Skip to main content
Top
Published in: Journal of Robotic Surgery 4/2022

04-09-2021 | Artificial Intelligence | Review Article

The evolution of image guidance in robotic-assisted laparoscopic prostatectomy (RALP): a glimpse into the future

Authors: Joshua Makary, Danielle C. van Diepen, Ranjan Arianayagam, George McClintock, Jeremy Fallot, Scott Leslie, Ruban Thanigasalam

Published in: Journal of Robotic Surgery | Issue 4/2022

Login to get access

Abstract

Objectives

To describe the innovative intraoperative technologies emerging to aid surgeons during minimally invasive robotic-assisted laparoscopic prostatectomy.

Methods

We searched multiple electronic databases reporting on intraoperative imaging and navigation technologies, robotic surgery in combination with 3D modeling and 3D printing used during laparoscopic or robotic-assisted laparoscopic prostatectomy. Additional searches were conducted for articles that considered the role of artificial intelligence and machine learning and their application to robotic surgery. We excluded studies using intraoperative navigation technologies during open radical prostatectomy and studies considering technology to visualize lymph nodes.

Summary of findings

Intraoperative imaging using either transrectal ultrasonography or augmented reality was associated with a potential decrease in positive surgical margins rates. Improvements in detecting capsular involvement may be seen with augmented reality. The benefit, feasibility and applications of other imaging modalities such as 3D-printed models and optical imaging are discussed.

Conclusion

The application of image-guided surgery and robotics has led to the development of promising new intraoperative imaging technologies such as augmented reality, fluorescence imaging, optical coherence tomography, confocal laser endomicroscopy and 3D printing. Currently challenges regarding tissue deformation and automatic tracking of prostate movements remain and there is a paucity in the literature supporting the use of these technologies. Urologic surgeons are encouraged to improve and test these advanced technologies in the clinical arena, preferably with comparative, randomized, trials.
Literature
1.
go back to reference Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386PubMedCrossRef Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386PubMedCrossRef
2.
go back to reference Chang SL et al (2015) The impact of robotic surgery on the surgical management of prostate cancer in the USA. BJU Int 115(6):929–936PubMedCrossRef Chang SL et al (2015) The impact of robotic surgery on the surgical management of prostate cancer in the USA. BJU Int 115(6):929–936PubMedCrossRef
3.
go back to reference Coughlin GD et al (2018) Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol 19(8):1051–1060PubMedCrossRef Coughlin GD et al (2018) Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol 19(8):1051–1060PubMedCrossRef
4.
go back to reference Tosoian JJ, Loeb S (2012) Radical retropubic prostatectomy: comparison of the open and robotic approaches for treatment of prostate cancer. Rev Urol 14(1–2):20–27PubMedPubMedCentral Tosoian JJ, Loeb S (2012) Radical retropubic prostatectomy: comparison of the open and robotic approaches for treatment of prostate cancer. Rev Urol 14(1–2):20–27PubMedPubMedCentral
5.
go back to reference Ou YC et al (2013) The trifecta outcome in 300 consecutive cases of robotic-assisted laparoscopic radical prostatectomy according to D’Amico risk criteria. Eur J Surg Oncol 39(1):107–113PubMedCrossRef Ou YC et al (2013) The trifecta outcome in 300 consecutive cases of robotic-assisted laparoscopic radical prostatectomy according to D’Amico risk criteria. Eur J Surg Oncol 39(1):107–113PubMedCrossRef
6.
go back to reference Walz J et al (2016) A critical analysis of the current knowledge of surgical anatomy of the prostate related to optimisation of cancer control and preservation of continence and erection in candidates for radical prostatectomy: an update. Eur Urol 70(2):301–311PubMedCrossRef Walz J et al (2016) A critical analysis of the current knowledge of surgical anatomy of the prostate related to optimisation of cancer control and preservation of continence and erection in candidates for radical prostatectomy: an update. Eur Urol 70(2):301–311PubMedCrossRef
7.
go back to reference Bianco Jr FJ, Scardino PT, Eastham JA (2005) Radical prostatectomy: long-term cancer control and recovery of sexual and urinary function (“trifecta”). Urology 66(5 Suppl):83–94CrossRef Bianco Jr FJ, Scardino PT, Eastham JA (2005) Radical prostatectomy: long-term cancer control and recovery of sexual and urinary function (“trifecta”). Urology 66(5 Suppl):83–94CrossRef
8.
go back to reference Ukimura O, Gill IS (2006) Real-time transrectal ultrasound guidance during nerve sparing laparoscopic radical prostatectomy: pictorial essay. J Urol 175(4):1311–1319PubMedCrossRef Ukimura O, Gill IS (2006) Real-time transrectal ultrasound guidance during nerve sparing laparoscopic radical prostatectomy: pictorial essay. J Urol 175(4):1311–1319PubMedCrossRef
9.
go back to reference Sauvain JL et al (2003) Value of power Doppler and 3D vascular sonography as a method for diagnosis and staging of prostate cancer. Eur Urol 44(1):21–30 (discussion 30–1)PubMedCrossRef Sauvain JL et al (2003) Value of power Doppler and 3D vascular sonography as a method for diagnosis and staging of prostate cancer. Eur Urol 44(1):21–30 (discussion 30–1)PubMedCrossRef
10.
go back to reference Ukimura O, Magi-Galluzzi C, Gill IS (2006) Real-time transrectal ultrasound guidance during laparoscopic radical prostatectomy: impact on surgical margins. J Urol 175(4):1304–1310PubMedCrossRef Ukimura O, Magi-Galluzzi C, Gill IS (2006) Real-time transrectal ultrasound guidance during laparoscopic radical prostatectomy: impact on surgical margins. J Urol 175(4):1304–1310PubMedCrossRef
11.
go back to reference Han M et al (2011) Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Urology 77(2):502–506PubMedCrossRef Han M et al (2011) Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Urology 77(2):502–506PubMedCrossRef
12.
go back to reference Long JA et al (2012) Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy: initial clinical experience. Urology 80(3):608–613PubMedCrossRef Long JA et al (2012) Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy: initial clinical experience. Urology 80(3):608–613PubMedCrossRef
13.
go back to reference Hung AJ et al (2012) Robotic transrectal ultrasonography during robot-assisted radical prostatectomy. Eur Urol 62(2):341–348PubMedCrossRef Hung AJ et al (2012) Robotic transrectal ultrasonography during robot-assisted radical prostatectomy. Eur Urol 62(2):341–348PubMedCrossRef
14.
go back to reference Matsuoka Y et al (2014) Integrated image navigation system using head-mounted display in “RoboSurgeon” endoscopic radical prostatectomy. Wideochir Inne Tech Maloinwazyjne 9(4):613–618PubMedPubMedCentral Matsuoka Y et al (2014) Integrated image navigation system using head-mounted display in “RoboSurgeon” endoscopic radical prostatectomy. Wideochir Inne Tech Maloinwazyjne 9(4):613–618PubMedPubMedCentral
15.
go back to reference Mohareri O et al (2015) Intraoperative registered transrectal ultrasound guidance for robot-assisted laparoscopic radical prostatectomy. J Urol 193(1):302–312PubMedCrossRef Mohareri O et al (2015) Intraoperative registered transrectal ultrasound guidance for robot-assisted laparoscopic radical prostatectomy. J Urol 193(1):302–312PubMedCrossRef
16.
go back to reference van der Poel HG et al (2008) Peroperative transrectal ultrasonography-guided bladder neck dissection eases the learning of robot-assisted laparoscopic prostatectomy. BJU Int 102(7):849–852PubMedCrossRef van der Poel HG et al (2008) Peroperative transrectal ultrasonography-guided bladder neck dissection eases the learning of robot-assisted laparoscopic prostatectomy. BJU Int 102(7):849–852PubMedCrossRef
17.
go back to reference Shoji S et al (2014) Intraoperative ultrasonography with a surgeon-manipulated microtransducer during robotic radical prostatectomy. Int J Urol 21(7):736–739PubMedCrossRef Shoji S et al (2014) Intraoperative ultrasonography with a surgeon-manipulated microtransducer during robotic radical prostatectomy. Int J Urol 21(7):736–739PubMedCrossRef
18.
go back to reference Tang SL et al (1998) Augmented reality systems for medical applications. IEEE Eng Med Biol Mag 17(3):49–58PubMedCrossRef Tang SL et al (1998) Augmented reality systems for medical applications. IEEE Eng Med Biol Mag 17(3):49–58PubMedCrossRef
19.
go back to reference Thompson S et al (2013) Design and evaluation of an image-guidance system for robot-assisted radical prostatectomy. BJU Int 111(7):1081–1090PubMedCrossRef Thompson S et al (2013) Design and evaluation of an image-guidance system for robot-assisted radical prostatectomy. BJU Int 111(7):1081–1090PubMedCrossRef
20.
go back to reference Simpfendörfer T et al (2011) Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 25(12):1841–1845PubMedCrossRef Simpfendörfer T et al (2011) Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 25(12):1841–1845PubMedCrossRef
21.
go back to reference Rassweiler J et al (2014) Surgical navigation in urology: European perspective. Curr Opin Urol 24(1):81–97PubMedCrossRef Rassweiler J et al (2014) Surgical navigation in urology: European perspective. Curr Opin Urol 24(1):81–97PubMedCrossRef
22.
go back to reference Ukimura O et al (2014) Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J Endourol 28(6):625–630PubMedCrossRef Ukimura O et al (2014) Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J Endourol 28(6):625–630PubMedCrossRef
23.
go back to reference Porpiglia F et al (2018) Augmented reality robot-assisted radical prostatectomy: preliminary experience. Urology 115:184PubMedCrossRef Porpiglia F et al (2018) Augmented reality robot-assisted radical prostatectomy: preliminary experience. Urology 115:184PubMedCrossRef
24.
go back to reference Porpiglia F et al (2019) Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol 76(4):505–514PubMedCrossRef Porpiglia F et al (2019) Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol 76(4):505–514PubMedCrossRef
25.
go back to reference Ebbing J et al (2018) Comparison of 3D printed prostate models with standard radiological information to aid understanding of the precise location of prostate cancer: a construct validation study. PLoS ONE 13(6):e0199477PubMedPubMedCentralCrossRef Ebbing J et al (2018) Comparison of 3D printed prostate models with standard radiological information to aid understanding of the precise location of prostate cancer: a construct validation study. PLoS ONE 13(6):e0199477PubMedPubMedCentralCrossRef
26.
go back to reference Shin T, Ukimura O, Gill IS (2016) Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol 69(2):377–379PubMedCrossRef Shin T, Ukimura O, Gill IS (2016) Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol 69(2):377–379PubMedCrossRef
27.
go back to reference Porpiglia F et al (2018) Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol 36(2):201–207PubMedCrossRef Porpiglia F et al (2018) Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol 36(2):201–207PubMedCrossRef
29.
go back to reference Ganzer R et al (2009) Intraoperative photodynamic evaluation of surgical margins during endoscopic extraperitoneal radical prostatectomy with the use of 5-aminolevulinic acid. J Endourol 23(9):1387–1394PubMedCrossRef Ganzer R et al (2009) Intraoperative photodynamic evaluation of surgical margins during endoscopic extraperitoneal radical prostatectomy with the use of 5-aminolevulinic acid. J Endourol 23(9):1387–1394PubMedCrossRef
30.
go back to reference Schaafsma BE et al (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104(3):323–332PubMedPubMedCentralCrossRef Schaafsma BE et al (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104(3):323–332PubMedPubMedCentralCrossRef
31.
go back to reference Porpiglia F et al (2018) Selective clamping during laparoscopic partial nephrectomy: the use of near infrared fluorescence guidance. Minerva Urol Nefrol 70(3):326–332PubMed Porpiglia F et al (2018) Selective clamping during laparoscopic partial nephrectomy: the use of near infrared fluorescence guidance. Minerva Urol Nefrol 70(3):326–332PubMed
32.
go back to reference Mangano MS et al (2018) Robot-assisted nerve-sparing radical prostatectomy using near-infrared fluorescence technology and indocyanine green: initial experience. Urologia 85(1):29–31PubMedCrossRef Mangano MS et al (2018) Robot-assisted nerve-sparing radical prostatectomy using near-infrared fluorescence technology and indocyanine green: initial experience. Urologia 85(1):29–31PubMedCrossRef
34.
go back to reference Aron M et al (2007) Second prize: preliminary experience with the Niris optical coherence tomography system during laparoscopic and robotic prostatectomy. J Endourol 21(8):814–818PubMedCrossRef Aron M et al (2007) Second prize: preliminary experience with the Niris optical coherence tomography system during laparoscopic and robotic prostatectomy. J Endourol 21(8):814–818PubMedCrossRef
35.
go back to reference Chen SP, Liao JC (2014) Confocal laser endomicroscopy of bladder and upper tract urothelial carcinoma: a new era of optical diagnosis? Curr Urol Rep 15(9):437PubMedPubMedCentralCrossRef Chen SP, Liao JC (2014) Confocal laser endomicroscopy of bladder and upper tract urothelial carcinoma: a new era of optical diagnosis? Curr Urol Rep 15(9):437PubMedPubMedCentralCrossRef
36.
go back to reference Lopez A et al (2016) Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol 195(4 Pt 1):1110–1117PubMedCrossRef Lopez A et al (2016) Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol 195(4 Pt 1):1110–1117PubMedCrossRef
37.
go back to reference Navaratnam A, Abdul-Muhsin H, Humphreys M (2018) Updates in urologic robot assisted surgery. F1000Res 7:1948CrossRef Navaratnam A, Abdul-Muhsin H, Humphreys M (2018) Updates in urologic robot assisted surgery. F1000Res 7:1948CrossRef
38.
go back to reference Aruni G, Amit G, Dasgupta P (2018) New surgical robots on the horizon and the potential role of artificial intelligence. Investig Clin Urol 59(4):221–222PubMedPubMedCentralCrossRef Aruni G, Amit G, Dasgupta P (2018) New surgical robots on the horizon and the potential role of artificial intelligence. Investig Clin Urol 59(4):221–222PubMedPubMedCentralCrossRef
39.
go back to reference Panesar S et al (2019) Artificial intelligence and the future of surgical robotics. Ann Surg 270(2):223–226PubMedCrossRef Panesar S et al (2019) Artificial intelligence and the future of surgical robotics. Ann Surg 270(2):223–226PubMedCrossRef
40.
go back to reference Shademan A et al (2016) Supervised autonomous robotic soft tissue surgery. Sci Transl Med 8(337):337ra64PubMedCrossRef Shademan A et al (2016) Supervised autonomous robotic soft tissue surgery. Sci Transl Med 8(337):337ra64PubMedCrossRef
41.
go back to reference Kassahun Y et al (2016) Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg 11(4):553–568PubMedCrossRef Kassahun Y et al (2016) Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg 11(4):553–568PubMedCrossRef
42.
go back to reference Hughes-Hallett A et al (2015) The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons. Int J Med Robot 11(1):8–14PubMedCrossRef Hughes-Hallett A et al (2015) The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons. Int J Med Robot 11(1):8–14PubMedCrossRef
Metadata
Title
The evolution of image guidance in robotic-assisted laparoscopic prostatectomy (RALP): a glimpse into the future
Authors
Joshua Makary
Danielle C. van Diepen
Ranjan Arianayagam
George McClintock
Jeremy Fallot
Scott Leslie
Ruban Thanigasalam
Publication date
04-09-2021
Publisher
Springer London
Published in
Journal of Robotic Surgery / Issue 4/2022
Print ISSN: 1863-2483
Electronic ISSN: 1863-2491
DOI
https://doi.org/10.1007/s11701-021-01305-5

Other articles of this Issue 4/2022

Journal of Robotic Surgery 4/2022 Go to the issue