Skip to main content
Top
Published in: Obesity Surgery 5/2009

01-05-2009 | Review

Rat Models for Bariatric Surgery and Surgery for Type 2 Diabetes Mellitus

Authors: Sheetal Bharat Mistry, Juan J. Omana, Subhash Kini

Published in: Obesity Surgery | Issue 5/2009

Login to get access

Abstract

Type 2 diabetes mellitus being one of the most prevalent diseases in the world has led to a variety of research using animal models. This review focuses on various rat models to study the effect that surgical procedures have on type 2 diabetes mellitus and obesity. Rat models can be classified as Obese Diabetic, Non-Obese Diabetic, Obese Non-Diabetic, and Non-Obese Non-Diabetic. Here, we have discussed the particular characteristics of each rat so that it can provide the appropriate model to study different pathological processes involve in type 2 Diabetes and obesity.
Literature
1.
go back to reference Pories WJ, Swanson MS, Macdonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg 1995;222(3):339–50.CrossRef Pories WJ, Swanson MS, Macdonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg 1995;222(3):339–50.CrossRef
2.
go back to reference Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg 2003;238(4):467–84.PubMedPubMedCentral Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg 2003;238(4):467–84.PubMedPubMedCentral
3.
go back to reference Scopinaro N, Gianetta E, Adami GF, et al. Biliopancreatic diversion for obesity at eighteen years. Surgery 1996;119(3):261–8.CrossRef Scopinaro N, Gianetta E, Adami GF, et al. Biliopancreatic diversion for obesity at eighteen years. Surgery 1996;119(3):261–8.CrossRef
4.
go back to reference Etgen GJ, Oldham BA. Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 2000;49(5):684–8.CrossRef Etgen GJ, Oldham BA. Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 2000;49(5):684–8.CrossRef
5.
go back to reference Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998;47(3):358–64.CrossRef Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998;47(3):358–64.CrossRef
6.
go back to reference Corsetti JP, Sparks JD, Peterson RG, et al. Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis 2000;148(2):231–41.CrossRef Corsetti JP, Sparks JD, Peterson RG, et al. Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis 2000;148(2):231–41.CrossRef
7.
go back to reference Rubino F, Zizzari P, Tomasetto C, et al. The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology 2005;146(4):1745–51.CrossRef Rubino F, Zizzari P, Tomasetto C, et al. The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology 2005;146(4):1745–51.CrossRef
8.
go back to reference Pereferrer FS, Gonzalez MH, Rovira AF, et al. Influence of sleeve gastrectomy on several experimental models of obesity: metabolic and hormonal implications. Obes Surg 2008;18(1):97–108.CrossRef Pereferrer FS, Gonzalez MH, Rovira AF, et al. Influence of sleeve gastrectomy on several experimental models of obesity: metabolic and hormonal implications. Obes Surg 2008;18(1):97–108.CrossRef
9.
go back to reference Baly DL, Zarnowski MJ, Carswell N, et al. Insulin resistant glucose transport activity in adipose cells from the SHR/N-corpulent rat. J Nutr 1989;119(4):628–32.CrossRef Baly DL, Zarnowski MJ, Carswell N, et al. Insulin resistant glucose transport activity in adipose cells from the SHR/N-corpulent rat. J Nutr 1989;119(4):628–32.CrossRef
10.
go back to reference Velasque MT, Bhathena SJ, Hansen CT. Leptin and its relation to obesity and insulin in the SHR/N-corpulent rat, a model of type II diabetes mellitus. Int J Exp Diabetes Res 2001;2(3):217–23.CrossRef Velasque MT, Bhathena SJ, Hansen CT. Leptin and its relation to obesity and insulin in the SHR/N-corpulent rat, a model of type II diabetes mellitus. Int J Exp Diabetes Res 2001;2(3):217–23.CrossRef
11.
go back to reference Amy RM, Dolphin PJ, Pederson RA, et al. Atherogenesis in two strains of obese rats. The fatty Zucker and LA/N-corpulent. Atherosclerosis 1988;69(2–3):199–209.CrossRef Amy RM, Dolphin PJ, Pederson RA, et al. Atherogenesis in two strains of obese rats. The fatty Zucker and LA/N-corpulent. Atherosclerosis 1988;69(2–3):199–209.CrossRef
12.
go back to reference Russell JC, Graham S, Hameed M. Abnormal insulin and glucose metabolism in the JCR:LA-corpulent rat. Metabolism 1994;43(5):538–43.CrossRef Russell JC, Graham S, Hameed M. Abnormal insulin and glucose metabolism in the JCR:LA-corpulent rat. Metabolism 1994;43(5):538–43.CrossRef
13.
go back to reference Clark TA, Pierce GN. Cardiovascular complications of non-insulin-dependent diabetes: the JCR:LA-cp rat. J Pharmacol Toxicol Methods 2000;43(1):1–10.CrossRef Clark TA, Pierce GN. Cardiovascular complications of non-insulin-dependent diabetes: the JCR:LA-cp rat. J Pharmacol Toxicol Methods 2000;43(1):1–10.CrossRef
14.
go back to reference Kawano K, Hirashima T, Mori S, et al. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract 1994;24(Suppl):S317–S320.CrossRef Kawano K, Hirashima T, Mori S, et al. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract 1994;24(Suppl):S317–S320.CrossRef
15.
go back to reference Zhu M, Noma Y, Mizuno A, et al. Poor capacity for proliferation of pancreatic beta-cells in Otsuka–Long–Evans–Tokushima Fatty rat: a model of spontaneous NIDDM. Diabetes 1996;45(7):941–6.CrossRef Zhu M, Noma Y, Mizuno A, et al. Poor capacity for proliferation of pancreatic beta-cells in Otsuka–Long–Evans–Tokushima Fatty rat: a model of spontaneous NIDDM. Diabetes 1996;45(7):941–6.CrossRef
16.
go back to reference Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 1976;119(1):85–90.CrossRef Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 1976;119(1):85–90.CrossRef
17.
go back to reference Portha B, Giroix MH, Serradas P, et al. beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. Diabetes 2001;50(Suppl 1):S89–S93.CrossRef Portha B, Giroix MH, Serradas P, et al. beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. Diabetes 2001;50(Suppl 1):S89–S93.CrossRef
18.
go back to reference Picarel-Blanchot F, Berthelier C, Bailbe D, et al. Impaired insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat. Am J Physiol 1996;271(4 Pt 1):E755–E762.PubMed Picarel-Blanchot F, Berthelier C, Bailbe D, et al. Impaired insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat. Am J Physiol 1996;271(4 Pt 1):E755–E762.PubMed
19.
go back to reference Miralles F, Portha B. Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes 2001;50(Suppl 1):S84–S88.CrossRef Miralles F, Portha B. Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes 2001;50(Suppl 1):S84–S88.CrossRef
20.
go back to reference Portha B. Programmed disorders of beta-cell development and function as one cause for type 2 diabetes? The GK rat paradigm. Diabetes Metab Res Rev 2005;21(6):495–504.CrossRef Portha B. Programmed disorders of beta-cell development and function as one cause for type 2 diabetes? The GK rat paradigm. Diabetes Metab Res Rev 2005;21(6):495–504.CrossRef
21.
go back to reference Pacheco D, de Luis DA, Romero A, et al. The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto–Kakizaki rats. Am J Surg 2007;194(2):221–4.CrossRef Pacheco D, de Luis DA, Romero A, et al. The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto–Kakizaki rats. Am J Surg 2007;194(2):221–4.CrossRef
22.
go back to reference Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg 2008;247(6):968–75.CrossRef Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg 2008;247(6):968–75.CrossRef
23.
go back to reference Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery 2007;142(1):74–85.CrossRef Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery 2007;142(1):74–85.CrossRef
24.
go back to reference Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 2006;244(5):741–9.CrossRef Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 2006;244(5):741–9.CrossRef
25.
go back to reference Weksler-Zangen S, Yagil C, Zangen DH, et al. The newly inbred cohen diabetic rat: a nonobese normolipidemic genetic model of diet-induced type 2 diabetes expressing sex differences. Diabetes 2001;50(11):2521–9.CrossRef Weksler-Zangen S, Yagil C, Zangen DH, et al. The newly inbred cohen diabetic rat: a nonobese normolipidemic genetic model of diet-induced type 2 diabetes expressing sex differences. Diabetes 2001;50(11):2521–9.CrossRef
26.
go back to reference Shinohara M, Masuyama T, Shoda T, et al. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res 2000;1(2):89–100.CrossRef Shinohara M, Masuyama T, Shoda T, et al. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res 2000;1(2):89–100.CrossRef
27.
go back to reference Masuyama T, Fuse M, Yokoi N, et al. Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, Spontaneously Diabetic Torii rat. Biochem Biophys Res Commun 2003;304(1):196–206.CrossRef Masuyama T, Fuse M, Yokoi N, et al. Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, Spontaneously Diabetic Torii rat. Biochem Biophys Res Commun 2003;304(1):196–206.CrossRef
28.
go back to reference Shinohara M, Oikawa T, Sato K, et al. Glucose intolerance and hyperlipidemia prior to diabetes onset in female Spontaneously Diabetic Torii (SDT) rats. Exp Diabesity Res 2004;5(4):253–6.CrossRef Shinohara M, Oikawa T, Sato K, et al. Glucose intolerance and hyperlipidemia prior to diabetes onset in female Spontaneously Diabetic Torii (SDT) rats. Exp Diabesity Res 2004;5(4):253–6.CrossRef
29.
go back to reference Shimoike T, Yanase T, Umeda F, et al. Subcutaneous or visceral adipose tissue expression of the PPARgamma gene is not altered in the fatty (fa/fa) Zucker rat. Metabolism 1998;47(12):1494–8.CrossRef Shimoike T, Yanase T, Umeda F, et al. Subcutaneous or visceral adipose tissue expression of the PPARgamma gene is not altered in the fatty (fa/fa) Zucker rat. Metabolism 1998;47(12):1494–8.CrossRef
30.
go back to reference Oana F, Takeda H, Hayakawa K, et al. Physiological difference between obese (fa/fa) Zucker rats and lean Zucker rats concerning adiponectin. Metabolism 2005;54(8):995–1001.CrossRef Oana F, Takeda H, Hayakawa K, et al. Physiological difference between obese (fa/fa) Zucker rats and lean Zucker rats concerning adiponectin. Metabolism 2005;54(8):995–1001.CrossRef
31.
go back to reference Young EA, Taylor MM, Taylor MK, et al. Gastric stapling for morbid obesity: gastrointestinal response in a rat model. Am J Clin Nutr 1984;40(2):293–302.CrossRef Young EA, Taylor MM, Taylor MK, et al. Gastric stapling for morbid obesity: gastrointestinal response in a rat model. Am J Clin Nutr 1984;40(2):293–302.CrossRef
32.
go back to reference Xu Y, Ohinata K, Meguid MM, et al. Gastric bypass model in the obese rat to study metabolic mechanisms of weight loss. J Surg Res 2002;107(1):56–63.CrossRef Xu Y, Ohinata K, Meguid MM, et al. Gastric bypass model in the obese rat to study metabolic mechanisms of weight loss. J Surg Res 2002;107(1):56–63.CrossRef
33.
go back to reference Endo Y, Ohta M, Kai S, et al. An obese rat model of bariatric surgery with gastric banding. Obes Surg 2007;17(6):815–9.CrossRef Endo Y, Ohta M, Kai S, et al. An obese rat model of bariatric surgery with gastric banding. Obes Surg 2007;17(6):815–9.CrossRef
34.
go back to reference Chen DC, Stern JS, Atkinson RL. Effects of ileal transposition on food intake, dietary preference, and weight gain in Zucker obese rats. Am J Physiol 1990;258(1 Pt 2):R269–R273.PubMed Chen DC, Stern JS, Atkinson RL. Effects of ileal transposition on food intake, dietary preference, and weight gain in Zucker obese rats. Am J Physiol 1990;258(1 Pt 2):R269–R273.PubMed
35.
go back to reference Mason EE. Ileal [correction of ilial] transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg 1999;9(3):223–8.CrossRef Mason EE. Ileal [correction of ilial] transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg 1999;9(3):223–8.CrossRef
36.
go back to reference Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague–Dawley rats. Am J Physiol 1997;273(2 Pt 2):R725–R730.PubMed Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague–Dawley rats. Am J Physiol 1997;273(2 Pt 2):R725–R730.PubMed
37.
go back to reference Aprahamian CJ, Tekant G, Chen M, et al. A rat model of childhood diet-induced obesity: Roux-en-Y gastric bypass induced changes in metabolic parameters and gastric peptide ghrelin. Pediatr Surg Int 2007;23(7):653–7.CrossRef Aprahamian CJ, Tekant G, Chen M, et al. A rat model of childhood diet-induced obesity: Roux-en-Y gastric bypass induced changes in metabolic parameters and gastric peptide ghrelin. Pediatr Surg Int 2007;23(7):653–7.CrossRef
38.
go back to reference Levin BE, Sullivan AC. Glucose-induced sympathetic activation in obesity-prone and resistant rats. Int J Obes 1989;13(2):235–46.PubMed Levin BE, Sullivan AC. Glucose-induced sympathetic activation in obesity-prone and resistant rats. Int J Obes 1989;13(2):235–46.PubMed
39.
go back to reference Meguid MM, Ramos EJ, Suzuki S, et al. A surgical rat model of human Roux-en-Y gastric bypass. J Gastrointest Surg 2004;8(5):621–30.CrossRef Meguid MM, Ramos EJ, Suzuki S, et al. A surgical rat model of human Roux-en-Y gastric bypass. J Gastrointest Surg 2004;8(5):621–30.CrossRef
40.
go back to reference Romanova IV, Ramos EJ, Xu Y, et al. Neurobiologic changes in the hypothalamus associated with weight loss after gastric bypass. J Am Coll Surg 2004;199(6):887–95.CrossRef Romanova IV, Ramos EJ, Xu Y, et al. Neurobiologic changes in the hypothalamus associated with weight loss after gastric bypass. J Am Coll Surg 2004;199(6):887–95.CrossRef
41.
go back to reference de Campos Martins MV, Peixoto AA, Schanaider A, et al. Glucose tolerance in the proximal versus the distal small bowel in wistar rats. Obes Surg 2008;19(2):202–6.CrossRef de Campos Martins MV, Peixoto AA, Schanaider A, et al. Glucose tolerance in the proximal versus the distal small bowel in wistar rats. Obes Surg 2008;19(2):202–6.CrossRef
42.
go back to reference Estadella D, Oyama LM, Damaso AR, et al. Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition 2004;20(2):218–24.CrossRef Estadella D, Oyama LM, Damaso AR, et al. Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition 2004;20(2):218–24.CrossRef
43.
go back to reference Prada PO, Zecchin HG, Gasparetti AL, et al. Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 2005;146(3):1576–87.CrossRef Prada PO, Zecchin HG, Gasparetti AL, et al. Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 2005;146(3):1576–87.CrossRef
44.
go back to reference Monteiro MP, Monteiro JD, Aguas AP, et al. A rat model of restrictive bariatric surgery with gastric banding. Obes Surg 2006;16(1):48–51.CrossRef Monteiro MP, Monteiro JD, Aguas AP, et al. A rat model of restrictive bariatric surgery with gastric banding. Obes Surg 2006;16(1):48–51.CrossRef
45.
go back to reference le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006;243(1):108–14.CrossRef le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006;243(1):108–14.CrossRef
46.
go back to reference Rubino F, Marescaux J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 2004;239(1):1–11.CrossRef Rubino F, Marescaux J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 2004;239(1):1–11.CrossRef
47.
go back to reference Patriti A, Facchiano E, Sanna A, et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery. Obes Surg 2004;14(6):840–8.CrossRef Patriti A, Facchiano E, Sanna A, et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery. Obes Surg 2004;14(6):840–8.CrossRef
48.
go back to reference Patriti A, Facchiano E, Donini A. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 2004;240(2):388–9.CrossRef Patriti A, Facchiano E, Donini A. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 2004;240(2):388–9.CrossRef
49.
go back to reference Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab 2004;89(6):2608–15.CrossRef Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab 2004;89(6):2608–15.CrossRef
50.
go back to reference Valverde I, Puente J, Martin-Duce A, et al. Changes in glucagon-like peptide-1 (GLP-1) secretion after biliopancreatic diversion or vertical banded gastroplasty in obese subjects. Obes Surg 2005;15(3):387–97.CrossRef Valverde I, Puente J, Martin-Duce A, et al. Changes in glucagon-like peptide-1 (GLP-1) secretion after biliopancreatic diversion or vertical banded gastroplasty in obese subjects. Obes Surg 2005;15(3):387–97.CrossRef
Metadata
Title
Rat Models for Bariatric Surgery and Surgery for Type 2 Diabetes Mellitus
Authors
Sheetal Bharat Mistry
Juan J. Omana
Subhash Kini
Publication date
01-05-2009
Publisher
Springer New York
Published in
Obesity Surgery / Issue 5/2009
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-009-9811-0

Other articles of this Issue 5/2009

Obesity Surgery 5/2009 Go to the issue