Skip to main content
Top
Published in: Journal of Gastrointestinal Surgery 2/2019

01-02-2019 | Original Article

Clinical Feasibility of Large Gastrotomy Closure Using a Flexible Tissue Glue Based on N-Butyl-2-Cyanoacrylate: Experimental Study in Pigs

Authors: Francisco Espin Alvarez, Anna M. Rodríguez Rivero, Jordi Navinés López, Elena Díaz Celorio, Jordi Tarascó Palomares, Luís Felipe del Castillo Riestra, Iva Borisova, Jaime Fernández-Llamazares, Pau Turon Dols, Joan Francesc Julián Ibáñez

Published in: Journal of Gastrointestinal Surgery | Issue 2/2019

Login to get access

Abstract

Background

The use of synthetic adhesives such as cyanoacrylates has been established previously for a wide range of clinical indications. However, more research is necessary to evaluate their use in digestive closures or anastomosis. New chemical formulations developed to achieve more flexibility of synthetic adhesives (i.e., based on n-butyl-2-cyanoacrylate) could be an alternative to achieve this purpose. The aim of this study was to investigate the feasibility of using flexible cyanoacrylate adhesives for large gastric incision closure in an animal model.

Methods

Twelve farm pigs were divided in two groups depending on the type of closure method applied. In all cases, extra-large seven centimeters gastrostomies were performed. Braided absorbable hand-sewn interrupted suture versus n-butyl-2-cyanoacrylate with softener closure were compared during a 3-week follow-up period. Histopathological aspects, hematologic and inflammatory biomarkers, and endoluminal pressure tolerated until leakage were assessed. The time spent on both closing procedures was compared.

Results

No differences between the two groups were found in any of the histopathological and inflammatory variables evaluated. The glued group tolerated a significantly higher pressure than the manual suture group. A reduction of surgery time was also observed.

Conclusions

Our results suggest that flexible cyanoacrylates could be a feasible alternative to improve the clinical outcome of the closure of hollow viscera through more efficient sutureless procedures.
Literature
1.
go back to reference Sheridan CB, Zyromski N, Mattar S. How to always do a safe anastomosis. Contemp Surg. 2008;64:68–74. Sheridan CB, Zyromski N, Mattar S. How to always do a safe anastomosis. Contemp Surg. 2008;64:68–74.
2.
go back to reference Oh SJ, Choi WB, Song J, et al. Complications requiring reoperation after gastrectomy for gastric cancer: 17 years experience in a single institute. J Gastrointest Surg. 2009;13:239–245.CrossRef Oh SJ, Choi WB, Song J, et al. Complications requiring reoperation after gastrectomy for gastric cancer: 17 years experience in a single institute. J Gastrointest Surg. 2009;13:239–245.CrossRef
3.
go back to reference Sparreboom CL, Wu ZQ, Ji JF, et al. Integrated approach to colorectal anastomotic leakage: Communication, infection and healing disturbances. World J Gastroenterol. 2016;22:7226–7235.CrossRef Sparreboom CL, Wu ZQ, Ji JF, et al. Integrated approach to colorectal anastomotic leakage: Communication, infection and healing disturbances. World J Gastroenterol. 2016;22:7226–7235.CrossRef
4.
go back to reference Bhatia SK, Yetter AB. Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements. Cell Biol Toxicol. 2008;24:315–319.CrossRef Bhatia SK, Yetter AB. Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements. Cell Biol Toxicol. 2008;24:315–319.CrossRef
5.
go back to reference Pascual G, Sotomayor S, Rodríguez M, et al. Cytotoxicity of Cyanoacrylate-Based Tissue Adhesives and Short-Term Preclinical In Vivo Biocompatibility in Abdominal Hernia Repair. PLoS One. 2016;11:e0157920.CrossRef Pascual G, Sotomayor S, Rodríguez M, et al. Cytotoxicity of Cyanoacrylate-Based Tissue Adhesives and Short-Term Preclinical In Vivo Biocompatibility in Abdominal Hernia Repair. PLoS One. 2016;11:e0157920.CrossRef
6.
go back to reference Mizrahi B, Stefanescu CF, Yang C, et al. Elasticity and safety of alkoxyethyl cyanoacrylate tissue adhesives. Acta Biomater. 2011;7:3150–3157.CrossRef Mizrahi B, Stefanescu CF, Yang C, et al. Elasticity and safety of alkoxyethyl cyanoacrylate tissue adhesives. Acta Biomater. 2011;7:3150–3157.CrossRef
7.
go back to reference Montanaro L, Arciola CR, Cenni E, et al. Cytotoxicity, blood compatibility and antimicrobial activity of two cyanoacrylate glues for surgical use. Biomaterials. 2001;22:59–66.CrossRef Montanaro L, Arciola CR, Cenni E, et al. Cytotoxicity, blood compatibility and antimicrobial activity of two cyanoacrylate glues for surgical use. Biomaterials. 2001;22:59–66.CrossRef
8.
go back to reference Pratt GF, Rozen WM, Westwood A, et al. Technology-assisted and sutureless microvascular anastomoses: evidence for current techniques. Microsurgery. 2012;32:68–76.CrossRef Pratt GF, Rozen WM, Westwood A, et al. Technology-assisted and sutureless microvascular anastomoses: evidence for current techniques. Microsurgery. 2012;32:68–76.CrossRef
9.
go back to reference Lumsden AB, Heyman ER. Closure Medical Surgical Sealant Study Group. Prospective randomized study evaluating an absorbable cyanoacrylate for use in vascular reconstructions. J Vasc Surg. 2006;44:1002–1009.CrossRef Lumsden AB, Heyman ER. Closure Medical Surgical Sealant Study Group. Prospective randomized study evaluating an absorbable cyanoacrylate for use in vascular reconstructions. J Vasc Surg. 2006;44:1002–1009.CrossRef
10.
go back to reference Piñeros-Fernández A, Rodeheaver PF, Rodeheaver GT. Octyl 2-cyanoacrylate for repair of peripheral nerve. Ann Plast Surg. 2005;55:188–195.CrossRef Piñeros-Fernández A, Rodeheaver PF, Rodeheaver GT. Octyl 2-cyanoacrylate for repair of peripheral nerve. Ann Plast Surg. 2005;55:188–195.CrossRef
11.
go back to reference Paral J, Subrt Z, Lochman P, et al. Suture-free anastomosis of the colon. Experimental comparison of two cyanoacrylate adhesives. J Gastrointest Surg. 2011;15:451–459.CrossRef Paral J, Subrt Z, Lochman P, et al. Suture-free anastomosis of the colon. Experimental comparison of two cyanoacrylate adhesives. J Gastrointest Surg. 2011;15:451–459.CrossRef
12.
go back to reference Bae KB, Kim SH, Jung SJ, et al. Cyanoacrylate for colonic anastomosis; is it safe? Int J Colorectal Dis. 2010;25:601–606.CrossRef Bae KB, Kim SH, Jung SJ, et al. Cyanoacrylate for colonic anastomosis; is it safe? Int J Colorectal Dis. 2010;25:601–606.CrossRef
13.
go back to reference Ozmen MM, Ozlap N, Zulfikagoru B, et al. Hystoacryl blue versus sutured left colonic anastomosis: experimental study. ANZ J Surg. 2004;74:1107–1110.CrossRef Ozmen MM, Ozlap N, Zulfikagoru B, et al. Hystoacryl blue versus sutured left colonic anastomosis: experimental study. ANZ J Surg. 2004;74:1107–1110.CrossRef
14.
go back to reference Donkerwolcke M, Burny F, Muster D. Tissues and bone adhesives--historical aspects. Biomaterials. 1998;19:1461–1466.CrossRef Donkerwolcke M, Burny F, Muster D. Tissues and bone adhesives--historical aspects. Biomaterials. 1998;19:1461–1466.CrossRef
15.
go back to reference Cho E, Jun CH, Cho SB, et al. Endoscopic variceal ligation-induced ulcer bleeding: What are the risk factors and treatment strategies? Medicine (Baltimore) 2017;96:e7157.CrossRef Cho E, Jun CH, Cho SB, et al. Endoscopic variceal ligation-induced ulcer bleeding: What are the risk factors and treatment strategies? Medicine (Baltimore) 2017;96:e7157.CrossRef
16.
go back to reference Buechter M, Kahraman A, Manka P, et al. Partial spleen embolization reduces the risk of portal hypertension-induced upper gastro-intestinal bleeding in patients not eligible for TIPS implantation. PLoS One. 2017;12:e0177401.CrossRef Buechter M, Kahraman A, Manka P, et al. Partial spleen embolization reduces the risk of portal hypertension-induced upper gastro-intestinal bleeding in patients not eligible for TIPS implantation. PLoS One. 2017;12:e0177401.CrossRef
17.
go back to reference Holster IL, Tjwa ET, Moelker A, et al. Covered transjugular intrahepatic portosystemic shunt versus endoscopic therapy + β-blocker for prevention of variceal rebleeding. Hepatology. 2016;63:581–589.CrossRef Holster IL, Tjwa ET, Moelker A, et al. Covered transjugular intrahepatic portosystemic shunt versus endoscopic therapy + β-blocker for prevention of variceal rebleeding. Hepatology. 2016;63:581–589.CrossRef
18.
go back to reference Kozie S, Kobryñ K, Paluszkiewicz R, et al. Endoscopic treatment of gastric varices bleeding with the use of n-butyl-2 cyanoacrylate. Prz Gastroenterol. 2015;10:239–243.CrossRef Kozie S, Kobryñ K, Paluszkiewicz R, et al. Endoscopic treatment of gastric varices bleeding with the use of n-butyl-2 cyanoacrylate. Prz Gastroenterol. 2015;10:239–243.CrossRef
19.
go back to reference Jang WS, Shin HP, Lee JI, et al. Proton pump inhibitor administration delays rebleeding after endoscopic gastric variceal obturation. World J Gastroenterol. 2014;20:17127–17131.CrossRef Jang WS, Shin HP, Lee JI, et al. Proton pump inhibitor administration delays rebleeding after endoscopic gastric variceal obturation. World J Gastroenterol. 2014;20:17127–17131.CrossRef
20.
go back to reference Lo GH, Lin CW, Perng DS, et al. A retrospective comparative study of histoacryl injection and banding ligation in the treatment of acute type 1 gastric variceal hemorrhage. Scand J Gastroenterol. 2013;48:1198–1204.CrossRef Lo GH, Lin CW, Perng DS, et al. A retrospective comparative study of histoacryl injection and banding ligation in the treatment of acute type 1 gastric variceal hemorrhage. Scand J Gastroenterol. 2013;48:1198–1204.CrossRef
21.
go back to reference Prachayakul V, Aswakul P, Chantarojanasiri T, et al. Factors influencing clinical out-comes of Histoacryl® glue injection-treated gastric variceal hemorrhage. World J Gastroenterol. 2013;19:2379–2387.CrossRef Prachayakul V, Aswakul P, Chantarojanasiri T, et al. Factors influencing clinical out-comes of Histoacryl® glue injection-treated gastric variceal hemorrhage. World J Gastroenterol. 2013;19:2379–2387.CrossRef
22.
go back to reference Liew W, Wai YY, Kosai NR, et al. Tackers versus glue mesh fixation: an objective assessment of postoperative acute and chronic pain using inflammatory markers. Hernia. 2017;21:549–554.CrossRef Liew W, Wai YY, Kosai NR, et al. Tackers versus glue mesh fixation: an objective assessment of postoperative acute and chronic pain using inflammatory markers. Hernia. 2017;21:549–554.CrossRef
23.
go back to reference Silveira RK, Domingie S, Kirzin S, et al. Comparative study of safety and efficacy of synthetic surgical glue for mesh fixation in ventral rectopexy. Surg Endosc. 2017;31:4016–4024.CrossRef Silveira RK, Domingie S, Kirzin S, et al. Comparative study of safety and efficacy of synthetic surgical glue for mesh fixation in ventral rectopexy. Surg Endosc. 2017;31:4016–4024.CrossRef
24.
go back to reference Dauser B, Szyszkowitz A, Seitinger G, et al. A novel glue device for fixation of mesh and peritoneal closure during laparoscopic inguinal hernia repair: short- and medium-term results. Eur Surg. 2017;49:27–31.CrossRef Dauser B, Szyszkowitz A, Seitinger G, et al. A novel glue device for fixation of mesh and peritoneal closure during laparoscopic inguinal hernia repair: short- and medium-term results. Eur Surg. 2017;49:27–31.CrossRef
25.
go back to reference Shen YM, Liu YT, Chen J, et al. Efficacy and safety of NBCA (n-butyl-2-cyanoacrylate) medical adhesive for patch fixation in totally extraperitoneal prosthesis (TEP): a prospective, randomized, controlled trial. Eur Rev Med Pharmacol Sci. 2017;21:680–686.PubMed Shen YM, Liu YT, Chen J, et al. Efficacy and safety of NBCA (n-butyl-2-cyanoacrylate) medical adhesive for patch fixation in totally extraperitoneal prosthesis (TEP): a prospective, randomized, controlled trial. Eur Rev Med Pharmacol Sci. 2017;21:680–686.PubMed
26.
go back to reference Yontar Y, Özyazgan Ý. Correcting Concavity of Rabbit Auricular Cartilage: Comparison of Single Scoring Incisions with Butyl Cyanoacrylate-Aided Techniques. Plast Reconstr Surg. 2017;139:1152–1164.CrossRef Yontar Y, Özyazgan Ý. Correcting Concavity of Rabbit Auricular Cartilage: Comparison of Single Scoring Incisions with Butyl Cyanoacrylate-Aided Techniques. Plast Reconstr Surg. 2017;139:1152–1164.CrossRef
27.
go back to reference Dundar S, Ozgur C, Yaman F, et al. Guided bone regeneration with local zoledronic acid and titanium barrier: An experimental study. Exp Ther Med. 2016;12:2015–2020.CrossRef Dundar S, Ozgur C, Yaman F, et al. Guided bone regeneration with local zoledronic acid and titanium barrier: An experimental study. Exp Ther Med. 2016;12:2015–2020.CrossRef
28.
go back to reference Salata LA, Mariguela VC, Antunes AA, et al. Short-term evaluation of grafts fixed with either N-butyl-2-cyanocrylate or screws. J Oral Maxillofac Surg. 2014;72:676–682.CrossRef Salata LA, Mariguela VC, Antunes AA, et al. Short-term evaluation of grafts fixed with either N-butyl-2-cyanocrylate or screws. J Oral Maxillofac Surg. 2014;72:676–682.CrossRef
29.
go back to reference de Oliveira Neto PJ, Cricchio G, Hawthorne AC, et al. Tomographic, histological, and immunohistochemical evidences on the use of N-butyl-2-cyanoacrilate for onlay graft fixation in rabbits. Clin Implant Dent Relat Res. 2012;14:861–71.CrossRef de Oliveira Neto PJ, Cricchio G, Hawthorne AC, et al. Tomographic, histological, and immunohistochemical evidences on the use of N-butyl-2-cyanoacrilate for onlay graft fixation in rabbits. Clin Implant Dent Relat Res. 2012;14:861–71.CrossRef
30.
go back to reference Ekelund A, Nilsson OS. Tissue adhesives inhibit experimental new bone formation. Int Orthop. 1991;15:331–334.CrossRef Ekelund A, Nilsson OS. Tissue adhesives inhibit experimental new bone formation. Int Orthop. 1991;15:331–334.CrossRef
31.
go back to reference Wells JR, Gernon WH. Bony ossicular fixation using 2-cyano-butyl-acrylate adhesive. Ach Otolaryngol Head Neck Surg. 1987;113:644–646.CrossRef Wells JR, Gernon WH. Bony ossicular fixation using 2-cyano-butyl-acrylate adhesive. Ach Otolaryngol Head Neck Surg. 1987;113:644–646.CrossRef
32.
go back to reference Koltai PJ, Eden AR. Evaluation of three cyanoacrylate glues for ossicular reconstruction. Ann Otol Rhinol Laryngol. 1983;92:29–32.CrossRef Koltai PJ, Eden AR. Evaluation of three cyanoacrylate glues for ossicular reconstruction. Ann Otol Rhinol Laryngol. 1983;92:29–32.CrossRef
33.
go back to reference Weiss M, Haj M. Gastrointestinal anastomosis with histoacryl glue in rats. J Invest Surg. 2001;14:9–13. Weiss M, Haj M. Gastrointestinal anastomosis with histoacryl glue in rats. J Invest Surg. 2001;14:9–13.
34.
go back to reference Yurtçu M, Arbag H, Cağlayan O, et al. The effect of cyanoacrylate in esophagocutaneous leakages occurring after esophageal anastomosis. Int J Pediatr Otorhinolaryngol. 2009;73:1053–1055.CrossRef Yurtçu M, Arbag H, Cağlayan O, et al. The effect of cyanoacrylate in esophagocutaneous leakages occurring after esophageal anastomosis. Int J Pediatr Otorhinolaryngol. 2009;73:1053–1055.CrossRef
35.
go back to reference Bianchi Cardona A, Hidalgo Grau LA, Feliu Canaleta J, et al. Postoperative cervical anastomotic fistula treated with a biologic glue. Eur J Surg Oncol. 2005;31:1222–1223.CrossRef Bianchi Cardona A, Hidalgo Grau LA, Feliu Canaleta J, et al. Postoperative cervical anastomotic fistula treated with a biologic glue. Eur J Surg Oncol. 2005;31:1222–1223.CrossRef
36.
go back to reference Lukish J, Marmon L, Burns C. Nonoperative closure of persistent gastrocutaneous fistulas in children with 2-octylcyanoacrylate. J Laparoendosc Adv Surg Tech A. 2010;206:565–567.CrossRef Lukish J, Marmon L, Burns C. Nonoperative closure of persistent gastrocutaneous fistulas in children with 2-octylcyanoacrylate. J Laparoendosc Adv Surg Tech A. 2010;206:565–567.CrossRef
37.
go back to reference Wu Z, Boersema GS, Vakalopoulos KA, et al. Critical analysis of cyanoacrylate in intestinal and colorectal anastomosis. J Biomed Mater Res B Appl Biomater. 2014;102:635–642.CrossRef Wu Z, Boersema GS, Vakalopoulos KA, et al. Critical analysis of cyanoacrylate in intestinal and colorectal anastomosis. J Biomed Mater Res B Appl Biomater. 2014;102:635–642.CrossRef
38.
go back to reference Julián Ibáñez JF, Tarascó Palomares J, Navinés López J, et al. Introduction of Flexible Cyanoacrylates in Sutureless Gastric Closure. Surg Innov. 2016;23:490–497.CrossRef Julián Ibáñez JF, Tarascó Palomares J, Navinés López J, et al. Introduction of Flexible Cyanoacrylates in Sutureless Gastric Closure. Surg Innov. 2016;23:490–497.CrossRef
39.
go back to reference Festing S, Wilkinson R. The ethics of animal research. Talking Point on the use of animals in scientific research. EMBO Reports. 2007;8(6):526–530.CrossRef Festing S, Wilkinson R. The ethics of animal research. Talking Point on the use of animals in scientific research. EMBO Reports. 2007;8(6):526–530.CrossRef
40.
go back to reference Zühlke HV, Lorenz EM, Straub EM, et al. Pathophysiology and classification of adhesions. Langenbecks Arch Chir Verh Dtsch Ges Chir. 1990:1009–1016. Zühlke HV, Lorenz EM, Straub EM, et al. Pathophysiology and classification of adhesions. Langenbecks Arch Chir Verh Dtsch Ges Chir. 1990:1009–1016.
41.
go back to reference Paral J, Subrt Z, Lochman P, et al. Suture-free anastomosis of the colon. Experimental comparison of two cyanoacrylate adhesives. J Gastrointest Surg. 2011;15:451–459.CrossRef Paral J, Subrt Z, Lochman P, et al. Suture-free anastomosis of the colon. Experimental comparison of two cyanoacrylate adhesives. J Gastrointest Surg. 2011;15:451–459.CrossRef
42.
go back to reference Nursal TZ, Anarat R, Bircan S, et al. The effect of tissue adhesive, octyl-cyanoacrylate, on the healing of experimental high-risk and normal colonic anastomoses. Am J Surg. 2004;187:28–32.CrossRef Nursal TZ, Anarat R, Bircan S, et al. The effect of tissue adhesive, octyl-cyanoacrylate, on the healing of experimental high-risk and normal colonic anastomoses. Am J Surg. 2004;187:28–32.CrossRef
43.
go back to reference Matsumoto MT, Hardaway RM 3rd, Pani KC, et al. Closure of gastrointestinal perforations with cyanocrylate tissue adhesive. Arch Surg. 1967;94:184–186.CrossRef Matsumoto MT, Hardaway RM 3rd, Pani KC, et al. Closure of gastrointestinal perforations with cyanocrylate tissue adhesive. Arch Surg. 1967;94:184–186.CrossRef
44.
go back to reference Ersoy OF, Ozkan N, Celik A, et al. Effect of cyanocrylate on closure of gastric perforation: a comparative study in a rat model. Minim Invasive Ther Allied Technol. 2009;18:225–231.CrossRef Ersoy OF, Ozkan N, Celik A, et al. Effect of cyanocrylate on closure of gastric perforation: a comparative study in a rat model. Minim Invasive Ther Allied Technol. 2009;18:225–231.CrossRef
45.
go back to reference Howell JM, Bresnahan KA, Stair TO, et al. Comparison of effects of suture and cyanoacrylate tissue adhesive on bacterial counts in contaminated lacerations. Antimicrob Agents Chemother. 1995;39:559–560.CrossRef Howell JM, Bresnahan KA, Stair TO, et al. Comparison of effects of suture and cyanoacrylate tissue adhesive on bacterial counts in contaminated lacerations. Antimicrob Agents Chemother. 1995;39:559–560.CrossRef
46.
go back to reference Bot GM, Bot KG, Ogunranti JO, et al. The use of cyanoacrylate in surgical anastomosis: an alternative to microsurgery. J Surg Tech Case Rep. 2010;2:44–48.CrossRef Bot GM, Bot KG, Ogunranti JO, et al. The use of cyanoacrylate in surgical anastomosis: an alternative to microsurgery. J Surg Tech Case Rep. 2010;2:44–48.CrossRef
47.
go back to reference Phillips RJ, Powley TL. Plasticity of vagal afferents at the site of an incision in the wall of the stomach. Auton Neurosci. 2005;123:44–53.CrossRef Phillips RJ, Powley TL. Plasticity of vagal afferents at the site of an incision in the wall of the stomach. Auton Neurosci. 2005;123:44–53.CrossRef
48.
go back to reference Vakalopoulos KA, Wu Z, Kroese LF, et al. Clinical, mechanical, and immunohistopathological effects of tissue adhesives on the colon: An in-vivo study. J Biomed Mater Res B Appl Biomater. 2016;105:846–854.CrossRef Vakalopoulos KA, Wu Z, Kroese LF, et al. Clinical, mechanical, and immunohistopathological effects of tissue adhesives on the colon: An in-vivo study. J Biomed Mater Res B Appl Biomater. 2016;105:846–854.CrossRef
Metadata
Title
Clinical Feasibility of Large Gastrotomy Closure Using a Flexible Tissue Glue Based on N-Butyl-2-Cyanoacrylate: Experimental Study in Pigs
Authors
Francisco Espin Alvarez
Anna M. Rodríguez Rivero
Jordi Navinés López
Elena Díaz Celorio
Jordi Tarascó Palomares
Luís Felipe del Castillo Riestra
Iva Borisova
Jaime Fernández-Llamazares
Pau Turon Dols
Joan Francesc Julián Ibáñez
Publication date
01-02-2019
Publisher
Springer US
Published in
Journal of Gastrointestinal Surgery / Issue 2/2019
Print ISSN: 1091-255X
Electronic ISSN: 1873-4626
DOI
https://doi.org/10.1007/s11605-018-3910-y

Other articles of this Issue 2/2019

Journal of Gastrointestinal Surgery 2/2019 Go to the issue