Skip to main content
Top
Published in: Obesity Surgery 6/2017

01-06-2017 | Original Contributions

Fasting Circulating Glicentin Increases After Bariatric Surgery

Authors: Juliette Raffort, Patricia Panaïa-Ferrari, Fabien Lareyre, Pascale Bayer, Pascal Staccini, Patrick Fénichel, Giulia Chinetti

Published in: Obesity Surgery | Issue 6/2017

Login to get access

Abstract

Introduction

Bariatric surgery including the Roux-en-Y gastric bypass (RYGB) and the laparoscopic sleeve gastrectomy (LSG) is a well-established therapeutic option for patients with morbid or severe obesity. Metabolic modifications observed after bariatric surgery are thought to be, at least partly, linked to hormonal changes. While variation of several proglucagon-derived peptides during bariatric surgery is well documented, little is known about glicentin. The aim of this study was to investigate circulating glicentin variations after bariatric surgery.

Material and Methods

Thirty patients eligible for bariatric surgery (18 RYGB and 12 LSG procedures) were prospectively included in the University Hospital of Nice. Clinical data and fasting biological parameters were recorded preoperatively, at 3, 6, and 12 months after bariatric surgery.

Results

The median age of patients was 51 years (35–56) with 33.3% men. Fasting glicentin concentration increased progressively after bariatric surgery from 6 months and was more marked at 12 months (14 ± 3.6 pmol/L at baseline vs 19.7 ± 2.7 pmol/L at 12 months for RYGB and 12.5 ± 1.4 vs 16.4 ± 1.8 pmol/L for LSG, respectively). Compared to preoperative values, the fold increase of glicentin at 12 months was 2 ± 0.2 in the RYGB group and 1.6 ± 0.3 in the LSG group. Glicentin variation after surgery did not correlate with anthropometric, glycemic, or lipid parameter modifications.

Conclusion

Fasting glicentin level increases after bariatric surgery suggesting the potential interest of this peptide as a player and/or a marker of physiological changes after bariatric surgery.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.PubMedCrossRef Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.PubMedCrossRef
2.
go back to reference Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56.PubMedCrossRef Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56.PubMedCrossRef
3.
go back to reference Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129(25 Suppl 2):S102–38.PubMedCrossRef Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129(25 Suppl 2):S102–38.PubMedCrossRef
4.
5.
go back to reference Piche ME, Auclair A, Harvey J, et al. How to choose and use bariatric surgery in 2015. Can J Cardiol. 2015;31(2):153–66.PubMedCrossRef Piche ME, Auclair A, Harvey J, et al. How to choose and use bariatric surgery in 2015. Can J Cardiol. 2015;31(2):153–66.PubMedCrossRef
6.
go back to reference Holst JJ. Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery. Curr Opin Pharmacol. 2013;13(6):983–8.PubMedCrossRef Holst JJ. Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery. Curr Opin Pharmacol. 2013;13(6):983–8.PubMedCrossRef
7.
go back to reference Papamargaritis D, Miras AD, le Roux CW. Influence of diabetes surgery on gut hormones and incretins. Nutr Hosp. 2013;28(Suppl 2):95–103.PubMed Papamargaritis D, Miras AD, le Roux CW. Influence of diabetes surgery on gut hormones and incretins. Nutr Hosp. 2013;28(Suppl 2):95–103.PubMed
8.
go back to reference Ionut V, Burch M, Youdim A, et al. Gastrointestinal hormones and bariatric surgery-induced weight loss. Obesity (Silver Spring). 2013;21(6):1093–103.CrossRef Ionut V, Burch M, Youdim A, et al. Gastrointestinal hormones and bariatric surgery-induced weight loss. Obesity (Silver Spring). 2013;21(6):1093–103.CrossRef
9.
go back to reference Dirksen C, Jorgensen NB, Bojsen-Moller KN, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia. 2012;55(7):1890–901.PubMedCrossRef Dirksen C, Jorgensen NB, Bojsen-Moller KN, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia. 2012;55(7):1890–901.PubMedCrossRef
10.
go back to reference Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.PubMedCrossRef Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.PubMedCrossRef
12.
go back to reference Hage MP, Safadi B, Salti I, et al. Role of gut-related peptides and other hormones in the amelioration of type 2 diabetes after Roux-en-Y gastric bypass surgery. ISRN Endocrinol. 2012;2012:504756.PubMedPubMedCentralCrossRef Hage MP, Safadi B, Salti I, et al. Role of gut-related peptides and other hormones in the amelioration of type 2 diabetes after Roux-en-Y gastric bypass surgery. ISRN Endocrinol. 2012;2012:504756.PubMedPubMedCentralCrossRef
13.
go back to reference Sala PC, Torrinhas RS, Giannella-Neto D, et al. Relationship between gut hormones and glucose homeostasis after bariatric surgery. Diabetol Metab Syndr. 2014;6(1):87.PubMedPubMedCentralCrossRef Sala PC, Torrinhas RS, Giannella-Neto D, et al. Relationship between gut hormones and glucose homeostasis after bariatric surgery. Diabetol Metab Syndr. 2014;6(1):87.PubMedPubMedCentralCrossRef
14.
go back to reference Kirkegaard P, Moody AJ, Holst JJ, et al. Glicentin inhibits gastric acid secretion in the rat. Nature. 1982;297(5862):156–7.PubMedCrossRef Kirkegaard P, Moody AJ, Holst JJ, et al. Glicentin inhibits gastric acid secretion in the rat. Nature. 1982;297(5862):156–7.PubMedCrossRef
15.
go back to reference Myojo S, Tsujikawa T, Sasaki M, et al. Trophic effects of glicentin on rat small-intestinal mucosa in vivo and in vitro. J Gastroenterol. 1997;32(3):300–5.PubMedCrossRef Myojo S, Tsujikawa T, Sasaki M, et al. Trophic effects of glicentin on rat small-intestinal mucosa in vivo and in vitro. J Gastroenterol. 1997;32(3):300–5.PubMedCrossRef
16.
go back to reference Pellissier S, Sasaki K, Le-Nguyen D, et al. Oxyntomodulin and glicentin are potent inhibitors of the fed motility pattern in small intestine. Neurogastroenterol Motil. 2004;16(4):455–63.PubMedCrossRef Pellissier S, Sasaki K, Le-Nguyen D, et al. Oxyntomodulin and glicentin are potent inhibitors of the fed motility pattern in small intestine. Neurogastroenterol Motil. 2004;16(4):455–63.PubMedCrossRef
17.
go back to reference Tomita R, Igarashi S, Tanjoh K, et al. Role of recombinant human glicentin in the normal human jejunum: an in vitro study. Hepato-Gastroenterology. 2005;52(65):1459–62.PubMed Tomita R, Igarashi S, Tanjoh K, et al. Role of recombinant human glicentin in the normal human jejunum: an in vitro study. Hepato-Gastroenterology. 2005;52(65):1459–62.PubMed
18.
go back to reference Ohneda A, Ohneda K, Nagasaki T, et al. Insulinotropic action of human glicentin in dogs. Metabolism. 1995;44(1):47–51.PubMedCrossRef Ohneda A, Ohneda K, Nagasaki T, et al. Insulinotropic action of human glicentin in dogs. Metabolism. 1995;44(1):47–51.PubMedCrossRef
19.
go back to reference Manell H, Staaf J, Manukyan L, et al. Altered plasma levels of glucagon, GLP-1 and glicentin during OGTT in adolescents with obesity and type 2 diabetes. J Clin Endocrinol Metab. 2016;101(3):1181–9.PubMedCrossRef Manell H, Staaf J, Manukyan L, et al. Altered plasma levels of glucagon, GLP-1 and glicentin during OGTT in adolescents with obesity and type 2 diabetes. J Clin Endocrinol Metab. 2016;101(3):1181–9.PubMedCrossRef
20.
go back to reference Naito H, Ohneda A, Kojima R, et al. Plasma glicentin in diabetic and gastrectomized patients. Regul Pept. 1999;79(1):55–61.PubMedCrossRef Naito H, Ohneda A, Kojima R, et al. Plasma glicentin in diabetic and gastrectomized patients. Regul Pept. 1999;79(1):55–61.PubMedCrossRef
21.
go back to reference Wewer Albrechtsen NJ, Kuhre RE, Torang S, et al. The intestinal distribution pattern of appetite- and glucose regulatory peptides in mice, rats and pigs. BMC Res Notes. 2016;9:60.PubMedPubMedCentralCrossRef Wewer Albrechtsen NJ, Kuhre RE, Torang S, et al. The intestinal distribution pattern of appetite- and glucose regulatory peptides in mice, rats and pigs. BMC Res Notes. 2016;9:60.PubMedPubMedCentralCrossRef
22.
go back to reference Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol. 2011;92(4):219–31.PubMedPubMedCentralCrossRef Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol. 2011;92(4):219–31.PubMedPubMedCentralCrossRef
23.
go back to reference Rodier G, Magous R, Mochizuki T, et al. Glicentin and oxyntomodulin modulate both the phosphoinositide and cyclic adenosine monophosphate signaling pathways in gastric myocytes. Endocrinology. 1999;140(1):22–8.PubMedCrossRef Rodier G, Magous R, Mochizuki T, et al. Glicentin and oxyntomodulin modulate both the phosphoinositide and cyclic adenosine monophosphate signaling pathways in gastric myocytes. Endocrinology. 1999;140(1):22–8.PubMedCrossRef
24.
go back to reference Ayachi SE, Borie F, Magous R, et al. Contraction induced by glicentin on smooth muscle cells from the human colon is abolished by exendin (9-39). Neurogastroenterol Motil. 2005;17(2):302–9.PubMedCrossRef Ayachi SE, Borie F, Magous R, et al. Contraction induced by glicentin on smooth muscle cells from the human colon is abolished by exendin (9-39). Neurogastroenterol Motil. 2005;17(2):302–9.PubMedCrossRef
25.
go back to reference Quercia I, Dutia R, Kotler DP, et al. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40(2):87–94.PubMedCrossRef Quercia I, Dutia R, Kotler DP, et al. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40(2):87–94.PubMedCrossRef
26.
go back to reference Ohneda A, Takahashi H, Maruyama Y. Response of plasma glicentin to fat ingestion in piglets. Diabetes Res Clin Pract. 1987;3(2):103–9.PubMedCrossRef Ohneda A, Takahashi H, Maruyama Y. Response of plasma glicentin to fat ingestion in piglets. Diabetes Res Clin Pract. 1987;3(2):103–9.PubMedCrossRef
27.
go back to reference Ohneda A, Kobayashi T, Nihei J, et al. Effect of intraluminal administration of amino acids upon plasma glicentin. Diabetes Res Clin Pract. 1988;5(4):265–70.PubMedCrossRef Ohneda A, Kobayashi T, Nihei J, et al. Effect of intraluminal administration of amino acids upon plasma glicentin. Diabetes Res Clin Pract. 1988;5(4):265–70.PubMedCrossRef
28.
go back to reference Shimizu T, Tadokoro R, Kaneko N, et al. Effects of extremely early enteral feeding on plasma glicentin levels in very-low-birthweight infants. J Paediatr Child Health. 2006;42(10):636–9.PubMedCrossRef Shimizu T, Tadokoro R, Kaneko N, et al. Effects of extremely early enteral feeding on plasma glicentin levels in very-low-birthweight infants. J Paediatr Child Health. 2006;42(10):636–9.PubMedCrossRef
29.
go back to reference Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89(6):2608–15.PubMedCrossRef Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89(6):2608–15.PubMedCrossRef
30.
go back to reference Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.PubMedPubMedCentralCrossRef Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.PubMedPubMedCentralCrossRef
31.
go back to reference Rhee NA, Wahlgren CD, Pedersen J, et al. Effect of Roux-en-Y gastric bypass on the distribution and hormone expression of small-intestinal enteroendocrine cells in obese patients with type 2 diabetes. Diabetologia. 2015;58(10):2254–8.PubMedCrossRef Rhee NA, Wahlgren CD, Pedersen J, et al. Effect of Roux-en-Y gastric bypass on the distribution and hormone expression of small-intestinal enteroendocrine cells in obese patients with type 2 diabetes. Diabetologia. 2015;58(10):2254–8.PubMedCrossRef
32.
go back to reference Zhang F, Strain GW, Lei W, et al. Changes in lipid profiles in morbidly obese patients after laparoscopic sleeve gastrectomy (LSG). Obes Surg. 2011;21(3):305–9.PubMedCrossRef Zhang F, Strain GW, Lei W, et al. Changes in lipid profiles in morbidly obese patients after laparoscopic sleeve gastrectomy (LSG). Obes Surg. 2011;21(3):305–9.PubMedCrossRef
33.
go back to reference Oliveira Cda S, Beserra BT, Cunha RS, et al. Impact of Roux-en-Y gastric bypass on lipid and inflammatory profiles. Rev Col Bras Cir. 2015;42(5):305–10.PubMedCrossRef Oliveira Cda S, Beserra BT, Cunha RS, et al. Impact of Roux-en-Y gastric bypass on lipid and inflammatory profiles. Rev Col Bras Cir. 2015;42(5):305–10.PubMedCrossRef
34.
go back to reference Ohneda A, Ohneda M. Effect of glicentin-related peptides upon the secretion of insulin and glucagon in the canine pancreas. Tohoku J Exp Med. 1988;155(2):197–204.PubMedCrossRef Ohneda A, Ohneda M. Effect of glicentin-related peptides upon the secretion of insulin and glucagon in the canine pancreas. Tohoku J Exp Med. 1988;155(2):197–204.PubMedCrossRef
35.
go back to reference Ohneda A, Kobayashi T, Nihei J. Effect of glicentin-related peptides on glucagon secretion in anaesthetized dogs. Diabetologia. 1986;29(6):397–401.PubMedCrossRef Ohneda A, Kobayashi T, Nihei J. Effect of glicentin-related peptides on glucagon secretion in anaesthetized dogs. Diabetologia. 1986;29(6):397–401.PubMedCrossRef
36.
go back to reference Yousseif A, Emmanuel J, Karra E, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24(2):241–52.PubMedCrossRef Yousseif A, Emmanuel J, Karra E, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24(2):241–52.PubMedCrossRef
37.
go back to reference Bataille D. Pro-protein convertases in intermediary metabolism: islet hormones, brain/gut hormones and integrated physiology. J Mol Med (Berl). 2007;85(7):673–84.CrossRef Bataille D. Pro-protein convertases in intermediary metabolism: islet hormones, brain/gut hormones and integrated physiology. J Mol Med (Berl). 2007;85(7):673–84.CrossRef
38.
go back to reference Bataille D, Dalle S. The forgotten members of the glucagon family. Diabetes Res Clin Pract. 2014;106(1):1–10.PubMedCrossRef Bataille D, Dalle S. The forgotten members of the glucagon family. Diabetes Res Clin Pract. 2014;106(1):1–10.PubMedCrossRef
Metadata
Title
Fasting Circulating Glicentin Increases After Bariatric Surgery
Authors
Juliette Raffort
Patricia Panaïa-Ferrari
Fabien Lareyre
Pascale Bayer
Pascal Staccini
Patrick Fénichel
Giulia Chinetti
Publication date
01-06-2017
Publisher
Springer US
Published in
Obesity Surgery / Issue 6/2017
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-016-2493-5

Other articles of this Issue 6/2017

Obesity Surgery 6/2017 Go to the issue