Skip to main content
Top
Published in: Current Atherosclerosis Reports 3/2010

Open Access 01-05-2010

Genetic Variants of the Renin Angiotensin System: Effects on Atherosclerosis in Experimental Models and Humans

Authors: Alan Daugherty, Aruna Poduri, Xiaofeng Chen, Hong Lu, Lisa A. Cassis

Published in: Current Atherosclerosis Reports | Issue 3/2010

Login to get access

Abstract

The renin angiotensin system (RAS) has profound effects on atherosclerosis development in animal models, which is partially complimented by evidence in the human disease. Although angiotensin II was considered to be the principal effector of the RAS, a broader array of bioactive angiotensin peptides have been identified that have increased the scope of enzymes and receptors in the RAS. Genetic interruption of the synthesis of these peptides has not been extensively performed in experimental or human studies. A few studies demonstrate that interruption of a component of the angiotensin peptide synthesis pathway reduces experimental lesion formation. The evidence in human studies has not been consistent. Conversely, genetic manipulation of the RAS receptors has demonstrated that AT1a receptors are profoundly involved in experimental atherosclerosis. Few studies have reported links of genetic variants of angiotensin II receptors to human atherosclerotic diseases. Further genetic studies are needed to define the role of RAS in atherosclerosis.
Literature
1.
go back to reference Rader DJ, Daugherty A: Translating molecular discoveries into new therapies for atherosclerosis. Nature 2008, 451:904–913.CrossRefPubMed Rader DJ, Daugherty A: Translating molecular discoveries into new therapies for atherosclerosis. Nature 2008, 451:904–913.CrossRefPubMed
2.
go back to reference •• Le TH, Coffman TM: Targeting genes in the renin-angiotensin system. Curr Opin Nephrol Hypertens 2008, 17:57–63. This is a comprehensive review of the insight that genetic manipulations of the RAS genes have provided to physiologic and pathophysiologic processes. •• Le TH, Coffman TM: Targeting genes in the renin-angiotensin system. Curr Opin Nephrol Hypertens 2008, 17:57–63. This is a comprehensive review of the insight that genetic manipulations of the RAS genes have provided to physiologic and pathophysiologic processes.
3.
go back to reference Elton TS, Martin MM: Angiotensin II type 1 receptor gene regulation: transcriptional and posttranscriptional mechanisms. Hypertension 2007, 49:953–961.CrossRefPubMed Elton TS, Martin MM: Angiotensin II type 1 receptor gene regulation: transcriptional and posttranscriptional mechanisms. Hypertension 2007, 49:953–961.CrossRefPubMed
4.
go back to reference •• Mehta PK, Griendling KK: Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007, 292:C82–97. This is a clear description, in text and graphic forms, of the many complexities of AngII–stimulated intracellular signaling molecules. •• Mehta PK, Griendling KK: Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007, 292:C82–97. This is a clear description, in text and graphic forms, of the many complexities of AngII–stimulated intracellular signaling molecules.
5.
go back to reference Zhou Y, Chen Y, Dirksen WP, et al.: AT1b receptor predominantly mediates contractions in major mouse blood vessels. Circ Res 2003, 93:1089–1094.CrossRefPubMed Zhou Y, Chen Y, Dirksen WP, et al.: AT1b receptor predominantly mediates contractions in major mouse blood vessels. Circ Res 2003, 93:1089–1094.CrossRefPubMed
7.
go back to reference • Lu H, Rateri DL, Feldman DL, et al.: Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J Clin Invest 2008, 118:984–993. This is a demonstration that systemic renin inhibition and deficiency of the enzyme in bone marrow–derived cells profoundly reduce experimental atherosclerosis. • Lu H, Rateri DL, Feldman DL, et al.: Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J Clin Invest 2008, 118:984–993. This is a demonstration that systemic renin inhibition and deficiency of the enzyme in bone marrow–derived cells profoundly reduce experimental atherosclerosis.
8.
go back to reference Krege JH, Moyer JS, Langenbach LL, et al.: Angiotensin-converting enzyme gene and atherosclerosis. Arterioscler Thromb Vasc Biol 1997, 17:1245–1250.PubMed Krege JH, Moyer JS, Langenbach LL, et al.: Angiotensin-converting enzyme gene and atherosclerosis. Arterioscler Thromb Vasc Biol 1997, 17:1245–1250.PubMed
9.
go back to reference Hayek T, Pavlotzky E, Hamoud S, et al.: Tissue angiotensin-converting- enzyme (ACE) deficiency leads to a reduction in oxidative stress and in atherosclerosis. Studies in ACE-knockout mice type 2. Arterioscler Thromb Vasc Biol 2003, 23:2090–2096.CrossRefPubMed Hayek T, Pavlotzky E, Hamoud S, et al.: Tissue angiotensin-converting- enzyme (ACE) deficiency leads to a reduction in oxidative stress and in atherosclerosis. Studies in ACE-knockout mice type 2. Arterioscler Thromb Vasc Biol 2003, 23:2090–2096.CrossRefPubMed
10.
go back to reference Weiss D, Bernstein KE, Fuchs S, et al.: Vascular wall ACE is not required for atherogenesis in ApoE(-/-) mice. Atherosclerosis 2009 (in press). Weiss D, Bernstein KE, Fuchs S, et al.: Vascular wall ACE is not required for atherogenesis in ApoE(-/-) mice. Atherosclerosis 2009 (in press).
11.
go back to reference Daugherty A, Rateri DL, Lu H, et al.: Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation 2004, 110:3849–3857.CrossRefPubMed Daugherty A, Rateri DL, Lu H, et al.: Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation 2004, 110:3849–3857.CrossRefPubMed
12.
go back to reference Diet F, Pratt RE, Berry GJ, et al.: Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996, 94:2756–2767.PubMed Diet F, Pratt RE, Berry GJ, et al.: Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996, 94:2756–2767.PubMed
13.
go back to reference Lu H, Cassis LA, Daugherty A: Atherosclerosis and arterial blood pressure in mice. Curr Drug Targets 2007, 8:1181–1189.CrossRefPubMed Lu H, Cassis LA, Daugherty A: Atherosclerosis and arterial blood pressure in mice. Curr Drug Targets 2007, 8:1181–1189.CrossRefPubMed
14.
go back to reference Daugherty A, Lu H, Rateri DL, Cassis LA: Augmentation of the renin-angiotensin system by hypercholesterolemia promotes vascular diseases. Future Lipidol 2008, 3:625–636 .CrossRefPubMed Daugherty A, Lu H, Rateri DL, Cassis LA: Augmentation of the renin-angiotensin system by hypercholesterolemia promotes vascular diseases. Future Lipidol 2008, 3:625–636 .CrossRefPubMed
15.
go back to reference Katsuya T, Koike G, Yee TW, et al.: Association of angiotensinogen gene T235 variant with increased risk of coronary heart disease. Lancet 1995, 345:1600–1603.CrossRefPubMed Katsuya T, Koike G, Yee TW, et al.: Association of angiotensinogen gene T235 variant with increased risk of coronary heart disease. Lancet 1995, 345:1600–1603.CrossRefPubMed
16.
go back to reference Rodriguez-Perez JC, Rodriguez-Esparragon F, Hernandez-Perera O, et al.: Association of angiotensinogen M235T and A(-6)G gene polymorphisms with coronary heart disease with independence of essential hypertension: the PROCAGENE study. Prospective Cardiac Gene. J Am Coll Cardiol 2001, 37:1536–1542.CrossRefPubMed Rodriguez-Perez JC, Rodriguez-Esparragon F, Hernandez-Perera O, et al.: Association of angiotensinogen M235T and A(-6)G gene polymorphisms with coronary heart disease with independence of essential hypertension: the PROCAGENE study. Prospective Cardiac Gene. J Am Coll Cardiol 2001, 37:1536–1542.CrossRefPubMed
17.
go back to reference Sethi AA, Nordestgaard BG, Gronholdt ML, et al.: Angiotensinogen single nucleotide polymorphisms, elevated blood pressure, and risk of cardiovascular disease. Hypertension 2003, 41:1202–1211.CrossRefPubMed Sethi AA, Nordestgaard BG, Gronholdt ML, et al.: Angiotensinogen single nucleotide polymorphisms, elevated blood pressure, and risk of cardiovascular disease. Hypertension 2003, 41:1202–1211.CrossRefPubMed
18.
go back to reference • Zafarmand MH, van der Schouw YT, Grobbee DE, et al.: The M235T polymorphism in the AGT gene and CHD risk: evidence of a Hardy-Weinberg equilibrium violation and publication bias in a meta-analysis. PLoS One 2008, 3:e2533. This is a comprehensive analysis of many studies to define the weak association of a common functional angiotensinogen polymorphism with coronary heart disease. • Zafarmand MH, van der Schouw YT, Grobbee DE, et al.: The M235T polymorphism in the AGT gene and CHD risk: evidence of a Hardy-Weinberg equilibrium violation and publication bias in a meta-analysis. PLoS One 2008, 3:e2533. This is a comprehensive analysis of many studies to define the weak association of a common functional angiotensinogen polymorphism with coronary heart disease.
19.
go back to reference Rigat B, Hubert C, Alhenc-Gelas F, et al.: An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990, 86:1343–1346.CrossRefPubMed Rigat B, Hubert C, Alhenc-Gelas F, et al.: An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990, 86:1343–1346.CrossRefPubMed
20.
go back to reference Cambien F, Poirier O, Lecerf L, et al.: Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992, 359:641–644.CrossRefPubMed Cambien F, Poirier O, Lecerf L, et al.: Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992, 359:641–644.CrossRefPubMed
21.
go back to reference Petrovic D, Peterlin B: Pharmacogenomic considerations of the insertion/deletion gene polymorphism of the angiotensin I-converting enzyme and coronary artery disease. Curr Vasc Pharmacol 2004, 2:271–279.CrossRefPubMed Petrovic D, Peterlin B: Pharmacogenomic considerations of the insertion/deletion gene polymorphism of the angiotensin I-converting enzyme and coronary artery disease. Curr Vasc Pharmacol 2004, 2:271–279.CrossRefPubMed
22.
go back to reference Lindpaintner K, Pfeffer MA, Kreutz R, et al.: A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995, 332:706–711.CrossRefPubMed Lindpaintner K, Pfeffer MA, Kreutz R, et al.: A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995, 332:706–711.CrossRefPubMed
23.
go back to reference Sayed-Tabatabaei FA, Oostra BA, Isaacs A, et al.: ACE polymorphisms. Circ Res 2006, 98:1123–1133.CrossRefPubMed Sayed-Tabatabaei FA, Oostra BA, Isaacs A, et al.: ACE polymorphisms. Circ Res 2006, 98:1123–1133.CrossRefPubMed
24.
go back to reference Kitsios G, Zintzaras E: ACE (I/D) polymorphism and response to treatment in coronary artery disease: a comprehensive database and meta-analysis involving study quality evaluation. BMC Med Genet 2009, 10:50.CrossRefPubMed Kitsios G, Zintzaras E: ACE (I/D) polymorphism and response to treatment in coronary artery disease: a comprehensive database and meta-analysis involving study quality evaluation. BMC Med Genet 2009, 10:50.CrossRefPubMed
25.
go back to reference Kretowski A, McFann K, Hokanson JE, et al.: Polymorphisms of the renin-angiotensin system genes predict progression of subclinical coronary atherosclerosis. Diabetes 2007, 56:863–871.CrossRefPubMed Kretowski A, McFann K, Hokanson JE, et al.: Polymorphisms of the renin-angiotensin system genes predict progression of subclinical coronary atherosclerosis. Diabetes 2007, 56:863–871.CrossRefPubMed
26.
go back to reference Tsai CT, Hwang JJ, Ritchie MD, et al.: Renin-angiotensin system gene polymorphisms and coronary artery disease in a large angiographic cohort: detection of high order gene-gene interaction. Atherosclerosis 2007, 195:172–180.CrossRefPubMed Tsai CT, Hwang JJ, Ritchie MD, et al.: Renin-angiotensin system gene polymorphisms and coronary artery disease in a large angiographic cohort: detection of high order gene-gene interaction. Atherosclerosis 2007, 195:172–180.CrossRefPubMed
27.
go back to reference Wassmann S, Czech T, Van Eickels M, et al.: Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/Angiotensin II type 1A receptor double-knockout mice. Circulation 2004, 110:3062–3067.CrossRefPubMed Wassmann S, Czech T, Van Eickels M, et al.: Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/Angiotensin II type 1A receptor double-knockout mice. Circulation 2004, 110:3062–3067.CrossRefPubMed
28.
go back to reference Li Z, Iwai M, Wu L, et al.: Fluvastatin enhances the inhibitory effects of a selective AT1 receptor blocker, valsartan, on atherosclerosis. Hypertension 2004, 44:758–763.CrossRefPubMed Li Z, Iwai M, Wu L, et al.: Fluvastatin enhances the inhibitory effects of a selective AT1 receptor blocker, valsartan, on atherosclerosis. Hypertension 2004, 44:758–763.CrossRefPubMed
29.
go back to reference Eto H, Miyata M, Shirasawa T, et al.: The long-term effect of angiotensin II type 1a receptor deficiency on hypercholesterolemia-induced atherosclerosis. Hypertens Res 2008, 31:1631–1642.CrossRefPubMed Eto H, Miyata M, Shirasawa T, et al.: The long-term effect of angiotensin II type 1a receptor deficiency on hypercholesterolemia-induced atherosclerosis. Hypertens Res 2008, 31:1631–1642.CrossRefPubMed
30.
go back to reference Tomono Y, Iwai M, Inaba S, et al.: Blockade of AT(1) receptor improves adipocyte differentiation in atherosclerotic and diabetic models. Am J Hypertens 2008, 21:206–212.CrossRefPubMed Tomono Y, Iwai M, Inaba S, et al.: Blockade of AT(1) receptor improves adipocyte differentiation in atherosclerotic and diabetic models. Am J Hypertens 2008, 21:206–212.CrossRefPubMed
31.
go back to reference Cassis LA, Rateri DL, Lu H, Daugherty A: Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II-induced atherosclerosis and aneurysms. Arterioscler Thromb Vasc Biol 2007, 27:380–386.CrossRefPubMed Cassis LA, Rateri DL, Lu H, Daugherty A: Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II-induced atherosclerosis and aneurysms. Arterioscler Thromb Vasc Biol 2007, 27:380–386.CrossRefPubMed
32.
go back to reference Fukuda D, Sata M: Role of bone marrow renin-angiotensin system in the pathogenesis of atherosclerosis. Pharmacol Ther 2008, 118:268–276.CrossRefPubMed Fukuda D, Sata M: Role of bone marrow renin-angiotensin system in the pathogenesis of atherosclerosis. Pharmacol Ther 2008, 118:268–276.CrossRefPubMed
33.
go back to reference Ihara Y, Egashira K, Nakano K, et al.: Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. J Mol Cell Cardiol 2007, 43:455–464.CrossRefPubMed Ihara Y, Egashira K, Nakano K, et al.: Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. J Mol Cell Cardiol 2007, 43:455–464.CrossRefPubMed
34.
go back to reference Tsubakimoto Y, Yamada H, Yokoi H, et al.: Bone marrow angiotensin AT1 receptor regulates differentiation of monocyte lineage progenitors from hematopoietic stem cells. Arterioscler Thromb Vasc Biol 2009, 29:1529–1536.CrossRefPubMed Tsubakimoto Y, Yamada H, Yokoi H, et al.: Bone marrow angiotensin AT1 receptor regulates differentiation of monocyte lineage progenitors from hematopoietic stem cells. Arterioscler Thromb Vasc Biol 2009, 29:1529–1536.CrossRefPubMed
35.
go back to reference Koga J, Egashira K, Matoba T, et al.: Essential role of angiotensin II type 1a receptors in the host vascular wall, but not the bone marrow, in the pathogenesis of angiotensin II-induced atherosclerosis. Hypertens Res 2008, 31:1791–1800.CrossRefPubMed Koga J, Egashira K, Matoba T, et al.: Essential role of angiotensin II type 1a receptors in the host vascular wall, but not the bone marrow, in the pathogenesis of angiotensin II-induced atherosclerosis. Hypertens Res 2008, 31:1791–1800.CrossRefPubMed
36.
go back to reference Kato H, Ishida J, Nagano K, et al.: Deterioration of atherosclerosis in mice lacking angiotensin II type 1A receptor in bone marrow-derived cells. Lab Invest 2008, 88:731–739.CrossRefPubMed Kato H, Ishida J, Nagano K, et al.: Deterioration of atherosclerosis in mice lacking angiotensin II type 1A receptor in bone marrow-derived cells. Lab Invest 2008, 88:731–739.CrossRefPubMed
37.
go back to reference Koitka A, Cao Z, Koh P, et al.: Angiotensin II subtype 2 receptor blockade and deficiency attenuate the development of atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes. Diabetologia 2010, 53:584–592.CrossRefPubMed Koitka A, Cao Z, Koh P, et al.: Angiotensin II subtype 2 receptor blockade and deficiency attenuate the development of atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes. Diabetologia 2010, 53:584–592.CrossRefPubMed
38.
go back to reference Sales VL, Sukhova GK, Lopez-Ilasaca MA, et al.: Angiotensin type 2 receptor is expressed in murine atherosclerotic lesions and modulates lesion evolution. Circulation 2005, 112:3328–3336.CrossRefPubMed Sales VL, Sukhova GK, Lopez-Ilasaca MA, et al.: Angiotensin type 2 receptor is expressed in murine atherosclerotic lesions and modulates lesion evolution. Circulation 2005, 112:3328–3336.CrossRefPubMed
39.
go back to reference Iwai M, Chen R, Li Z, et al.: Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Circulation 2005,112:1636–1643.CrossRefPubMed Iwai M, Chen R, Li Z, et al.: Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Circulation 2005,112:1636–1643.CrossRefPubMed
40.
go back to reference Schiffrin EL, Touyz RM: Multiple actions of angiotensin II in hypertension: benefits of AT1 receptor blockade. J Am Coll Cardiol 2003, 42:911–913.CrossRefPubMed Schiffrin EL, Touyz RM: Multiple actions of angiotensin II in hypertension: benefits of AT1 receptor blockade. J Am Coll Cardiol 2003, 42:911–913.CrossRefPubMed
41.
go back to reference Fernandez-Arcas N, Dieguez-Lucena JL, Munoz-Moran E, et al.: The genotype interactions of methylenetetrahydrofolate reductase and renin-angiotensin system genes are associated with myocardial infarction. Atherosclerosis 1999, 145:293–300.CrossRefPubMed Fernandez-Arcas N, Dieguez-Lucena JL, Munoz-Moran E, et al.: The genotype interactions of methylenetetrahydrofolate reductase and renin-angiotensin system genes are associated with myocardial infarction. Atherosclerosis 1999, 145:293–300.CrossRefPubMed
42.
go back to reference Zhu S, Meng QH: Association of angiotensin II type 1 receptor gene polymorphism with carotid atherosclerosis. Clin Chem Lab Med 2006, 44:282–284.CrossRefPubMed Zhu S, Meng QH: Association of angiotensin II type 1 receptor gene polymorphism with carotid atherosclerosis. Clin Chem Lab Med 2006, 44:282–284.CrossRefPubMed
43.
go back to reference Morisawa T, Kishimoto Y, Kitano M et al.: Influence of angiotensin II type 1 receptor polymorphism on hypertension in patients with hypercholesterolemia. Clin Chim Acta 2001, 304:91–97.CrossRefPubMed Morisawa T, Kishimoto Y, Kitano M et al.: Influence of angiotensin II type 1 receptor polymorphism on hypertension in patients with hypercholesterolemia. Clin Chim Acta 2001, 304:91–97.CrossRefPubMed
44.
go back to reference Su S, Chen J, Zhao J, et al.: Angiotensin II type I receptor gene and myocardial infarction: tagging SNPs and haplotype based association study. The Beijing atherosclerosis study. Pharmacogenetics 2004, 14:673–681. Su S, Chen J, Zhao J, et al.: Angiotensin II type I receptor gene and myocardial infarction: tagging SNPs and haplotype based association study. The Beijing atherosclerosis study. Pharmacogenetics 2004, 14:673–681.
45.
go back to reference Jeunemaitre X, Ledru F, Battaglia S, et al.: Genetic polymorphisms of the renin-angiotensin system and angiographic extent and severity of coronary artery disease: the CORGENE study. Hum Genet 1997, 99:66–73.CrossRefPubMed Jeunemaitre X, Ledru F, Battaglia S, et al.: Genetic polymorphisms of the renin-angiotensin system and angiographic extent and severity of coronary artery disease: the CORGENE study. Hum Genet 1997, 99:66–73.CrossRefPubMed
46.
go back to reference Gruchala M, Ciecwierz D, Ochman K et al.: Left ventricular size, mass and function in relation to angiotensin-converting enzyme gene and angiotensin-II type 1 receptor gene polymorphisms in patients with coronary artery disease. Clin Chem Lab Med 2003, 41:522–528.CrossRefPubMed Gruchala M, Ciecwierz D, Ochman K et al.: Left ventricular size, mass and function in relation to angiotensin-converting enzyme gene and angiotensin-II type 1 receptor gene polymorphisms in patients with coronary artery disease. Clin Chem Lab Med 2003, 41:522–528.CrossRefPubMed
47.
go back to reference Burdon KP, Langefeld CD, Beck SR, et al.: Association of genes of lipid metabolism with measures of subclinical cardiovascular disease in the Diabetes Heart Study. J Med Genet 2005, 42:720–724.CrossRefPubMed Burdon KP, Langefeld CD, Beck SR, et al.: Association of genes of lipid metabolism with measures of subclinical cardiovascular disease in the Diabetes Heart Study. J Med Genet 2005, 42:720–724.CrossRefPubMed
48.
go back to reference Schelleman H, Klungel OH, Kromhout D, et al.: Prevalence and determinants of undertreatment of hypertension in the Netherlands. J Hum Hypertens 2004, 18:317–324.CrossRefPubMed Schelleman H, Klungel OH, Kromhout D, et al.: Prevalence and determinants of undertreatment of hypertension in the Netherlands. J Hum Hypertens 2004, 18:317–324.CrossRefPubMed
49.
go back to reference Alfakih K, Brown B, Lawrance RA, et al.: Effect of a common X-linked angiotensin II type 2-receptor gene polymorphism (-1332 G/A) on the occurrence of premature myocardial infarction and stenotic atherosclerosis requiring revascularization. Atherosclerosis 2007, 195:e32–38.CrossRefPubMed Alfakih K, Brown B, Lawrance RA, et al.: Effect of a common X-linked angiotensin II type 2-receptor gene polymorphism (-1332 G/A) on the occurrence of premature myocardial infarction and stenotic atherosclerosis requiring revascularization. Atherosclerosis 2007, 195:e32–38.CrossRefPubMed
50.
go back to reference Tousoulis D, Koumallos N, Antoniades C, et al.: Genetic polymorphism on type 2 receptor of angiotensin II, modifies cardiovascular risk and systemic inflammation in hypertensive males. Am J Hypertens 2009 (in press). Tousoulis D, Koumallos N, Antoniades C, et al.: Genetic polymorphism on type 2 receptor of angiotensin II, modifies cardiovascular risk and systemic inflammation in hypertensive males. Am J Hypertens 2009 (in press).
Metadata
Title
Genetic Variants of the Renin Angiotensin System: Effects on Atherosclerosis in Experimental Models and Humans
Authors
Alan Daugherty
Aruna Poduri
Xiaofeng Chen
Hong Lu
Lisa A. Cassis
Publication date
01-05-2010
Publisher
Current Science Inc.
Published in
Current Atherosclerosis Reports / Issue 3/2010
Print ISSN: 1523-3804
Electronic ISSN: 1534-6242
DOI
https://doi.org/10.1007/s11883-010-0109-4

Other articles of this Issue 3/2010

Current Atherosclerosis Reports 3/2010 Go to the issue