1987–94.PubMedCrossRef Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15(11):1987–94.PubMedCrossRef
14.
go back to reference Baker PW, Rye KA, Gamble JR, Vadas MA, Barter PJ. Ability of reconstituted high density lipoproteins to inhibit cytokine-induced expression of vascular cell adhesion molecule-1 in human umbilical vein endothelial cells. J Lipid Res. 1999;40(2):345–53.PubMedCrossRef Baker PW, Rye KA, Gamble JR, Vadas MA, Barter PJ. Ability of reconstituted high density lipoproteins to inhibit cytokine-induced expression of vascular cell adhesion molecule-1 in human umbilical vein endothelial cells. J Lipid Res. 1999;40(2):345–53.PubMedCrossRef
15.
go back to reference Wu BJ, Chen K, Shrestha S, Ong KL, Barter PJ, Rye KA. High-density lipoproteins inhibit vascular endothelial inflammation by increasing 3β-hydroxysteroid-Δ24 reductase expression and inducing heme oxygenase-1. Circ Res. 2013;112(2):278–88.PubMedCrossRef Wu BJ, Chen K, Shrestha S, Ong KL, Barter PJ, Rye KA. High-density lipoproteins inhibit vascular endothelial inflammation by increasing 3β-hydroxysteroid-Δ24 reductase expression and inducing heme oxygenase-1. Circ Res. 2013;112(2):278–88.PubMedCrossRef
16.
go back to reference McGrath KC, Li XH, Puranik R, et al. Role of 3β-hydroxysteroid-Δ24 reductase in mediating antiinflammatory effects of high-density lipoproteins in endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(6):877–82.PubMedCrossRef McGrath KC, Li XH, Puranik R, et al. Role of 3β-hydroxysteroid-Δ24 reductase in mediating antiinflammatory effects of high-density lipoproteins in endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(6):877–82.PubMedCrossRef
17.
go back to reference Pan B, Kong J, Jin J, Kong J, He Y, Dong S, et al. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells. Biochim Biophys Acta. 2016;1861(6):501–12.PubMedCrossRef Pan B, Kong J, Jin J, Kong J, He Y, Dong S, et al. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells. Biochim Biophys Acta. 2016;1861(6):501–12.PubMedCrossRef
18.
go back to reference Theofilatos D, Fotakis P, Valanti E, Sanoudou D, Zannis V, Kardassis D. HDL-apoA-I induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway. Metabolism. 2018;87:36–47.PubMedCrossRef Theofilatos D, Fotakis P, Valanti E, Sanoudou D, Zannis V, Kardassis D. HDL-apoA-I induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway. Metabolism. 2018;87:36–47.PubMedCrossRef
19.
go back to reference •• Fotakis P, Kothari V, Thomas DG, et al. Anti-inflammatory effects of HDL (high-density lipoprotein) in macrophages predominate over proinflammatory effects in atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2019;39(12):e253–72 This publication explains why APOA1 has pro- and anti-inflammatory effects in macrophages.PubMedPubMedCentralCrossRef •• Fotakis P, Kothari V, Thomas DG, et al. Anti-inflammatory effects of HDL (high-density lipoprotein) in macrophages predominate over proinflammatory effects in atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2019;39(12):e253–72 This publication explains why APOA1 has pro- and anti-inflammatory effects in macrophages.PubMedPubMedCentralCrossRef
20.
go back to reference Tang C, Houston BA, Storey C, LeBoeuf RC. Both STAT3 activation and cholesterol efflux contribute to the anti-inflammatory effect of apoA-I/ABCA1 interaction in macrophages. J Lipid Res. 2016;57(5):848–57.PubMedPubMedCentralCrossRef Tang C, Houston BA, Storey C, LeBoeuf RC. Both STAT3 activation and cholesterol efflux contribute to the anti-inflammatory effect of apoA-I/ABCA1 interaction in macrophages. J Lipid Res. 2016;57(5):848–57.PubMedPubMedCentralCrossRef
21.
go back to reference Yvan-Charvet L, Matsuura F, Wang N, Bamberger MJ, Nguyen T, Rinninger F, et al. Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler Thromb Vasc Biol. 2007;27(5):1132–8.PubMedCrossRef Yvan-Charvet L, Matsuura F, Wang N, Bamberger MJ, Nguyen T, Rinninger F, et al. Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler Thromb Vasc Biol. 2007;27(5):1132–8.PubMedCrossRef
22.
go back to reference Zhang M, Zhao GJ, Yin K, Xia XD, Gong D, Zhao ZW, et al. Apolipoprotein A-1 binding protein inhibits inflammatory signaling pathways by binding to apolipoprotein A-1 in THP-1 macrophages. Circ J. 2018;82(5):1396–404.PubMedCrossRef Zhang M, Zhao GJ, Yin K, Xia XD, Gong D, Zhao ZW, et al. Apolipoprotein A-1 binding protein inhibits inflammatory signaling pathways by binding to apolipoprotein A-1 in THP-1 macrophages. Circ J. 2018;82(5):1396–404.PubMedCrossRef
23.
go back to reference De Nardo D, Labzin LI, Kono H, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol. 2014;15(2):152–60.PubMedCrossRef De Nardo D, Labzin LI, Kono H, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol. 2014;15(2):152–60.PubMedCrossRef
24.
go back to reference Smoak KA, Aloor JJ, Madenspacher J, Merrick BA, Collins JB, Zhu X, et al. Myeloid differentiation primary response protein 88 couples reverse cholesterol transport to inflammation. Cell Metab. 2010;11(6):493–502.PubMedPubMedCentralCrossRef Smoak KA, Aloor JJ, Madenspacher J, Merrick BA, Collins JB, Zhu X, et al. Myeloid differentiation primary response protein 88 couples reverse cholesterol transport to inflammation. Cell Metab. 2010;11(6):493–502.PubMedPubMedCentralCrossRef
25.
go back to reference van der Vorst EPC, Theodorou K, Wu Y, Hoeksema MA, Goossens P, Bursill CA, et al. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 signaling. Cell Metab. 2017;25(1):197–207.PubMedCrossRef van der Vorst EPC, Theodorou K, Wu Y, Hoeksema MA, Goossens P, Bursill CA, et al. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 signaling. Cell Metab. 2017;25(1):197–207.PubMedCrossRef
26.
go back to reference Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123(4):1571–9.PubMedPubMedCentralCrossRef Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123(4):1571–9.PubMedPubMedCentralCrossRef
27.
go back to reference Milasan A, Jean G, Dallaire F, et al. Apolipoprotein A-I modulates atherosclerosis through lymphatic vessel-dependent mechanisms in mice. J Am Heart Assoc. 2017;6(9):e006892.PubMedPubMedCentralCrossRef Milasan A, Jean G, Dallaire F, et al. Apolipoprotein A-I modulates atherosclerosis through lymphatic vessel-dependent mechanisms in mice. J Am Heart Assoc. 2017;6(9):e006892.PubMedPubMedCentralCrossRef
28.
go back to reference Kaul S, Xu H, Zabalawi M, et al. Lipid-free apolipoprotein A-I reduces progression of atherosclerosis by mobilizing microdomain cholesterol and attenuating the number of CD131 expressing cells: monitoring cholesterol homeostasis using the cellular ester to total cholesterol ratio. J Am Heart Assoc. 2016;5(11):e004401.PubMedPubMedCentralCrossRef Kaul S, Xu H, Zabalawi M, et al. Lipid-free apolipoprotein A-I reduces progression of atherosclerosis by mobilizing microdomain cholesterol and attenuating the number of CD131 expressing cells: monitoring cholesterol homeostasis using the cellular ester to total cholesterol ratio. J Am Heart Assoc. 2016;5(11):e004401.PubMedPubMedCentralCrossRef
29.
go back to reference Gaddis DE, Padgett LE, Wu R, McSkimming C, Romines V, Taylor AM, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9(1):1095.PubMedPubMedCentralCrossRef Gaddis DE, Padgett LE, Wu R, McSkimming C, Romines V, Taylor AM, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9(1):1095.PubMedPubMedCentralCrossRef
30.
go back to reference • Wacker BK, Dronadula N, Zhang J, Dichek DA. Local vascular gene therapy with apolipoprotein A-I to promote regression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37(2):316–27 This study provides compelling evidence that increasing plasma APOA1 levels reduces atherosclerosis over and above what can be achieved with aggressive lipid lowering therapies. • Wacker BK, Dronadula N, Zhang J, Dichek DA. Local vascular gene therapy with apolipoprotein A-I to promote regression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37(2):316–27 This study provides compelling evidence that increasing plasma APOA1 levels reduces atherosclerosis over and above what can be achieved with aggressive lipid lowering therapies.
31.
go back to reference Morton J, Bao S, Vanags LZ, Tsatralis T, Ridiandries A, Siu CW, et al. Strikingly different atheroprotective effects of apolipoprotein A-I in early- versus late-stage atherosclerosis. JACC Basic Transl Sci. 2018;3(2):187–99.PubMedPubMedCentralCrossRef Morton J, Bao S, Vanags LZ, Tsatralis T, Ridiandries A, Siu CW, et al. Strikingly different atheroprotective effects of apolipoprotein A-I in early- versus late-stage atherosclerosis. JACC Basic Transl Sci. 2018;3(2):187–99.PubMedPubMedCentralCrossRef
32.
go back to reference •• Barrett TJ, Distel E, Murphy AJ, et al. Apolipoprotein AI promotes atherosclerosis regression in diabetic mice by suppressing myelopoiesis and plaque inflammation. Circulation. 2019;140(14):1170–84 APOA1 reduces diabetes-accelerated atherosclerosis by reducing inflammation and inhibiting the production of myeloid cells in bone marrow.PubMedPubMedCentralCrossRef •• Barrett TJ, Distel E, Murphy AJ, et al. Apolipoprotein AI promotes atherosclerosis regression in diabetic mice by suppressing myelopoiesis and plaque inflammation. Circulation. 2019;140(14):1170–84 APOA1 reduces diabetes-accelerated atherosclerosis by reducing inflammation and inhibiting the production of myeloid cells in bone marrow.PubMedPubMedCentralCrossRef
33.
go back to reference Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 2018;3(9):806–14.PubMedPubMedCentralCrossRef Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 2018;3(9):806–14.PubMedPubMedCentralCrossRef
34.
go back to reference Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, et al. Effect of serial infusions of CER-001, a pre-beta high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol. 2018;3(9):815–22.PubMedPubMedCentralCrossRef Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, et al. Effect of serial infusions of CER-001, a pre-beta high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol. 2018;3(9):815–22.PubMedPubMedCentralCrossRef
35.
go back to reference Gibson MC, Korjian S, Tricoci P, et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I Trial (ApoA-I event reducing in ischemic syndromes I). Circulation. 2016;134(24):1918–30.CrossRef Gibson MC, Korjian S, Tricoci P, et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I Trial (ApoA-I event reducing in ischemic syndromes I). Circulation. 2016;134(24):1918–30.CrossRef
36.
go back to reference Nguyen SD, Maaninka K, Lappalainen J, Nurmi K, Metso J, Öörni K, et al. Carboxyl-terminal cleavage of apolipoprotein A-I by human mast cell chymase impairs its anti-inflammatory properties. Arterioscler Thromb Vasc Biol. 2016;36(2):274–84.PubMedPubMedCentralCrossRef Nguyen SD, Maaninka K, Lappalainen J, Nurmi K, Metso J, Öörni K, et al. Carboxyl-terminal cleavage of apolipoprotein A-I by human mast cell chymase impairs its anti-inflammatory properties. Arterioscler Thromb Vasc Biol. 2016;36(2):274–84.PubMedPubMedCentralCrossRef
37.
go back to reference Dinnes DL, White MY, Kockx M, et al. Human macrophage cathepsin B-mediated C-terminal cleavage of apolipoprotein A-I at Ser228 severely impairs antiatherogenic capacity. FASEB J. 2016;30(12):4239–55.PubMedCrossRef Dinnes DL, White MY, Kockx M, et al. Human macrophage cathepsin B-mediated C-terminal cleavage of apolipoprotein A-I at Ser228 severely impairs antiatherogenic capacity. FASEB J. 2016;30(12):4239–55.PubMedCrossRef
38.
go back to reference Amin R, Muthuramu I, Aboumsallem JP, Mishra M, Jacobs F, De Geest B. Selective HDL-raising human apo A-I gene therapy counteracts cardiac hypertrophy, reduces myocardial fibrosis, and improves cardiac function in mice with chronic pressure overload. Int J Mol Sci 2017;18(9):2012 Amin R, Muthuramu I, Aboumsallem JP, Mishra M, Jacobs F, De Geest B. Selective HDL-raising human apo A-I gene therapy counteracts cardiac hypertrophy, reduces myocardial fibrosis, and improves cardiac function in mice with chronic pressure overload. Int J Mol Sci 2017;18(9):2012
39.
go back to reference Durham KK, Chathely KM, Mak KC, Momen A, Thomas CT, Zhao YY, et al. HDL protects against doxorubicin-induced cardiotoxicity in a scavenger receptor class B type 1-, PI3K-, and Akt-dependent manner. Am J Physiol Heart Circ Physiol. 2018;314(1):H31–44.PubMedCrossRef Durham KK, Chathely KM, Mak KC, Momen A, Thomas CT, Zhao YY, et al. HDL protects against doxorubicin-induced cardiotoxicity in a scavenger receptor class B type 1-, PI3K-, and Akt-dependent manner. Am J Physiol Heart Circ Physiol. 2018;314(1):H31–44.PubMedCrossRef
40.
go back to reference Murphy AJ, Bijl N, Yvan-Charvet L, Welch CB, Bhagwat N, Reheman A, et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat Med. 2013;19(5):586–94.PubMedPubMedCentralCrossRef Murphy AJ, Bijl N, Yvan-Charvet L, Welch CB, Bhagwat N, Reheman A, et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat Med. 2013;19(5):586–94.PubMedPubMedCentralCrossRef
41.
go back to reference van der Stoep M, Korporaal SJ, Van Eck M. High-density lipoprotein as a modulator of platelet and coagulation responses. Cardiovasc Res. 2014;103(3):362–71.PubMedCrossRef van der Stoep M, Korporaal SJ, Van Eck M. High-density lipoprotein as a modulator of platelet and coagulation responses. Cardiovasc Res. 2014;103(3):362–71.PubMedCrossRef
42.
go back to reference Nicholls SJ, Cutri B, Worthley SG, Kee P, Rye KA, Bao S, et al. Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 2005;25(11):2416–21.PubMedCrossRef Nicholls SJ, Cutri B, Worthley SG, Kee P, Rye KA, Bao S, et al. Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 2005;25(11):2416–21.PubMedCrossRef
43.
go back to reference Buga GM, Navab M, Imaizumi S, Reddy ST, Yekta B, Hough G, et al. L-4F alters hyperlipidemic (but not healthy) mouse plasma to reduce platelet aggregation. Arterioscler Thromb Vasc Biol. 2010;30(2):283–9.PubMedCrossRef Buga GM, Navab M, Imaizumi S, Reddy ST, Yekta B, Hough G, et al. L-4F alters hyperlipidemic (but not healthy) mouse plasma to reduce platelet aggregation. Arterioscler Thromb Vasc Biol. 2010;30(2):283–9.PubMedCrossRef
44.
go back to reference Li D, Weng S, Yang B, Zander DS, Saldeen T, Nichols WW, et al. Inhibition of arterial thrombus formation by apoA1 Milano. Arterioscler Thromb Vasc Biol. 1999;19(2):378–83.PubMedCrossRef Li D, Weng S, Yang B, Zander DS, Saldeen T, Nichols WW, et al. Inhibition of arterial thrombus formation by apoA1 Milano. Arterioscler Thromb Vasc Biol. 1999;19(2):378–83.PubMedCrossRef
45.
go back to reference Gleeson EM, Rehill AM, Willis Fox O, Ni Ainle F, McDonnell CJ, Rushe HJ, et al. Apolipoprotein A-I enhances activated protein C cytoprotective activity. Blood Adv. 2020;4(11):2404–8.PubMedPubMedCentralCrossRef Gleeson EM, Rehill AM, Willis Fox O, Ni Ainle F, McDonnell CJ, Rushe HJ, et al. Apolipoprotein A-I enhances activated protein C cytoprotective activity. Blood Adv. 2020;4(11):2404–8.PubMedPubMedCentralCrossRef
46.
go back to reference Chung DW, Chen J, Ling M, Fu X, Blevins T, Parsons S, et al. High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion. Blood. 2016;127(5):637–45.PubMedPubMedCentralCrossRef Chung DW, Chen J, Ling M, Fu X, Blevins T, Parsons S, et al. High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion. Blood. 2016;127(5):637–45.PubMedPubMedCentralCrossRef
47.
go back to reference Vanags LZ, Tan JTM, Galougahi KK, Schaefer A, Wise SG, Murphy A, et al. Apolipoprotein A-I reduces in-stent restenosis and platelet activation and alters neointimal cellular phenotype. JACC Basic Transl Sci. 2018;3(2):200–9.PubMedPubMedCentralCrossRef Vanags LZ, Tan JTM, Galougahi KK, Schaefer A, Wise SG, Murphy A, et al. Apolipoprotein A-I reduces in-stent restenosis and platelet activation and alters neointimal cellular phenotype. JACC Basic Transl Sci. 2018;3(2):200–9.PubMedPubMedCentralCrossRef
48.
go back to reference Brill A, Yesilaltay A, De Meyer SF, et al. Extrahepatic high-density lipoprotein receptor SR-BI and apoA-I protect against deep vein thrombosis in mice. Arterioscler Thromb Vasc Biol. 2012;32(8):1841–7.PubMedPubMedCentralCrossRef Brill A, Yesilaltay A, De Meyer SF, et al. Extrahepatic high-density lipoprotein receptor SR-BI and apoA-I protect against deep vein thrombosis in mice. Arterioscler Thromb Vasc Biol. 2012;32(8):1841–7.PubMedPubMedCentralCrossRef
49.
go back to reference Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.PubMedCrossRef Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.PubMedCrossRef
50.
go back to reference Rawshani A, Rawshani A, Franzen S, et al. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2017;135(16):1522–31.PubMedPubMedCentralCrossRef Rawshani A, Rawshani A, Franzen S, et al. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2017;135(16):1522–31.PubMedPubMedCentralCrossRef
51.
go back to reference Das SR, Everett BM, Birtcher KK, Brown JM, Cefalu WT, Januzzi JL Jr, et al. 2018 ACC expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a report of the American College of Cardiology Task Force on expert consensus decision pathways. J Am Coll Cardiol. 2018;72(24):3200–23.PubMedCrossRef Das SR, Everett BM, Birtcher KK, Brown JM, Cefalu WT, Januzzi JL Jr, et al. 2018 ACC expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a report of the American College of Cardiology Task Force on expert consensus decision pathways. J Am Coll Cardiol. 2018;72(24):3200–23.PubMedCrossRef
52.
go back to reference Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009;119(15):2103–11.PubMedCrossRef Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009;119(15):2103–11.PubMedCrossRef
53.
go back to reference Barter PJ, Rye KA, Tardif JC, Waters DD, Boekholdt SM, Breazna A, et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation. 2011;124(5):555–62.PubMedCrossRef Barter PJ, Rye KA, Tardif JC, Waters DD, Boekholdt SM, Breazna A, et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation. 2011;124(5):555–62.PubMedCrossRef
54.
go back to reference Schwartz GG, Leiter LA, Ballantyne CM, Barter PJ, Black DM, Kallend D, et al. Dalcetrapib reduces risk of new-onset diabetes in patients with coronary heart disease. Diabetes Care. 2020;43(5):1077–84.PubMedPubMedCentralCrossRef Schwartz GG, Leiter LA, Ballantyne CM, Barter PJ, Black DM, Kallend D, et al. Dalcetrapib reduces risk of new-onset diabetes in patients with coronary heart disease. Diabetes Care. 2020;43(5):1077–84.PubMedPubMedCentralCrossRef
55.
go back to reference Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK, et al. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol. 2010;30(8):1642–8.PubMedCrossRef Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK, et al. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol. 2010;30(8):1642–8.PubMedCrossRef
56.
go back to reference Cochran BJ, Bisoendial RJ, Hou L, Glaros EN, Rossy J, Thomas SR, et al. Apolipoprotein A-I increases insulin secretion and production from pancreatic beta-cells via a G-protein-cAMP-PKA-FoxO1-dependent mechanism. Arterioscler Thromb Vasc Biol. 2014;34(10):2261–7.PubMedCrossRef Cochran BJ, Bisoendial RJ, Hou L, Glaros EN, Rossy J, Thomas SR, et al. Apolipoprotein A-I increases insulin secretion and production from pancreatic beta-cells via a G-protein-cAMP-PKA-FoxO1-dependent mechanism. Arterioscler Thromb Vasc Biol. 2014;34(10):2261–7.PubMedCrossRef
57.
go back to reference Matsumura K, Tamasawa N, Daimon M. Possible insulinotropic action of apolipoprotein A-I through the ABCA1/Cdc42/cAMP/PKA pathway in MIN6 cells. Front Endocrinol (Lausanne). 2018;9:645.CrossRef Matsumura K, Tamasawa N, Daimon M. Possible insulinotropic action of apolipoprotein A-I through the ABCA1/Cdc42/cAMP/PKA pathway in MIN6 cells. Front Endocrinol (Lausanne). 2018;9:645.CrossRef
58.
go back to reference • Nilsson O, Del Giudice R, Nagao M, Gronberg C, Eliasson L, Lagerstedt JO. Apolipoprotein A-I primes beta cells to increase glucose stimulated insulin secretion. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3):165613 This study shows that APOA1 is endocytosed by β-cells, where it increases insulin secretion by mobilising insulin granules to the cell surface and converting proinsulin into insulin.PubMedCrossRef • Nilsson O, Del Giudice R, Nagao M, Gronberg C, Eliasson L, Lagerstedt JO. Apolipoprotein A-I primes beta cells to increase glucose stimulated insulin secretion. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3):165613 This study shows that APOA1 is endocytosed by β-cells, where it increases insulin secretion by mobilising insulin granules to the cell surface and converting proinsulin into insulin.PubMedCrossRef
59.
go back to reference Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes. 2007;56(9):2328–38.PubMedCrossRef Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes. 2007;56(9):2328–38.PubMedCrossRef
60.
go back to reference Hou L, Tang S, Wu BJ, Ong KL, Westerterp M, Barter PJ, et al. Apolipoprotein A-I improves pancreatic beta-cell function independent of the ATP-binding cassette transporters ABCA1 and ABCG1. FASEB J. 2019;33(7):8479–89.PubMedCrossRef Hou L, Tang S, Wu BJ, Ong KL, Westerterp M, Barter PJ, et al. Apolipoprotein A-I improves pancreatic beta-cell function independent of the ATP-binding cassette transporters ABCA1 and ABCG1. FASEB J. 2019;33(7):8479–89.PubMedCrossRef
61.
go back to reference Rutti S, Ehses JA, Sibler RA, et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology. 2009;150(10):4521–30.PubMedCrossRef Rutti S, Ehses JA, Sibler RA, et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology. 2009;150(10):4521–30.PubMedCrossRef
62.
go back to reference Yalcinkaya M, Kerksiek A, Gebert K, Annema W, Sibler R, Radosavljevic S, et al. HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic beta-cells in vitro by activation of Smoothened. J Lipid Res. 2020;61(4):492–504.PubMedPubMedCentralCrossRef Yalcinkaya M, Kerksiek A, Gebert K, Annema W, Sibler R, Radosavljevic S, et al. HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic beta-cells in vitro by activation of Smoothened. J Lipid Res. 2020;61(4):492–504.PubMedPubMedCentralCrossRef
63.
go back to reference Stenkula KG, Lindahl M, Petrlova J, Dalla-Riva J, Göransson O, Cushman SW, et al. Single injections of apoA-I acutely improve in vivo glucose tolerance in insulin-resistant mice. Diabetologia. 2014;57(4):797–800.PubMedPubMedCentralCrossRef Stenkula KG, Lindahl M, Petrlova J, Dalla-Riva J, Göransson O, Cushman SW, et al. Single injections of apoA-I acutely improve in vivo glucose tolerance in insulin-resistant mice. Diabetologia. 2014;57(4):797–800.PubMedPubMedCentralCrossRef
64.
go back to reference Domingo-Espin J, Lindahl M, Nilsson-Wolanin O, Cushman SW, Stenkula KG, Lagerstedt JO. Dual actions of apolipoprotein A-I on glucose-stimulated insulin secretion and insulin-independent peripheral tissue glucose uptake lead to increased heart and skeletal muscle glucose disposal. Diabetes. 2016;65(7):1838–48.PubMedCrossRef Domingo-Espin J, Lindahl M, Nilsson-Wolanin O, Cushman SW, Stenkula KG, Lagerstedt JO. Dual actions of apolipoprotein A-I on glucose-stimulated insulin secretion and insulin-independent peripheral tissue glucose uptake lead to increased heart and skeletal muscle glucose disposal. Diabetes. 2016;65(7):1838–48.PubMedCrossRef
65.
go back to reference Cochran BJ, Ryder WJ, Parmar A, Tang S, Reilhac A, Arthur A, et al. In vivo PET imaging with [18F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes. Diabetologia. 2016;59(9):1977–84.PubMedCrossRef Cochran BJ, Ryder WJ, Parmar A, Tang S, Reilhac A, Arthur A, et al. In vivo PET imaging with [18F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes. Diabetologia. 2016;59(9):1977–84.PubMedCrossRef
66.
go back to reference Feng X, Gao X, Yao Z, Xu Y. Low apoA-I is associated with insulin resistance in patients with impaired glucose tolerance: a cross-sectional study. Lipids Health Dis. 2017;16(1):69.PubMedPubMedCentralCrossRef Feng X, Gao X, Yao Z, Xu Y. Low apoA-I is associated with insulin resistance in patients with impaired glucose tolerance: a cross-sectional study. Lipids Health Dis. 2017;16(1):69.PubMedPubMedCentralCrossRef
67.
go back to reference Fritzen AM, Domingo-Espin J, Lundsgaard AM, et al. ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Mol Metab. 2020;35:100949.PubMedPubMedCentralCrossRef Fritzen AM, Domingo-Espin J, Lundsgaard AM, et al. ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Mol Metab. 2020;35:100949.PubMedPubMedCentralCrossRef
68.
go back to reference Lehti M, Donelan E, Abplanalp W, al-Massadi O, Habegger KM, Weber J, et al. High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice. Circulation. 2013;128(22):2364–71.PubMedPubMedCentralCrossRef Lehti M, Donelan E, Abplanalp W, al-Massadi O, Habegger KM, Weber J, et al. High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice. Circulation. 2013;128(22):2364–71.PubMedPubMedCentralCrossRef
69.
go back to reference Tang S, Tabet F, Cochran BJ, Cuesta Torres LF, Wu BJ, Barter PJ, et al. Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci Rep. 2019;9(1):1350.PubMedPubMedCentralCrossRef Tang S, Tabet F, Cochran BJ, Cuesta Torres LF, Wu BJ, Barter PJ, et al. Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci Rep. 2019;9(1):1350.PubMedPubMedCentralCrossRef
70.
go back to reference McGrath KC, Li X, Twigg SM, Heather AK. Apolipoprotein-AI mimetic peptides D-4F and L-5F decrease hepatic inflammation and increase insulin sensitivity in C57BL/6 mice. PLoS One. 2020;15(1):e0226931.PubMedPubMedCentralCrossRef McGrath KC, Li X, Twigg SM, Heather AK. Apolipoprotein-AI mimetic peptides D-4F and L-5F decrease hepatic inflammation and increase insulin sensitivity in C57BL/6 mice. PLoS One. 2020;15(1):e0226931.PubMedPubMedCentralCrossRef
71.
go back to reference • Edmunds SJ, Liebana-Garcia R, Nilsson O, et al. ApoAI-derived peptide increases glucose tolerance and prevents formation of atherosclerosis in mice. Diabetologia. 2019;62(7):1257–67 First evidence that APOA1 mimetic peptides reduce diabetes-acclerated atherosclerosis by improving β-cell function, increasing insulin sensitivity and decreasing atherosclerotic lesion progression.PubMedPubMedCentralCrossRef • Edmunds SJ, Liebana-Garcia R, Nilsson O, et al. ApoAI-derived peptide increases glucose tolerance and prevents formation of atherosclerosis in mice. Diabetologia. 2019;62(7):1257–67 First evidence that APOA1 mimetic peptides reduce diabetes-acclerated atherosclerosis by improving β-cell function, increasing insulin sensitivity and decreasing atherosclerotic lesion progression.PubMedPubMedCentralCrossRef
72.
73.
75.
go back to reference Jafri H, Alsheikh-Ali AA, Karas RH. Baseline and on-treatment high-density lipoprotein cholesterol and the risk of cancer in randomized controlled trials of lipid-altering therapy. J Am Coll Cardiol. 2010;55(25):2846–54.PubMedCrossRef Jafri H, Alsheikh-Ali AA, Karas RH. Baseline and on-treatment high-density lipoprotein cholesterol and the risk of cancer in randomized controlled trials of lipid-altering therapy. J Am Coll Cardiol. 2010;55(25):2846–54.PubMedCrossRef
76.
go back to reference His M, Zelek L, Deschasaux M, Pouchieu C, Kesse-Guyot E, Hercberg S, et al. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. Eur J Epidemiol. 2014;29(2):119–32.PubMedCrossRef His M, Zelek L, Deschasaux M, Pouchieu C, Kesse-Guyot E, Hercberg S, et al. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. Eur J Epidemiol. 2014;29(2):119–32.PubMedCrossRef
77.
go back to reference Borgquist S, Butt T, Almgren P, Shiffman D, Stocks T, Orho-Melander M, et al. Apolipoproteins, lipids and risk of cancer. Int J Cancer. 2016;138(11):2648–56.PubMedCrossRef Borgquist S, Butt T, Almgren P, Shiffman D, Stocks T, Orho-Melander M, et al. Apolipoproteins, lipids and risk of cancer. Int J Cancer. 2016;138(11):2648–56.PubMedCrossRef
78.
go back to reference Wu J, Zhang C, Zhang G, Wang Y, Zhang Z, Su W, et al. Association between pretreatment serum apolipoprotein a1 and prognosis of solid tumors in Chinese population: a systematic review and meta-analysis. Cell Physiol Biochem. 2018;51(2):575–88.PubMedCrossRef Wu J, Zhang C, Zhang G, Wang Y, Zhang Z, Su W, et al. Association between pretreatment serum apolipoprotein a1 and prognosis of solid tumors in Chinese population: a systematic review and meta-analysis. Cell Physiol Biochem. 2018;51(2):575–88.PubMedCrossRef
79.
go back to reference Quan Q, Huang Y, Chen Q, Qiu H, Hu Q, Rong Y, et al. Impact of serum apolipoprotein A-I on prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer: a propensity score-matched analysis. Transl Oncol. 2017;10(2):288–94.PubMedPubMedCentralCrossRef Quan Q, Huang Y, Chen Q, Qiu H, Hu Q, Rong Y, et al. Impact of serum apolipoprotein A-I on prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer: a propensity score-matched analysis. Transl Oncol. 2017;10(2):288–94.PubMedPubMedCentralCrossRef
80.
go back to reference Wang XP, Li XH, Zhang L, Lin JH, Huang H, Kang T, et al. High level of serum apolipoprotein A-I is a favorable prognostic factor for overall survival in esophageal squamous cell carcinoma. BMC Cancer. 2016;16:516.PubMedPubMedCentralCrossRef Wang XP, Li XH, Zhang L, Lin JH, Huang H, Kang T, et al. High level of serum apolipoprotein A-I is a favorable prognostic factor for overall survival in esophageal squamous cell carcinoma. BMC Cancer. 2016;16:516.PubMedPubMedCentralCrossRef
81.
go back to reference Guo S, He X, Chen Q, Yang G, Yao K, Dong P, et al. The effect of preoperative apolipoprotein A-I on the prognosis of surgical renal cell carcinoma: a retrospective large sample study. Medicine (Baltimore). 2016;95(12):e3147.CrossRef Guo S, He X, Chen Q, Yang G, Yao K, Dong P, et al. The effect of preoperative apolipoprotein A-I on the prognosis of surgical renal cell carcinoma: a retrospective large sample study. Medicine (Baltimore). 2016;95(12):e3147.CrossRef
82.
go back to reference Georgila K, Vyrla D, Drakos E. Apolipoprotein A-I (apoA-I), immunity, inflammation and cancer. Cancers (Basel) 2019;11(8):1097. Georgila K, Vyrla D, Drakos E. Apolipoprotein A-I (apoA-I), immunity, inflammation and cancer. Cancers (Basel) 2019;11(8):1097.
83.
go back to reference Zhang T, Wang Q, Wang Y, Wang J, Su Y, Wang F, et al. AIBP and APOA-I synergistically inhibit intestinal tumor growth and metastasis by promoting cholesterol efflux. J Transl Med. 2019;17(1):161.PubMedPubMedCentralCrossRef Zhang T, Wang Q, Wang Y, Wang J, Su Y, Wang F, et al. AIBP and APOA-I synergistically inhibit intestinal tumor growth and metastasis by promoting cholesterol efflux. J Transl Med. 2019;17(1):161.PubMedPubMedCentralCrossRef
84.
go back to reference Zamanian-Daryoush M, Lindner DJ, Buffa J, Gopalan B, Na J, Hazen SL, et al. Apolipoprotein A-I anti-tumor activity targets cancer cell metabolism. Oncotarget. 2020;11(19):1777–96.PubMedPubMedCentralCrossRef Zamanian-Daryoush M, Lindner DJ, Buffa J, Gopalan B, Na J, Hazen SL, et al. Apolipoprotein A-I anti-tumor activity targets cancer cell metabolism. Oncotarget. 2020;11(19):1777–96.PubMedPubMedCentralCrossRef
85.
go back to reference Ruscica M, Botta M, Ferri N, Giorgio E, Macchi C, Franceschini G, et al. High density lipoproteins inhibit oxidative stress-induced prostate cancer cell proliferation. Sci Rep. 2018;8(1):2236.PubMedPubMedCentralCrossRef Ruscica M, Botta M, Ferri N, Giorgio E, Macchi C, Franceschini G, et al. High density lipoproteins inhibit oxidative stress-induced prostate cancer cell proliferation. Sci Rep. 2018;8(1):2236.PubMedPubMedCentralCrossRef
86.
go back to reference Gkouskou KK, Ioannou M, Pavlopoulos GA, Georgila K, Siganou A, Nikolaidis G, et al. Apolipoprotein A-I inhibits experimental colitis and colitis-propelled carcinogenesis. Oncogene. 2016;35(19):2496–505.PubMedCrossRef Gkouskou KK, Ioannou M, Pavlopoulos GA, Georgila K, Siganou A, Nikolaidis G, et al. Apolipoprotein A-I inhibits experimental colitis and colitis-propelled carcinogenesis. Oncogene. 2016;35(19):2496–505.PubMedCrossRef
87.
go back to reference Su F, Kozak KR, Imaizumi S, Gao F, Amneus MW, Grijalva V, et al. Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proc Natl Acad Sci U S A. 2010;107(46):19997–20002.PubMedPubMedCentralCrossRef Su F, Kozak KR, Imaizumi S, Gao F, Amneus MW, Grijalva V, et al. Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proc Natl Acad Sci U S A. 2010;107(46):19997–20002.PubMedPubMedCentralCrossRef
88.
go back to reference Cedo L, Garcia-Leon A, Baila-Rueda L, et al. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer. Sci Rep. 2016;6:36387.PubMedPubMedCentralCrossRef Cedo L, Garcia-Leon A, Baila-Rueda L, et al. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer. Sci Rep. 2016;6:36387.PubMedPubMedCentralCrossRef
89.
go back to reference Peng M, Zhang Q, Cheng Y, Fu S, Yang H, Guo X, et al. Apolipoprotein A-I mimetic peptide 4F suppresses tumor-associated macrophages and pancreatic cancer progression. Oncotarget. 2017;8(59):99693–706.PubMedPubMedCentralCrossRef Peng M, Zhang Q, Cheng Y, Fu S, Yang H, Guo X, et al. Apolipoprotein A-I mimetic peptide 4F suppresses tumor-associated macrophages and pancreatic cancer progression. Oncotarget. 2017;8(59):99693–706.PubMedPubMedCentralCrossRef
90.
go back to reference Gao F, Vasquez SX, Su F, Roberts S, Shah N, Grijalva V, et al. L-5F, an apolipoprotein A-I mimetic, inhibits tumor angiogenesis by suppressing VEGF/basic FGF signaling pathways. Integr Biol (Camb). 2011;3(4):479–89.CrossRef Gao F, Vasquez SX, Su F, Roberts S, Shah N, Grijalva V, et al. L-5F, an apolipoprotein A-I mimetic, inhibits tumor angiogenesis by suppressing VEGF/basic FGF signaling pathways. Integr Biol (Camb). 2011;3(4):479–89.CrossRef
91.
go back to reference Gao F, Chattopadhyay A, Navab M, Grijalva V, Su F, Fogelman AM, et al. Apolipoprotein A-I mimetic peptides inhibit expression and activity of hypoxia-inducible factor-1α in human ovarian cancer cell lines and a mouse ovarian cancer model. J Pharmacol Exp Ther. 2012;342(2):255–62.PubMedPubMedCentralCrossRef Gao F, Chattopadhyay A, Navab M, Grijalva V, Su F, Fogelman AM, et al. Apolipoprotein A-I mimetic peptides inhibit expression and activity of hypoxia-inducible factor-1α in human ovarian cancer cell lines and a mouse ovarian cancer model. J Pharmacol Exp Ther. 2012;342(2):255–62.PubMedPubMedCentralCrossRef
92.
go back to reference Chattopadhyay A, Yang X, Mukherjee P, Sulaiman D, Fogelman HR, Grijalva V, et al. Treating the intestine with oral apoA-I mimetic Tg6F reduces tumor burden in mouse models of metastatic lung cancer. Sci Rep. 2018;8(1):9032.PubMedPubMedCentralCrossRef Chattopadhyay A, Yang X, Mukherjee P, Sulaiman D, Fogelman HR, Grijalva V, et al. Treating the intestine with oral apoA-I mimetic Tg6F reduces tumor burden in mouse models of metastatic lung cancer. Sci Rep. 2018;8(1):9032.PubMedPubMedCentralCrossRef
93.
go back to reference Zhou AL, Swaminathan SK, Curran GL, Poduslo JF, Lowe VJ, Li L, et al. Apolipoprotein A-I crosses the blood-brain barrier through clathrin-independent and cholesterol-mediated endocytosis. J Pharmacol Exp Ther. 2019;369(3):481–8.PubMedPubMedCentralCrossRef Zhou AL, Swaminathan SK, Curran GL, Poduslo JF, Lowe VJ, Li L, et al. Apolipoprotein A-I crosses the blood-brain barrier through clathrin-independent and cholesterol-mediated endocytosis. J Pharmacol Exp Ther. 2019;369(3):481–8.PubMedPubMedCentralCrossRef
94.
go back to reference Merino-Zamorano C, Fernandez-de Retana S, Montanola A, et al. Modulation of amyloid-β1-40 transport by apoA1 and apoJ across an in vitro model of the blood-brain barrier. J Alzheimers Dis. 2016;53(2):677–91.PubMedCrossRef Merino-Zamorano C, Fernandez-de Retana S, Montanola A, et al. Modulation of amyloid-β1-40 transport by apoA1 and apoJ across an in vitro model of the blood-brain barrier. J Alzheimers Dis. 2016;53(2):677–91.PubMedCrossRef
95.
go back to reference Robert J, Stukas S, Button E, Cheng WH, Lee M, Fan J, et al. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice. Biochim Biophys Acta. 2016;1862(5):1027–36.PubMedCrossRef Robert J, Stukas S, Button E, Cheng WH, Lee M, Fan J, et al. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice. Biochim Biophys Acta. 2016;1862(5):1027–36.PubMedCrossRef
96.
go back to reference Fernandez-de Retana S, Montanola A, Marazuela P, et al. Intravenous treatment with human recombinant apoA-I Milano reduces beta amyloid cerebral deposition in the APP23-transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 2017;60:116–28.PubMedCrossRef Fernandez-de Retana S, Montanola A, Marazuela P, et al. Intravenous treatment with human recombinant apoA-I Milano reduces beta amyloid cerebral deposition in the APP23-transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 2017;60:116–28.PubMedCrossRef
97.
go back to reference Dal Magro R, Simonelli S, Cox A, Formicola B, Corti R, Cassina V, et al. The extent of human apolipoprotein A-I lipidation strongly affects the beta-amyloid efflux across the blood-brain barrier in vitro. Front Neurosci. 2019;13:419.PubMedPubMedCentralCrossRef Dal Magro R, Simonelli S, Cox A, Formicola B, Corti R, Cassina V, et al. The extent of human apolipoprotein A-I lipidation strongly affects the beta-amyloid efflux across the blood-brain barrier in vitro. Front Neurosci. 2019;13:419.PubMedPubMedCentralCrossRef
98.
go back to reference Button EB, Boyce GK, Wilkinson A, Stukas S, Hayat A, Fan J, et al. ApoA-I deficiency increases cortical amyloid deposition, cerebral amyloid angiopathy, cortical and hippocampal astrogliosis, and amyloid-associated astrocyte reactivity in APP/PS1 mice. Alzheimers Res Ther. 2019;11(1):44.PubMedPubMedCentralCrossRef Button EB, Boyce GK, Wilkinson A, Stukas S, Hayat A, Fan J, et al. ApoA-I deficiency increases cortical amyloid deposition, cerebral amyloid angiopathy, cortical and hippocampal astrogliosis, and amyloid-associated astrocyte reactivity in APP/PS1 mice. Alzheimers Res Ther. 2019;11(1):44.PubMedPubMedCentralCrossRef
99.
go back to reference Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, et al. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem. 2010;285(47):36958–68.PubMedPubMedCentralCrossRef Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, et al. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem. 2010;285(47):36958–68.PubMedPubMedCentralCrossRef
Metadata
Title
APOA1: a Protein with Multiple Therapeutic Functions
Authors
Blake J. Cochran
Kwok-Leung Ong
Bikash Manandhar
Kerry-Anne Rye
Publication date
01-03-2021
Publisher
Springer US
Published in
Current Atherosclerosis Reports / Issue 3/2021
Print ISSN: 1523-3804
Electronic ISSN: 1534-6242
DOI
https://doi.org/10.1007/s11883-021-00906-7