Skip to main content
Top
Published in: Journal of Gastrointestinal Surgery 1/2010

01-02-2010 | DeMeester Feschrift

The Molecular Pathogenesis of Barrett’s Esophagus: Common Signaling Pathways in Embryogenesis Metaplasia and Neoplasia

Authors: Jeffrey H. Peters, N. Avisar

Published in: Journal of Gastrointestinal Surgery | Special Issue 1/2010

Login to get access

Abstract

Although Barrett’s esophagus has been recognized for over 50 years, the cellular and molecular mechanisms leading to the replacement of squamous esophageal epithelium with a columnar type are largely unknown. Barrett’s is known to be an acquired process secondary to chronic gastroesophageal reflux disease and occurs in the presence of severe disruption of the gastroesophageal barrier and reflux of a mixture of gastric and duodenal content. Current hypothesis suggest that epithelial change occurs due to stimulation of esophageal stem cells present in the basal layers of the epithelium or submucosal glands, toward a columnar epithelial differentiation pathway. The transcription factor CDX2 seems to play a key role in promoting the cellular biology necessary for columnar differentiation, and can be induced by bile salt and acid stimulation. Several cellular signaling pathways responsible for modulation of intestinal differentiation have also been identified and include WNT, Notch, BMP, Sonic HH and TGFB. These also have been shown to respond to stimulation by bile acids, acid or both and may influence CDX2 expression. Their relative activity within the stem cell population is almost certainly responsible for the development of the esophageal columnar epithelial phenotype we know as Barrett’s esophagus.
Literature
2.
go back to reference Barrett NR. Chronic peptic ulcer of the esophagus and “oesophagitis”. Br J Surg 1950;38:175–182.CrossRefPubMed Barrett NR. Chronic peptic ulcer of the esophagus and “oesophagitis”. Br J Surg 1950;38:175–182.CrossRefPubMed
3.
5.
go back to reference Bremner CG, Lynch VP, Ellis H. Barrett’s esophagus: congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery 1970;68:209–216.PubMed Bremner CG, Lynch VP, Ellis H. Barrett’s esophagus: congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery 1970;68:209–216.PubMed
6.
go back to reference Hanna S, Rastogi A, Weston AP, Totta F, Schmitz R, Mathur S, McGregor D, Cherian R, Sharma P. Detection of Barrett’s esophagus after endoscopic healing of erosive esophagitis. Am J Gastroenterol 2006;101:1416–1420.CrossRefPubMed Hanna S, Rastogi A, Weston AP, Totta F, Schmitz R, Mathur S, McGregor D, Cherian R, Sharma P. Detection of Barrett’s esophagus after endoscopic healing of erosive esophagitis. Am J Gastroenterol 2006;101:1416–1420.CrossRefPubMed
7.
go back to reference Körbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar A, Champlin RE, Estrov Z. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 2002;346:738–746.CrossRefPubMed Körbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar A, Champlin RE, Estrov Z. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 2002;346:738–746.CrossRefPubMed
8.
go back to reference Sarosi G, Brown G, Jaiswal K, Feagins LA, Lee E, Crook TW, Souza RF, Zou YS, Shay JW, Spechler SJ. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esoph 2008;21:43–50. Sarosi G, Brown G, Jaiswal K, Feagins LA, Lee E, Crook TW, Souza RF, Zou YS, Shay JW, Spechler SJ. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esoph 2008;21:43–50.
9.
go back to reference Seery JP. Stem cells of the esophageal epithelium. J Cell Sci 2002;115:1783–1789.PubMed Seery JP. Stem cells of the esophageal epithelium. J Cell Sci 2002;115:1783–1789.PubMed
10.
go back to reference Croagh D, Phillips WA, Redvers R, Thomas RJS, Kaur P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic and cell surface markers. Stem Cells 2007;25:313–318.CrossRefPubMed Croagh D, Phillips WA, Redvers R, Thomas RJS, Kaur P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic and cell surface markers. Stem Cells 2007;25:313–318.CrossRefPubMed
11.
go back to reference Suh E, Chen L, Taylor J, Traber PG. A homeodomain protein realted to caudal regulates intestine specific gene transcription. Mol Cell Biol 1994;14:7340–7351.PubMed Suh E, Chen L, Taylor J, Traber PG. A homeodomain protein realted to caudal regulates intestine specific gene transcription. Mol Cell Biol 1994;14:7340–7351.PubMed
12.
go back to reference Suh E, Traber PG. Am intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol 1996;16:619–625.PubMed Suh E, Traber PG. Am intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol 1996;16:619–625.PubMed
13.
go back to reference Lorentz O, Duluc I, Arcangelis AD, Simon-Assmann P, Kedinger M, Freund J-N. Key role of the Cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J Cell Biol 1997;139(6):1553–1565.CrossRefPubMed Lorentz O, Duluc I, Arcangelis AD, Simon-Assmann P, Kedinger M, Freund J-N. Key role of the Cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J Cell Biol 1997;139(6):1553–1565.CrossRefPubMed
14.
go back to reference Guo RJ, Suh ER, Lynch JP. The role of Cdx proteins in intestinal development and cancer. Cancer Biol Ther 2004;3:593–601.PubMedCrossRef Guo RJ, Suh ER, Lynch JP. The role of Cdx proteins in intestinal development and cancer. Cancer Biol Ther 2004;3:593–601.PubMedCrossRef
15.
go back to reference Steininger H, Pfofe DA, Muller H, Haag-Sunjic G, Fratianu V. Expression of CDX2 and MUC2 in Barrett’s mucosa. Pathol Res Pract 2005;201(8–9):573–577.CrossRefPubMed Steininger H, Pfofe DA, Muller H, Haag-Sunjic G, Fratianu V. Expression of CDX2 and MUC2 in Barrett’s mucosa. Pathol Res Pract 2005;201(8–9):573–577.CrossRefPubMed
16.
go back to reference Uesaka T, Kageyama N, Watanabe H. Identifying target genes regulated downstream of CDX2 by microarray analysis. J Mol Biol 2004;337:647–660.CrossRefPubMed Uesaka T, Kageyama N, Watanabe H. Identifying target genes regulated downstream of CDX2 by microarray analysis. J Mol Biol 2004;337:647–660.CrossRefPubMed
17.
go back to reference Groisman GM, Amar M, Meir A. Expression of the intestinal marker Cdx2 in the columnar-lined esophagus with and without intestinal (Barrett’s) metaplasia. Mod Pathol 2004;17(10):1282–1288.CrossRefPubMed Groisman GM, Amar M, Meir A. Expression of the intestinal marker Cdx2 in the columnar-lined esophagus with and without intestinal (Barrett’s) metaplasia. Mod Pathol 2004;17(10):1282–1288.CrossRefPubMed
18.
go back to reference Phillips RW, Frierson HF Jr, Moskaluk CA. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol 2003;27:1442–1447.CrossRefPubMed Phillips RW, Frierson HF Jr, Moskaluk CA. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol 2003;27:1442–1447.CrossRefPubMed
19.
go back to reference Moons LMG, Bax DA, Kuipers EJ, et al. The homeodomain protein CDX2 is an early marker of Barrett’s oesophagus. J Clin Pathol 2004;57(10):1063–1068.CrossRefPubMed Moons LMG, Bax DA, Kuipers EJ, et al. The homeodomain protein CDX2 is an early marker of Barrett’s oesophagus. J Clin Pathol 2004;57(10):1063–1068.CrossRefPubMed
20.
go back to reference Tamai Y, Nakajima R, Ishikawa T, Takaku K, Seldin MF, Taketo MM. Colonic hamartoma development by anomalous duplication in Cdx2 knockout mice. Cancer Res 1999;59:2965–2970.PubMed Tamai Y, Nakajima R, Ishikawa T, Takaku K, Seldin MF, Taketo MM. Colonic hamartoma development by anomalous duplication in Cdx2 knockout mice. Cancer Res 1999;59:2965–2970.PubMed
21.
go back to reference Silberg DG, Sullivan J, Kang E, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 2002;122(3):689–696.CrossRefPubMed Silberg DG, Sullivan J, Kang E, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 2002;122(3):689–696.CrossRefPubMed
22.
23.
go back to reference Vallbohmer D, DeMeester SR, Peters JH, Oh DS, Kuramochi H, Shimizu D, Hagen JA, Danenberg KD, Danenberg PV, DeMeester TR, Chandrasoma PT. Cdx-2 expression in squamous and metaplastic columnar epithelia of the esophagus. Dis Esophagus 2006;19(4):260–266.CrossRefPubMed Vallbohmer D, DeMeester SR, Peters JH, Oh DS, Kuramochi H, Shimizu D, Hagen JA, Danenberg KD, Danenberg PV, DeMeester TR, Chandrasoma PT. Cdx-2 expression in squamous and metaplastic columnar epithelia of the esophagus. Dis Esophagus 2006;19(4):260–266.CrossRefPubMed
24.
go back to reference Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:1–12.CrossRef Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:1–12.CrossRef
25.
go back to reference Lieberman DA, Oehike M, Helfand M, the GORGE consortium. Risk factors for Barrett’s esophagus in community-based practice. Am J Gastroenterol 1997;92:1293–1297.PubMed Lieberman DA, Oehike M, Helfand M, the GORGE consortium. Risk factors for Barrett’s esophagus in community-based practice. Am J Gastroenterol 1997;92:1293–1297.PubMed
26.
go back to reference Cameron AJ. Barrett’s esophagus; prevalence and size of hiatal hernia. Am J Gastroenterol 1999;94:2054–2059.CrossRefPubMed Cameron AJ. Barrett’s esophagus; prevalence and size of hiatal hernia. Am J Gastroenterol 1999;94:2054–2059.CrossRefPubMed
27.
go back to reference Stein HJ, Barlow AP, DeMeester TR. Complications of gastroesophageal reflux disease. Role of the lower esophageal sphincter, esophageal acid and acid/alkaline exposure, and duodenogastric reflux. Ann Surg 1992;216:35–43.CrossRefPubMed Stein HJ, Barlow AP, DeMeester TR. Complications of gastroesophageal reflux disease. Role of the lower esophageal sphincter, esophageal acid and acid/alkaline exposure, and duodenogastric reflux. Ann Surg 1992;216:35–43.CrossRefPubMed
28.
go back to reference Kauer WK, Peters JH, DeMeester TR, Ireland AP, Bremner CG, Hagen JA. Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg 1995;222:525–531.PubMed Kauer WK, Peters JH, DeMeester TR, Ireland AP, Bremner CG, Hagen JA. Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg 1995;222:525–531.PubMed
29.
go back to reference Pellegrini CA, DeMeester TR, Wernly JA, Johnson LF, Skinner DB. Alkaline gastroesophageal reflux. Am J Surg 1978;135:177–184.CrossRefPubMed Pellegrini CA, DeMeester TR, Wernly JA, Johnson LF, Skinner DB. Alkaline gastroesophageal reflux. Am J Surg 1978;135:177–184.CrossRefPubMed
30.
go back to reference Oberg S, Peters JH, DeMeester TR, Lord RV, Johanson J, Theisen J, Bremner CG. Determinates of intestinal metaplasia within the columnar lined esophagus. Arch Surg 2000;135:651–656.CrossRefPubMed Oberg S, Peters JH, DeMeester TR, Lord RV, Johanson J, Theisen J, Bremner CG. Determinates of intestinal metaplasia within the columnar lined esophagus. Arch Surg 2000;135:651–656.CrossRefPubMed
31.
go back to reference Kauer WK, Peters JH, DeMeester TR, Feussner H, Ireland AP, Stein HJ, Siewert RJ. Composition and concentration of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease. Surgery 1997;122(5):874–881.CrossRefPubMed Kauer WK, Peters JH, DeMeester TR, Feussner H, Ireland AP, Stein HJ, Siewert RJ. Composition and concentration of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease. Surgery 1997;122(5):874–881.CrossRefPubMed
32.
go back to reference Kaur BS, Triadafilopoulos G, Kaur BS, Triadafilopoulos G. Acid- and bile-induced PGE(2) release and hyperproliferation in Barrett’s esophagus are COX-2 and PKC-epsilon dependent. Am J Physiol Gastrointest Liver Physiol 2002;283(2):G327–G334.PubMed Kaur BS, Triadafilopoulos G, Kaur BS, Triadafilopoulos G. Acid- and bile-induced PGE(2) release and hyperproliferation in Barrett’s esophagus are COX-2 and PKC-epsilon dependent. Am J Physiol Gastrointest Liver Physiol 2002;283(2):G327–G334.PubMed
33.
go back to reference Anisfeld AM, Kast-Woelbern HR, Lee H, et al. Activation of the nuclear receptor FXR induces fibrinogen expression: a new role for bile acid signaling. J Lipid Res 2005;46(3):458–468.CrossRefPubMed Anisfeld AM, Kast-Woelbern HR, Lee H, et al. Activation of the nuclear receptor FXR induces fibrinogen expression: a new role for bile acid signaling. J Lipid Res 2005;46(3):458–468.CrossRefPubMed
34.
go back to reference Souza RF, Krishman K, Spechler SJ. Acid, bile and CDX; the ABC’s of making Barrett’s metaplasia. Am J Physiol Gastrointest Liver Physiol 2008;295:211–218.CrossRef Souza RF, Krishman K, Spechler SJ. Acid, bile and CDX; the ABC’s of making Barrett’s metaplasia. Am J Physiol Gastrointest Liver Physiol 2008;295:211–218.CrossRef
35.
go back to reference Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science 2005;307:1904–1909.CrossRefPubMed Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science 2005;307:1904–1909.CrossRefPubMed
36.
go back to reference Scoville DH, Sato T, He XC, Li L. Current view: intestinal stem cells and signaling. Gastroenterology 2008;134:849.CrossRefPubMed Scoville DH, Sato T, He XC, Li L. Current view: intestinal stem cells and signaling. Gastroenterology 2008;134:849.CrossRefPubMed
37.
go back to reference Milano F, Van Baal JWPM, Buttar NS, Rygiel AM, De Kort F, Demars CJ, Rosmolen WD, Bergman JJGHM, Van Marle J, Wang KK, Peppelenbosch MP, Krishnadath KK. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 2007;132:2412–2421.CrossRefPubMed Milano F, Van Baal JWPM, Buttar NS, Rygiel AM, De Kort F, Demars CJ, Rosmolen WD, Bergman JJGHM, Van Marle J, Wang KK, Peppelenbosch MP, Krishnadath KK. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 2007;132:2412–2421.CrossRefPubMed
38.
go back to reference Hu Y, Williams VA, Gellerson O, Jones C, Watson TJ, Peters JH. The pathogenesis of Barrett’s esophagus; secondary bile acids upregulate intestinal differentiation factor CDX2 expression in esophageal cells. J Gastrointest Surg 2007;11:827–834.CrossRefPubMed Hu Y, Williams VA, Gellerson O, Jones C, Watson TJ, Peters JH. The pathogenesis of Barrett’s esophagus; secondary bile acids upregulate intestinal differentiation factor CDX2 expression in esophageal cells. J Gastrointest Surg 2007;11:827–834.CrossRefPubMed
39.
go back to reference Hu Y, Jones C, Gellerson O, Williams V, Watson TJ, Peters JH. The pathogenesis of Barrett’s esophagus; deoxycholic acid upregulates goblet specific gene MUC2 in concert with CDX2 in human esophageal cells. Arch Surg 2007;142:540–545.CrossRefPubMed Hu Y, Jones C, Gellerson O, Williams V, Watson TJ, Peters JH. The pathogenesis of Barrett’s esophagus; deoxycholic acid upregulates goblet specific gene MUC2 in concert with CDX2 in human esophageal cells. Arch Surg 2007;142:540–545.CrossRefPubMed
40.
41.
go back to reference Yamamoto H, Bai YQ, Yuasa Y. Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression. Biochem Biophys Res Commun 2003;300:813–818.CrossRefPubMed Yamamoto H, Bai YQ, Yuasa Y. Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression. Biochem Biophys Res Commun 2003;300:813–818.CrossRefPubMed
42.
go back to reference Mesquita P, Jonckheere N, Almeida R, Ducourouble MP, Serpa J, Silva E, Pigny P, Silva FS, Reis C, Silberg D, Van Seuningen I, David L. Human MUC2 mucin gene is transcriptionally regulated by Cdx homeodomain proteins in gastrointestinal carcinoma cell lines. J Biol Chem 2003;278:51549–51556.CrossRefPubMed Mesquita P, Jonckheere N, Almeida R, Ducourouble MP, Serpa J, Silva E, Pigny P, Silva FS, Reis C, Silberg D, Van Seuningen I, David L. Human MUC2 mucin gene is transcriptionally regulated by Cdx homeodomain proteins in gastrointestinal carcinoma cell lines. J Biol Chem 2003;278:51549–51556.CrossRefPubMed
43.
go back to reference Merchant NP, Rogers CM, Trivedi B, Morrow J, Coffey RJ. Ligand-dependent activation of the epidermal growth factor receptor by secondary bile acids in polarizing colon cancer cells. Surgery 2005;138:415–421.CrossRefPubMed Merchant NP, Rogers CM, Trivedi B, Morrow J, Coffey RJ. Ligand-dependent activation of the epidermal growth factor receptor by secondary bile acids in polarizing colon cancer cells. Surgery 2005;138:415–421.CrossRefPubMed
44.
go back to reference Zhang H, Berezov A, Wang Q, et al. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 2007;117(8):2051–2058.CrossRefPubMed Zhang H, Berezov A, Wang Q, et al. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 2007;117(8):2051–2058.CrossRefPubMed
45.
go back to reference Pal SK, Pegram M, Pal SK, Pegram M. Epidermal growth factor receptor and signal transduction: potential targets for anti-cancer therapy. Anticancer Drugs 2005;16(5):483–494.CrossRefPubMed Pal SK, Pegram M, Pal SK, Pegram M. Epidermal growth factor receptor and signal transduction: potential targets for anti-cancer therapy. Anticancer Drugs 2005;16(5):483–494.CrossRefPubMed
46.
go back to reference Jaiswal K, Lopez-Guzman C, Souza RF, Spechler SJ, Sarosi GA. Bile salt exposure increases proliferation through p38 and ERK MAPK pathways in a non-neoplastic Barrett’s cell line. Am J Physiol Gastrointest Liver Physiol 2006;290:G335–G342.CrossRefPubMed Jaiswal K, Lopez-Guzman C, Souza RF, Spechler SJ, Sarosi GA. Bile salt exposure increases proliferation through p38 and ERK MAPK pathways in a non-neoplastic Barrett’s cell line. Am J Physiol Gastrointest Liver Physiol 2006;290:G335–G342.CrossRefPubMed
47.
go back to reference Avissar NE, Toia L, Hu Y, Watson TJ, Jones C, Raymond DP, Matousek A, Peters JH. Bile acid alone, or in combination with acid, induces CDX2 expression through activation of the epidermal growth factor receptor (EGFR). J Gastrointest Surg 2009;13(2):212–222.CrossRefPubMed Avissar NE, Toia L, Hu Y, Watson TJ, Jones C, Raymond DP, Matousek A, Peters JH. Bile acid alone, or in combination with acid, induces CDX2 expression through activation of the epidermal growth factor receptor (EGFR). J Gastrointest Surg 2009;13(2):212–222.CrossRefPubMed
48.
go back to reference Samira JL, Akare S, Ali MA, Mash EA, Meuillet E, Martinez JD. Deoxycholic acid induces intracellular signaling through membrane perturbations. J Biol Chem 2006;281:14948–14960.CrossRef Samira JL, Akare S, Ali MA, Mash EA, Meuillet E, Martinez JD. Deoxycholic acid induces intracellular signaling through membrane perturbations. J Biol Chem 2006;281:14948–14960.CrossRef
Metadata
Title
The Molecular Pathogenesis of Barrett’s Esophagus: Common Signaling Pathways in Embryogenesis Metaplasia and Neoplasia
Authors
Jeffrey H. Peters
N. Avisar
Publication date
01-02-2010
Publisher
Springer-Verlag
Published in
Journal of Gastrointestinal Surgery / Issue Special Issue 1/2010
Print ISSN: 1091-255X
Electronic ISSN: 1873-4626
DOI
https://doi.org/10.1007/s11605-009-1011-7

Other articles of this Special Issue 1/2010

Journal of Gastrointestinal Surgery 1/2010 Go to the issue