Skip to main content
Top
Published in: Obesity Surgery 10/2020

01-10-2020 | Obesity | Original Contributions

Acute and Chronic Impact of Biliopancreatic Diversion with Duodenal Switch Surgery on Plasma Lipoprotein(a) Levels in Patients with Severe Obesity

Authors: Audrey-Anne Després, Marie-Eve Piché, Audrey Auclair, Laurent Biertho, Simon Marceau, Frédéric-Simon Hould, Simon Biron, Stéfane Lebel, Odette Lescelleur, François Julien, Julie Martin, André Tchernof, Patrick Mathieu, Paul Poirier, Benoit J. Arsenault

Published in: Obesity Surgery | Issue 10/2020

Login to get access

Abstract

Background

Elevated lipoprotein(a) (Lp(a)) level is an independent risk factor for cardiovascular diseases. Lifestyle intervention studies targeting weight loss revealed little to no significant changes in Lp(a) levels. The impact of interventions that induce substantial weight loss, such as bariatric surgery, on Lp(a) levels is currently unclear.

Objective

To determine the acute and long-term impact of bariatric surgery on Lp(a) levels in patients with severe obesity.

Methods

Sixty-nine patients with severe obesity underwent biliopancreatic diversion with duodenal switch (BPD-DS) surgery. The lipid profile was evaluated and Lp(a) levels were measured before surgery and at 6 and 12 months after BPD-DS surgery.

Results

Median Lp(a) levels at baseline were 11.1 (4.1–41.6) nmol/L. Six months and 12 months after the BDP-DS surgery, we observed an improvement of lipid profile. At 6 months, we observed a 13% decrease in Lp(a) levels (9.7 (2.9–25.6) nmol/L, p < 0.0001) but this decrease was not sustained at 12 months (11.1 (3.9–32.8) nmol/L, p = 0.8). When the patients were separated into tertiles according to Lp(a) levels at baseline, we observed that the Lp(a) reduction at 12 months after BPD-DS surgery remained significant but modest in patients of the top Lp(a) tertile.

Conclusion

Our results suggest that BPD-DS surgery modestly reduces Lp(a) levels in the short term (6 months) in patients with severe obesity but this improvement is sustained over time only in patients with higher Lp(a) levels.
Literature
1.
go back to reference Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.PubMedCrossRef Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.PubMedCrossRef
2.
go back to reference Emdin CA, Khera AV, Natarajan P, et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J Am Coll Cardiol. 2016;68(25):2761–72.PubMedPubMedCentralCrossRef Emdin CA, Khera AV, Natarajan P, et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J Am Coll Cardiol. 2016;68(25):2761–72.PubMedPubMedCentralCrossRef
3.
go back to reference Boerwinkle E, Leffert CC, Lin J, et al. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90(1):52–60.PubMedPubMedCentralCrossRef Boerwinkle E, Leffert CC, Lin J, et al. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90(1):52–60.PubMedPubMedCentralCrossRef
4.
5.
go back to reference Sonnichsen AC, Richter WO, Schwandt P. Reduction of lipoprotein (a) by weight loss. Int J Obes. 1990;14(6):487–94.PubMed Sonnichsen AC, Richter WO, Schwandt P. Reduction of lipoprotein (a) by weight loss. Int J Obes. 1990;14(6):487–94.PubMed
6.
go back to reference Kiortsis DN, Tzotzas T, Giral P, et al. Changes in lipoprotein(a) levels and hormonal correlations during a weight reduction program. Nutr Metab Cardiovasc Dis. 2001;11(3):153–7.PubMed Kiortsis DN, Tzotzas T, Giral P, et al. Changes in lipoprotein(a) levels and hormonal correlations during a weight reduction program. Nutr Metab Cardiovasc Dis. 2001;11(3):153–7.PubMed
7.
go back to reference Berk KA, Yahya R, Verhoeven AJM, et al. Effect of diet-induced weight loss on lipoprotein(a) levels in obese individuals with and without type 2 diabetes. Diabetologia. 2017;60(6):989–97.PubMedPubMedCentralCrossRef Berk KA, Yahya R, Verhoeven AJM, et al. Effect of diet-induced weight loss on lipoprotein(a) levels in obese individuals with and without type 2 diabetes. Diabetologia. 2017;60(6):989–97.PubMedPubMedCentralCrossRef
8.
go back to reference Piche ME, Auclair A, Harvey J, et al. How to choose and use bariatric surgery in 2015. Can J Cardiol. 2015;31(2):153–66.PubMedCrossRef Piche ME, Auclair A, Harvey J, et al. How to choose and use bariatric surgery in 2015. Can J Cardiol. 2015;31(2):153–66.PubMedCrossRef
9.
go back to reference Boyer M, Lévesque V, Poirier P, et al. Impact of a 1-year lifestyle modification program on plasma lipoprotein and PCSK9 concentrations in patients with coronary artery disease. J Clin Lipidol. 2016;10(6):1353–61.PubMedCrossRef Boyer M, Lévesque V, Poirier P, et al. Impact of a 1-year lifestyle modification program on plasma lipoprotein and PCSK9 concentrations in patients with coronary artery disease. J Clin Lipidol. 2016;10(6):1353–61.PubMedCrossRef
10.
go back to reference Boman L, Ericson M. Lipoprotein a levels after intestinal bypass operation for morbid obesity. Obes Surg. 1997;7(2):125–7.PubMedCrossRef Boman L, Ericson M. Lipoprotein a levels after intestinal bypass operation for morbid obesity. Obes Surg. 1997;7(2):125–7.PubMedCrossRef
11.
go back to reference Williams DB, Hagedorn JC, Lawson EH, et al. Gastric bypass reduces biochemical cardiac risk factors. Surg Obes Relat Dis. 2007;3(1):8–13.PubMedCrossRef Williams DB, Hagedorn JC, Lawson EH, et al. Gastric bypass reduces biochemical cardiac risk factors. Surg Obes Relat Dis. 2007;3(1):8–13.PubMedCrossRef
12.
go back to reference Lin BX, Weiss MC, Parikh M, et al. Changes in lipoprotein(a) following bariatric surgery. Am Heart J. 2018;197:175–6.PubMedCrossRef Lin BX, Weiss MC, Parikh M, et al. Changes in lipoprotein(a) following bariatric surgery. Am Heart J. 2018;197:175–6.PubMedCrossRef
13.
go back to reference Piché M-È, Martin J, Cianflone K, et al. Changes in predicted cardiovascular disease risk after biliopancreatic diversion surgery in severely obese patients. Metabolism. 2014;63(1):79–86.PubMedCrossRef Piché M-È, Martin J, Cianflone K, et al. Changes in predicted cardiovascular disease risk after biliopancreatic diversion surgery in severely obese patients. Metabolism. 2014;63(1):79–86.PubMedCrossRef
14.
go back to reference Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.PubMedCrossRef Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.PubMedCrossRef
15.
go back to reference To VT, Huttl TP, Lang R, et al. Changes in body weight, glucose homeostasis, lipid profiles, and metabolic syndrome after restrictive bariatric surgery. Exp Clin Endocrinol Diabetes. 2012;120(9):547–52.PubMedCrossRef To VT, Huttl TP, Lang R, et al. Changes in body weight, glucose homeostasis, lipid profiles, and metabolic syndrome after restrictive bariatric surgery. Exp Clin Endocrinol Diabetes. 2012;120(9):547–52.PubMedCrossRef
16.
go back to reference Woodard GA, Peraza J, Bravo S, et al. One year improvements in cardiovascular risk factors: a comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding. Obes Surg. 2010;20(5):578–82.PubMedCrossRef Woodard GA, Peraza J, Bravo S, et al. One year improvements in cardiovascular risk factors: a comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding. Obes Surg. 2010;20(5):578–82.PubMedCrossRef
17.
go back to reference Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med. 2013;273(1):6–30.PubMedCrossRef Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med. 2013;273(1):6–30.PubMedCrossRef
18.
go back to reference Santonocito C, De Loecker I, Donadello K, et al. C-reactive protein kinetics after major surgery. Anesth Analg. 2014;119(3):624–9.PubMedCrossRef Santonocito C, De Loecker I, Donadello K, et al. C-reactive protein kinetics after major surgery. Anesth Analg. 2014;119(3):624–9.PubMedCrossRef
19.
go back to reference Langsted A, Varbo A, Kamstrup PR, et al. Elevated lipoprotein(a) does not cause low-grade inflammation despite causal association with aortic valve stenosis and myocardial infarction: a study of 100,578 individuals from the general population. J Clin Endocrinol Metab. 2015;100(7):2690–9.PubMedCrossRef Langsted A, Varbo A, Kamstrup PR, et al. Elevated lipoprotein(a) does not cause low-grade inflammation despite causal association with aortic valve stenosis and myocardial infarction: a study of 100,578 individuals from the general population. J Clin Endocrinol Metab. 2015;100(7):2690–9.PubMedCrossRef
20.
go back to reference Missala I, Kassner U, Steinhagen-Thiessen E. A systematic literature review of the association of lipoprotein(a) and autoimmune diseases and atherosclerosis. Int J Rheumatol. 2012;2012:480784.PubMedPubMedCentral Missala I, Kassner U, Steinhagen-Thiessen E. A systematic literature review of the association of lipoprotein(a) and autoimmune diseases and atherosclerosis. Int J Rheumatol. 2012;2012:480784.PubMedPubMedCentral
21.
go back to reference Langsted A, Kamstrup PR, Nordestgaard BG. Lipoprotein(a): fasting and nonfasting levels, inflammation, and cardiovascular risk. Atherosclerosis. 2014;234(1):95–101.PubMedCrossRef Langsted A, Kamstrup PR, Nordestgaard BG. Lipoprotein(a): fasting and nonfasting levels, inflammation, and cardiovascular risk. Atherosclerosis. 2014;234(1):95–101.PubMedCrossRef
22.
go back to reference Muller N, Schulte DM, Turk K, et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J Lipid Res. 2015;56(5):1034–42.PubMedPubMedCentralCrossRef Muller N, Schulte DM, Turk K, et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J Lipid Res. 2015;56(5):1034–42.PubMedPubMedCentralCrossRef
23.
go back to reference Illan-Gomez F, Gonzalvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.PubMedCrossRef Illan-Gomez F, Gonzalvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.PubMedCrossRef
24.
go back to reference Schultz O, Oberhauser F, Saech J, et al. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS One. 2010;5(12):e14328.PubMedPubMedCentralCrossRef Schultz O, Oberhauser F, Saech J, et al. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS One. 2010;5(12):e14328.PubMedPubMedCentralCrossRef
25.
go back to reference Shin MJ, Blanche PJ, Rawlings RS, et al. Increased plasma concentrations of lipoprotein(a) during a low-fat, high-carbohydrate diet are associated with increased plasma concentrations of apolipoprotein C-III bound to apolipoprotein B-containing lipoproteins. Am J Clin Nutr. 2007;85(6):1527–32.PubMedCrossRef Shin MJ, Blanche PJ, Rawlings RS, et al. Increased plasma concentrations of lipoprotein(a) during a low-fat, high-carbohydrate diet are associated with increased plasma concentrations of apolipoprotein C-III bound to apolipoprotein B-containing lipoproteins. Am J Clin Nutr. 2007;85(6):1527–32.PubMedCrossRef
26.
go back to reference Silaste ML, Rantala M, Alfthan G, et al. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler Thromb Vasc Biol. 2004;24(3):498–503.PubMedCrossRef Silaste ML, Rantala M, Alfthan G, et al. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler Thromb Vasc Biol. 2004;24(3):498–503.PubMedCrossRef
27.
go back to reference Faghihnia N, Tsimikas S, Miller ER, et al. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J Lipid Res. 2010;51(11):3324–30.PubMedPubMedCentralCrossRef Faghihnia N, Tsimikas S, Miller ER, et al. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J Lipid Res. 2010;51(11):3324–30.PubMedPubMedCentralCrossRef
28.
go back to reference Ginsberg HN, Kris-Etherton P, Dennis B, et al. Effects of reducing dietary saturated fatty acids on plasma lipids and lipoproteins in healthy subjects: the DELTA Study, protocol 1. Arterioscler Thromb Vasc Biol. 1998;18(3):441–9.PubMedCrossRef Ginsberg HN, Kris-Etherton P, Dennis B, et al. Effects of reducing dietary saturated fatty acids on plasma lipids and lipoproteins in healthy subjects: the DELTA Study, protocol 1. Arterioscler Thromb Vasc Biol. 1998;18(3):441–9.PubMedCrossRef
29.
go back to reference Haring B, von Ballmoos MC, Appel LJ, et al. Healthy dietary interventions and lipoprotein (a) plasma levels: results from the Omni Heart Trial. PLoS One. 2014;9(12):e114859.PubMedPubMedCentralCrossRef Haring B, von Ballmoos MC, Appel LJ, et al. Healthy dietary interventions and lipoprotein (a) plasma levels: results from the Omni Heart Trial. PLoS One. 2014;9(12):e114859.PubMedPubMedCentralCrossRef
30.
go back to reference Jahansouz C, Xu H, Hertzel AV, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg. 2016;264(6):1022–8.PubMedCrossRef Jahansouz C, Xu H, Hertzel AV, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg. 2016;264(6):1022–8.PubMedCrossRef
31.
32.
go back to reference Calmarza P, Bajador E, Lapresta C, et al. Effect of biliary obstruction on lipoprotein(a) concentration. Clin Investig Arterioscler. 2014;26(5):218–23.PubMed Calmarza P, Bajador E, Lapresta C, et al. Effect of biliary obstruction on lipoprotein(a) concentration. Clin Investig Arterioscler. 2014;26(5):218–23.PubMed
33.
go back to reference Reyes-Soffer G, Pavlyha M, Ngai C, et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation. 2017;135(4):352–62.PubMedPubMedCentralCrossRef Reyes-Soffer G, Pavlyha M, Ngai C, et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation. 2017;135(4):352–62.PubMedPubMedCentralCrossRef
34.
go back to reference Arsenault BJ, Petrides F, Tabet F, et al. Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. J Clin Lipidol. 2018;12(1):130–6.PubMedCrossRef Arsenault BJ, Petrides F, Tabet F, et al. Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. J Clin Lipidol. 2018;12(1):130–6.PubMedCrossRef
Metadata
Title
Acute and Chronic Impact of Biliopancreatic Diversion with Duodenal Switch Surgery on Plasma Lipoprotein(a) Levels in Patients with Severe Obesity
Authors
Audrey-Anne Després
Marie-Eve Piché
Audrey Auclair
Laurent Biertho
Simon Marceau
Frédéric-Simon Hould
Simon Biron
Stéfane Lebel
Odette Lescelleur
François Julien
Julie Martin
André Tchernof
Patrick Mathieu
Paul Poirier
Benoit J. Arsenault
Publication date
01-10-2020
Publisher
Springer US
Published in
Obesity Surgery / Issue 10/2020
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-020-04450-2

Other articles of this Issue 10/2020

Obesity Surgery 10/2020 Go to the issue