Skip to main content
Top
Published in: Irish Journal of Medical Science (1971 -) 1/2015

01-03-2015 | Review Article

The paradox of Wolff’s theories

Author: A. Hammer

Published in: Irish Journal of Medical Science (1971 -) | Issue 1/2015

Login to get access

Abstract

The upper femur has long held a fascination for both clinicians and bioengineers as it contains two trabecular columns obviously related to its function. In this respect two theories as to the formation of these columns have developed, both associated with Wolff: the Trajectorial Theory, which relates mainly to the passage of forces through the cancellous bone of the upper femur, and Wolff’s Law of bone formation, which describes the bone’s reaction to these forces and relates to bone in general. The two concepts nevertheless are often used synonymously. The Trajectorial Theory propounds that these cancellous structures in the femoral neck are due to both tension and compression forces, while modern day concepts of Wolff’s Law only acknowledge the action of compression forces: and herein lies the paradox. The Trajectorial Theory and Wolff’s Law, when applied to the upper femur, are mutually exclusive. The evidence, anatomical and physiological, indicates that bone forms within the femoral neck solely under the influence of compression forces. This would indicate that the Trajectorial Theory is not appropriate for this region. An alternative conceptual way of looking at this region is presented which eliminates this theory and resolves the paradox.
Literature
1.
go back to reference Wolff J (1986) The law of bone remodelling (trans: Maquet P, Furlong R). Springer, Berlin Wolff J (1986) The law of bone remodelling (trans: Maquet P, Furlong R). Springer, Berlin
2.
go back to reference Bertrum JEA, Swartz SM (1991) The ‘law of bone transformation’: a case of crying Wolff? Biol Rev 66:245–273CrossRef Bertrum JEA, Swartz SM (1991) The ‘law of bone transformation’: a case of crying Wolff? Biol Rev 66:245–273CrossRef
3.
go back to reference Enlow DH (1963) Principles of bone modeling. In: Evans FG (ed) American lectures in anatomy. Charles Thomas, Springfield, pp 1–30 Enlow DH (1963) Principles of bone modeling. In: Evans FG (ed) American lectures in anatomy. Charles Thomas, Springfield, pp 1–30
4.
go back to reference Tobin WJ (1955) The internal architecture of the femur and its clinical significance. J Bone Joint Surg Am 37A:57–71 Tobin WJ (1955) The internal architecture of the femur and its clinical significance. J Bone Joint Surg Am 37A:57–71
5.
go back to reference Scott JH (1957) The mechanical basis of bone formation. J Bone Joint Surg Br 39B:134–144 Scott JH (1957) The mechanical basis of bone formation. J Bone Joint Surg Br 39B:134–144
6.
7.
go back to reference Cowin SC (1997) The false premise of Wolff’s Law. Forma 12(3,4):247–262 Cowin SC (1997) The false premise of Wolff’s Law. Forma 12(3,4):247–262
9.
go back to reference Fetto J, Leali A, Moroz A (2002) Evolution of the Koch model of the biomechanics of the hip: clinical perspective. J Orthop Sci 7:724–730CrossRefPubMed Fetto J, Leali A, Moroz A (2002) Evolution of the Koch model of the biomechanics of the hip: clinical perspective. J Orthop Sci 7:724–730CrossRefPubMed
10.
go back to reference Rybicki EF, Simone FA, Weis EB (1972) On the mathematical analysis of stress in the human femur. J Biomech 5:203–215CrossRefPubMed Rybicki EF, Simone FA, Weis EB (1972) On the mathematical analysis of stress in the human femur. J Biomech 5:203–215CrossRefPubMed
11.
go back to reference Carter DR, Orr TE, Fyhrie DP (1989) Relationship between loading history and femoral cancellous bone architecture. J Biomech 22:231–244CrossRefPubMed Carter DR, Orr TE, Fyhrie DP (1989) Relationship between loading history and femoral cancellous bone architecture. J Biomech 22:231–244CrossRefPubMed
12.
go back to reference Goldstein S, Matthews L, Kuhn J et al (1991) Trabecular bone modelling. An experimental model. J Biomech 24:135–150CrossRefPubMed Goldstein S, Matthews L, Kuhn J et al (1991) Trabecular bone modelling. An experimental model. J Biomech 24:135–150CrossRefPubMed
13.
go back to reference Van Rietbergen B, Huiskes R, Eckstein F et al (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Min Res 18:1781–1788CrossRef Van Rietbergen B, Huiskes R, Eckstein F et al (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Min Res 18:1781–1788CrossRef
14.
go back to reference Richmond BG, Wight BW, Grosse I et al (2005) Finite element analysis in functional morphology. Anat Rec 283A:259–274CrossRef Richmond BG, Wight BW, Grosse I et al (2005) Finite element analysis in functional morphology. Anat Rec 283A:259–274CrossRef
15.
go back to reference Rohlmann A, Mosner U, Bergann G et al (1982) Finite element analysis and experimental investigation of stress in a femur. J Biomed Eng 4:241–246CrossRefPubMed Rohlmann A, Mosner U, Bergann G et al (1982) Finite element analysis and experimental investigation of stress in a femur. J Biomed Eng 4:241–246CrossRefPubMed
16.
go back to reference Zannoni C, Mantovani R, Viceconti M (1988) Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys 20:735–740CrossRef Zannoni C, Mantovani R, Viceconti M (1988) Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys 20:735–740CrossRef
17.
go back to reference Keyak JH, Rossi SA, Jones KA et al (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133CrossRefPubMed Keyak JH, Rossi SA, Jones KA et al (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133CrossRefPubMed
18.
go back to reference Gomez-Benito MJ, Garcia-Aznar JM, Doblare M (2005) Finite element prediction of proximal femoral fracture pattern under different load. J Biomech Eng 127:9–14CrossRefPubMed Gomez-Benito MJ, Garcia-Aznar JM, Doblare M (2005) Finite element prediction of proximal femoral fracture pattern under different load. J Biomech Eng 127:9–14CrossRefPubMed
19.
go back to reference Roger K, Resnick D, Sartoris DJ et al (2005) Computerized tomography of proximal femoral trabecular patterns. J Orthop Res 4:45–56 Roger K, Resnick D, Sartoris DJ et al (2005) Computerized tomography of proximal femoral trabecular patterns. J Orthop Res 4:45–56
20.
go back to reference Kayak JH, Falkinstein Y (2003) Comparison of in situ and in vitro CT scan based finite element model predictions of proximal femoral fracture load. Med Eng Phys 25:781–787CrossRef Kayak JH, Falkinstein Y (2003) Comparison of in situ and in vitro CT scan based finite element model predictions of proximal femoral fracture load. Med Eng Phys 25:781–787CrossRef
21.
go back to reference Verhulp E, Van Rietbergen B, Huiskes R (2006) Comparison of micro-level and continuum-level voxel model of the proximal femur. J Biomech 39:2951–2957CrossRefPubMed Verhulp E, Van Rietbergen B, Huiskes R (2006) Comparison of micro-level and continuum-level voxel model of the proximal femur. J Biomech 39:2951–2957CrossRefPubMed
23.
go back to reference Wirtz DC, Pandorf T, Portheine F et al (2003) Concept and development of an orthotropic FE model of the proximal femur. J Biomech 36(2):289–293CrossRefPubMed Wirtz DC, Pandorf T, Portheine F et al (2003) Concept and development of an orthotropic FE model of the proximal femur. J Biomech 36(2):289–293CrossRefPubMed
24.
go back to reference Blemker SS, Delp SL (2004) Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 33:661–673CrossRef Blemker SS, Delp SL (2004) Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 33:661–673CrossRef
25.
go back to reference Blemker SS, Asakawa DS, Gold GE et al (2007) Image based musculo-skeletal modeling: applications, advances and future opportunities. J Magn Reson Imaging 25(2):441–451CrossRefPubMed Blemker SS, Asakawa DS, Gold GE et al (2007) Image based musculo-skeletal modeling: applications, advances and future opportunities. J Magn Reson Imaging 25(2):441–451CrossRefPubMed
27.
go back to reference Frieburg AH (1902) Wolff’s Law and the functional pathogenesis of deformity. Anatomy 124:956–972 Frieburg AH (1902) Wolff’s Law and the functional pathogenesis of deformity. Anatomy 124:956–972
28.
go back to reference Cowin S (1989) A resolution restriction for Wolff’s Law of trabecular architecture. Bull Hosp Joint Dis Orthop Inst 49:205–212 Cowin S (1989) A resolution restriction for Wolff’s Law of trabecular architecture. Bull Hosp Joint Dis Orthop Inst 49:205–212
29.
go back to reference Frost HM (1994) Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188PubMed Frost HM (1994) Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188PubMed
30.
go back to reference Frost H (2001) From Wolff’s Law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 262:398–419CrossRefPubMed Frost H (2001) From Wolff’s Law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 262:398–419CrossRefPubMed
31.
go back to reference Prendergast PJ, Huiskes R (1995) The biomechanics of Wolff’s Law: recent advances. Ir J Med Sci 164(2):152–154CrossRefPubMed Prendergast PJ, Huiskes R (1995) The biomechanics of Wolff’s Law: recent advances. Ir J Med Sci 164(2):152–154CrossRefPubMed
32.
go back to reference Ruff C, Holt B, Trinkhaus E (2006) Who’s afraid of the big bad Wolf? “Wolff’s Law” and bone functional adaptation. Am J Physiol Anthropol 129:484–498CrossRef Ruff C, Holt B, Trinkhaus E (2006) Who’s afraid of the big bad Wolf? “Wolff’s Law” and bone functional adaptation. Am J Physiol Anthropol 129:484–498CrossRef
33.
34.
go back to reference Frost HM (1983) A determinant of bone architecture: the minimum effective strain. Clin Orthop Relat Res 175:286–292PubMed Frost HM (1983) A determinant of bone architecture: the minimum effective strain. Clin Orthop Relat Res 175:286–292PubMed
35.
go back to reference Huiskes R (1997) Validation of adaptive bone remodeling simulation models. In: Lowet G et al (eds) Bone research in biomechanics. IOS Press, Amsterdam, pp 33–48 Huiskes R (1997) Validation of adaptive bone remodeling simulation models. In: Lowet G et al (eds) Bone research in biomechanics. IOS Press, Amsterdam, pp 33–48
36.
go back to reference Goodship AE, Lanyon LE, McFie H (1979) Functional adaptation of bone to increased stress. J Bone Joint Surg Am 61A:539–546 Goodship AE, Lanyon LE, McFie H (1979) Functional adaptation of bone to increased stress. J Bone Joint Surg Am 61A:539–546
37.
go back to reference Lanyon LE, Baggott DG (1976) Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg Br 58B:436–443 Lanyon LE, Baggott DG (1976) Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg Br 58B:436–443
38.
go back to reference Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417CrossRefPubMed Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417CrossRefPubMed
39.
go back to reference Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling; experimental research of Wolff’s Law. J Biomech 5(2):173–180CrossRefPubMed Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling; experimental research of Wolff’s Law. J Biomech 5(2):173–180CrossRefPubMed
40.
go back to reference Pauwels F (1980) Short survey of the mechanical stressing of bone. In: Maquet P, Furlong R (eds) Biomechanics of the locomotor apparatus. Springer, Berlin, pp 478–503CrossRef Pauwels F (1980) Short survey of the mechanical stressing of bone. In: Maquet P, Furlong R (eds) Biomechanics of the locomotor apparatus. Springer, Berlin, pp 478–503CrossRef
41.
go back to reference Hart R (2001) Bone modeling and remodeling: theories and computation. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC Press, Boca Raton, pp 31–41 Hart R (2001) Bone modeling and remodeling: theories and computation. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC Press, Boca Raton, pp 31–41
42.
go back to reference Huiskes R, Chao EYS (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech 16:385–409 CrossRefPubMed Huiskes R, Chao EYS (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech 16:385–409 CrossRefPubMed
44.
go back to reference Jansen M (1920) On bone formation. The University Press, Manchester Jansen M (1920) On bone formation. The University Press, Manchester
45.
go back to reference Garden RS (1961) The structure and function of the proximal end of the femur. J Bone Joint Surg Br 43B(3):576–589 Garden RS (1961) The structure and function of the proximal end of the femur. J Bone Joint Surg Br 43B(3):576–589
46.
go back to reference Roesler H (1987) The history of some fundamental concepts in bone biomechanics. J Biomech 20:1025–1034CrossRefPubMed Roesler H (1987) The history of some fundamental concepts in bone biomechanics. J Biomech 20:1025–1034CrossRefPubMed
47.
go back to reference Roesler H (1981) Some historical remarks on the theory of cancellous bone structure (Wolff’s Law). In: Cowin SC (ed) Mechanical properties of bone. American Society of Mechanical Engineers, New York, pp 27–42 Roesler H (1981) Some historical remarks on the theory of cancellous bone structure (Wolff’s Law). In: Cowin SC (ed) Mechanical properties of bone. American Society of Mechanical Engineers, New York, pp 27–42
48.
go back to reference Meade JB, Cowin SC, Klawitte JJ et al (1984) Bone remodeling due to continuously applied loads. Calcif Tissue Int 36(Suppl):S25–S30CrossRefPubMed Meade JB, Cowin SC, Klawitte JJ et al (1984) Bone remodeling due to continuously applied loads. Calcif Tissue Int 36(Suppl):S25–S30CrossRefPubMed
49.
go back to reference Rubin CT, Lanyon LE (1987) Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res 5:300–310CrossRefPubMed Rubin CT, Lanyon LE (1987) Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res 5:300–310CrossRefPubMed
50.
go back to reference Kenwright J, White SH (1993) A historical review of limb lengthening and bone transport. Injury 24(Suppl):S9–S19CrossRefPubMed Kenwright J, White SH (1993) A historical review of limb lengthening and bone transport. Injury 24(Suppl):S9–S19CrossRefPubMed
51.
go back to reference Ling RSM, O’Connor JJ, Lu T-W et al (1996) Muscular activity and the biomechanics of the hip. Hip Int 6:91–105 Ling RSM, O’Connor JJ, Lu T-W et al (1996) Muscular activity and the biomechanics of the hip. Hip Int 6:91–105
52.
go back to reference Frankel VH (1986) Biomechanics of the hip joint. Instr Course Lect 35:3–9PubMed Frankel VH (1986) Biomechanics of the hip joint. Instr Course Lect 35:3–9PubMed
53.
go back to reference Dude GN, Heller M, Albingere J et al (1998) Influence of muscle forces on femoral strain distribution. J Biomech 31:841–846CrossRef Dude GN, Heller M, Albingere J et al (1998) Influence of muscle forces on femoral strain distribution. J Biomech 31:841–846CrossRef
55.
56.
go back to reference St. Clair Strange FG (1965) The hip. Heinemann, London, pp 28–51 (quoted by Ling et al) St. Clair Strange FG (1965) The hip. Heinemann, London, pp 28–51 (quoted by Ling et al)
57.
go back to reference Heller MO, Bergman G, Deuretzbacher G et al (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893CrossRefPubMed Heller MO, Bergman G, Deuretzbacher G et al (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893CrossRefPubMed
58.
59.
go back to reference Dixon AF (1910) The architecture of the cancellous tissue forming the upper end of the femur. J Anat Physiol 45:223–230 Dixon AF (1910) The architecture of the cancellous tissue forming the upper end of the femur. J Anat Physiol 45:223–230
60.
go back to reference Backman S (1957) The proximal end of the femur. Acta Radiol Suppl 146:1–166PubMed Backman S (1957) The proximal end of the femur. Acta Radiol Suppl 146:1–166PubMed
61.
go back to reference Hammer A (2010) The structure of the femoral neck: a physical dissection with emphasis on the internal trabecular system. Ann Anat 192:168–177CrossRefPubMed Hammer A (2010) The structure of the femoral neck: a physical dissection with emphasis on the internal trabecular system. Ann Anat 192:168–177CrossRefPubMed
62.
go back to reference Shelley FJ, Anderson DD, Kolar MJ et al (1996) Physical modeling of hip joint forces in stair climbing. Proc Inst Mech Eng 210:65–68CrossRef Shelley FJ, Anderson DD, Kolar MJ et al (1996) Physical modeling of hip joint forces in stair climbing. Proc Inst Mech Eng 210:65–68CrossRef
Metadata
Title
The paradox of Wolff’s theories
Author
A. Hammer
Publication date
01-03-2015
Publisher
Springer London
Published in
Irish Journal of Medical Science (1971 -) / Issue 1/2015
Print ISSN: 0021-1265
Electronic ISSN: 1863-4362
DOI
https://doi.org/10.1007/s11845-014-1070-y

Other articles of this Issue 1/2015

Irish Journal of Medical Science (1971 -) 1/2015 Go to the issue