Skip to main content
Top
Published in: Japanese Journal of Radiology 10/2023

17-04-2023 | Original Article

Compressed sensing cine imaging with higher temporal resolution for analysis of left atrial strain and strain rate by cardiac magnetic resonance feature tracking

Authors: Jingyu Zhang, Ziqi Xiong, Di Tian, Shuai Hu, Qingwei Song, Zhiyong Li

Published in: Japanese Journal of Radiology | Issue 10/2023

Login to get access

Abstract

Purpose

Cardiac magnetic resonance (CMR) feature tracking (FT) is more widely used in the measurement of left atrial (LA) strain and strain rate (SR). However, in recent years, researchers have attempted to improve the low temporal resolution of CMR-FT to better capture the subtle deformations of the myocardium. The technique of compressed sensing (CS) has been applied clinically, reducing scan time while increasing temporal resolution. The purpose of this study was to explore the effect of the increased temporal resolution of CS cine sequences on the analysis of LA longitudinal strain and SR.

Materials and methods

Twenty-nine healthy subjects were included in the study. They underwent CMR with a reference steady-state free precession cine sequence of conventional temporal resolution (standard SSFP sequence), a cine sequence of higher temporal resolution (HT sequence), and an HT cine sequence with CS (CS HT sequence) (temporal resolution: 22.1–44.3/24.9–47.1 ms, 11.1–19.4 ms, and 8.3–19.4 ms, respectively). The standard SSFP sequence, HT sequence, and CS HT sequence were acquired in all subjects during the same scanning session. LA longitudinal strain and SR, reflecting LA reservoir, conduit, and contraction booster-pump function, were measured by CMR-FT and compared among the three sequences.

Results

The measurements of LASR reservoir, conduit, and booster-pump were significantly higher on the HT and CS HT sequences than on the standard SSFP sequence. The standard SSFP sequence was correlated significantly with the HT and CS HT sequences in terms of LA strain and SR analysis, respectively. The LA strain and SR measurements also showed excellent agreement between the HT and CS HT sequences.

Conclusion

Higher temporal resolution led to significantly higher measured LASR values in CMR-FT. Furthermore, the addition of CS reduced scan time and did not affect LA longitudinal strain or SR analysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging. 2015;8(12):1444–60.CrossRefPubMed Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging. 2015;8(12):1444–60.CrossRefPubMed
2.
go back to reference Evin M, Cluzel P, Lamy J, Rosenbaum D, Kusmia S, Defrance C, et al. Assessment of left atrial function by MRI myocardial feature tracking. J Magn Reson Imaging. 2015;42(2):379–89.CrossRefPubMed Evin M, Cluzel P, Lamy J, Rosenbaum D, Kusmia S, Defrance C, et al. Assessment of left atrial function by MRI myocardial feature tracking. J Magn Reson Imaging. 2015;42(2):379–89.CrossRefPubMed
3.
go back to reference Telles F, Nanayakkara S, Evans S, Patel HC, Mariani JA, Vizi D, et al. Impaired left atrial strain predicts abnormal exercise haemodynamics in heart failure with preserved ejection fraction. Eur J Heart Fail. 2019;21(4):495–505.CrossRefPubMed Telles F, Nanayakkara S, Evans S, Patel HC, Mariani JA, Vizi D, et al. Impaired left atrial strain predicts abnormal exercise haemodynamics in heart failure with preserved ejection fraction. Eur J Heart Fail. 2019;21(4):495–505.CrossRefPubMed
4.
go back to reference Morris DA, Belyavskiy E, Aravind-Kumar R, Kropf M, Frydas A, Braunauer K, et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc Imaging. 2018;11(10):1405–15.CrossRefPubMed Morris DA, Belyavskiy E, Aravind-Kumar R, Kropf M, Frydas A, Braunauer K, et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc Imaging. 2018;11(10):1405–15.CrossRefPubMed
5.
go back to reference Yasuda R, Murata M, Roberts R, Tokuda H, Minakata Y, Suzuki K, et al. Left atrial strain is a powerful predictor of atrial fibrillation recurrence after catheter ablation: study of a heterogeneous population with sinus rhythm or atrial fibrillation. Eur Heart J Cardiovasc Imaging. 2015;16(9):1008–14.PubMed Yasuda R, Murata M, Roberts R, Tokuda H, Minakata Y, Suzuki K, et al. Left atrial strain is a powerful predictor of atrial fibrillation recurrence after catheter ablation: study of a heterogeneous population with sinus rhythm or atrial fibrillation. Eur Heart J Cardiovasc Imaging. 2015;16(9):1008–14.PubMed
6.
go back to reference Chirinos JA, Sardana M, Ansari B, Satija V, Kuriakose D, Edelstein I, et al. Left atrial phasic function by cardiac magnetic resonance feature tracking is a strong predictor of incident cardiovascular events. Circ Cardiovasc Imaging. 2018;11(12): e007512.CrossRefPubMedPubMedCentral Chirinos JA, Sardana M, Ansari B, Satija V, Kuriakose D, Edelstein I, et al. Left atrial phasic function by cardiac magnetic resonance feature tracking is a strong predictor of incident cardiovascular events. Circ Cardiovasc Imaging. 2018;11(12): e007512.CrossRefPubMedPubMedCentral
7.
go back to reference Raafs AG, Vos JL, Henkens M, Slurink BO, Verdonschot JAJ, Bossers D, et al. Left atrial strain has superior prognostic value to ventricular function and delayed-enhancement in dilated cardiomyopathy. JACC Cardiovasc Imaging. 2022;15(6):1015–26.CrossRefPubMed Raafs AG, Vos JL, Henkens M, Slurink BO, Verdonschot JAJ, Bossers D, et al. Left atrial strain has superior prognostic value to ventricular function and delayed-enhancement in dilated cardiomyopathy. JACC Cardiovasc Imaging. 2022;15(6):1015–26.CrossRefPubMed
8.
go back to reference Yang F, Wang L, Wang J, Pu L, Xu Y, Li W, et al. Prognostic value of fast semi-automated left atrial long-axis strain analysis in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2021;23(1):36.CrossRefPubMedPubMedCentral Yang F, Wang L, Wang J, Pu L, Xu Y, Li W, et al. Prognostic value of fast semi-automated left atrial long-axis strain analysis in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2021;23(1):36.CrossRefPubMedPubMedCentral
9.
go back to reference Kermer J, Traber J, Utz W, Hennig P, Menza M, Jung B, et al. Assessment of diastolic dysfunction: comparison of different cardiovascular magnetic resonance techniques. ESC Heart Fail. 2020;7(5):2637–49.CrossRefPubMedPubMedCentral Kermer J, Traber J, Utz W, Hennig P, Menza M, Jung B, et al. Assessment of diastolic dysfunction: comparison of different cardiovascular magnetic resonance techniques. ESC Heart Fail. 2020;7(5):2637–49.CrossRefPubMedPubMedCentral
10.
go back to reference Nielsen AB, Skaarup KG, Hauser R, Johansen ND, Lassen MCH, Jensen GB, et al. Normal values and reference ranges for left atrial strain by speckle-tracking echocardiography: the Copenhagen City Heart Study. Eur Heart J Cardiovasc Imaging. 2021;23(1):42–51.CrossRefPubMed Nielsen AB, Skaarup KG, Hauser R, Johansen ND, Lassen MCH, Jensen GB, et al. Normal values and reference ranges for left atrial strain by speckle-tracking echocardiography: the Copenhagen City Heart Study. Eur Heart J Cardiovasc Imaging. 2021;23(1):42–51.CrossRefPubMed
11.
go back to reference Leischik R, Littwitz H, Dworrak B, Garg P, Zhu M, Sahn DJ, et al. Echocardiographic evaluation of left atrial mechanics: function, history, novel techniques, advantages, and pitfalls. Biomed Res Int. 2015;2015: 765921.CrossRefPubMedPubMedCentral Leischik R, Littwitz H, Dworrak B, Garg P, Zhu M, Sahn DJ, et al. Echocardiographic evaluation of left atrial mechanics: function, history, novel techniques, advantages, and pitfalls. Biomed Res Int. 2015;2015: 765921.CrossRefPubMedPubMedCentral
12.
go back to reference Leng S, Tan RS, Zhao X, Allen JC, Koh AS, Zhong L. Validation of a rapid semi-automated method to assess left atrial longitudinal phasic strains on cine cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson. 2018;20(1):71.CrossRefPubMedPubMedCentral Leng S, Tan RS, Zhao X, Allen JC, Koh AS, Zhong L. Validation of a rapid semi-automated method to assess left atrial longitudinal phasic strains on cine cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson. 2018;20(1):71.CrossRefPubMedPubMedCentral
13.
go back to reference Truong VT, Palmer C, Wolking S, Sheets B, Young M, Ngo TNM, et al. Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers. Eur Heart J Cardiovasc Imaging. 2020;21(4):446–53.PubMed Truong VT, Palmer C, Wolking S, Sheets B, Young M, Ngo TNM, et al. Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers. Eur Heart J Cardiovasc Imaging. 2020;21(4):446–53.PubMed
14.
go back to reference Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson. 2016;18(1):51.CrossRefPubMedPubMedCentral Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson. 2016;18(1):51.CrossRefPubMedPubMedCentral
15.
go back to reference Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging. 2019;20(6):605–19.CrossRefPubMedPubMedCentral Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging. 2019;20(6):605–19.CrossRefPubMedPubMedCentral
16.
go back to reference Rosner A, Barbosa D, Aarsaether E, Kjonas D, Schirmer H, D’Hooge J. The influence of frame rate on two-dimensional speckle-tracking strain measurements: a study on silico-simulated models and images recorded in patients. Eur Heart J Cardiovasc Imaging. 2015;16(10):1137–47.CrossRefPubMed Rosner A, Barbosa D, Aarsaether E, Kjonas D, Schirmer H, D’Hooge J. The influence of frame rate on two-dimensional speckle-tracking strain measurements: a study on silico-simulated models and images recorded in patients. Eur Heart J Cardiovasc Imaging. 2015;16(10):1137–47.CrossRefPubMed
17.
go back to reference Yang W, Li H, He J, Yin G, An J, Forman C, et al. Left ventricular strain measurements derived from MR feature tracking: a head-to-head comparison of a higher temporal resolution method with a conventional method. J Magn Reson Imaging. 2022;56(3):801–11.CrossRefPubMed Yang W, Li H, He J, Yin G, An J, Forman C, et al. Left ventricular strain measurements derived from MR feature tracking: a head-to-head comparison of a higher temporal resolution method with a conventional method. J Magn Reson Imaging. 2022;56(3):801–11.CrossRefPubMed
18.
go back to reference Backhaus SJ, Metschies G, Billing M, Schmidt-Rimpler J, Kowallick JT, Gertz RJ, et al. Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking. J Cardiovasc Magn Reson. 2021;23(1):60.CrossRefPubMedPubMedCentral Backhaus SJ, Metschies G, Billing M, Schmidt-Rimpler J, Kowallick JT, Gertz RJ, et al. Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking. J Cardiovasc Magn Reson. 2021;23(1):60.CrossRefPubMedPubMedCentral
19.
go back to reference Goebel J, Nensa F, Schemuth HP, Maderwald S, Gratz M, Quick HH, et al. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function. J Magn Reson Imaging. 2016;44(2):366–74.CrossRefPubMed Goebel J, Nensa F, Schemuth HP, Maderwald S, Gratz M, Quick HH, et al. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function. J Magn Reson Imaging. 2016;44(2):366–74.CrossRefPubMed
20.
go back to reference Bustin A, Fuin N, Botnar RM, Prieto C. From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front Cardiovasc Med. 2020;7:17.CrossRefPubMedPubMedCentral Bustin A, Fuin N, Botnar RM, Prieto C. From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front Cardiovasc Med. 2020;7:17.CrossRefPubMedPubMedCentral
21.
go back to reference Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, et al. Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magn Reson Med. 2013;70(2):504–16.CrossRefPubMed Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, et al. Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magn Reson Med. 2013;70(2):504–16.CrossRefPubMed
22.
go back to reference Vincenti G, Monney P, Chaptinel J, Rutz T, Coppo S, Zenge MO, et al. Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. JACC Cardiovasc Imaging. 2014;7(9):882–92.CrossRefPubMed Vincenti G, Monney P, Chaptinel J, Rutz T, Coppo S, Zenge MO, et al. Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. JACC Cardiovasc Imaging. 2014;7(9):882–92.CrossRefPubMed
23.
go back to reference Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, et al. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson. 2016;18(1):50.CrossRefPubMedPubMedCentral Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, et al. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson. 2016;18(1):50.CrossRefPubMedPubMedCentral
24.
go back to reference Altmann S, Halfmann MC, Abidoye I, Yacoub B, Schmidt M, Wenzel P, et al. Compressed sensing acceleration of cardiac cine imaging allows reliable and reproducible assessment of volumetric and functional parameters of the left and right atrium. Eur Radiol. 2021;31(10):7219–30.CrossRefPubMedPubMedCentral Altmann S, Halfmann MC, Abidoye I, Yacoub B, Schmidt M, Wenzel P, et al. Compressed sensing acceleration of cardiac cine imaging allows reliable and reproducible assessment of volumetric and functional parameters of the left and right atrium. Eur Radiol. 2021;31(10):7219–30.CrossRefPubMedPubMedCentral
25.
go back to reference Chen Y, Qian W, Liu W, Zhu Y, Zhou X, Xu Y, et al. Feasibility of single-shot compressed sensing cine imaging for analysis of left ventricular function and strain in cardiac MRI. Clin Radiol. 2021;76(6):471e1-e7.CrossRef Chen Y, Qian W, Liu W, Zhu Y, Zhou X, Xu Y, et al. Feasibility of single-shot compressed sensing cine imaging for analysis of left ventricular function and strain in cardiac MRI. Clin Radiol. 2021;76(6):471e1-e7.CrossRef
26.
go back to reference Kido T, Hirai K, Ogawa R, Tanabe Y, Nakamura M, Kawaguchi N, et al. Comparison between conventional and compressed sensing cine cardiovascular magnetic resonance for feature tracking global circumferential strain assessment. J Cardiovasc Magn Reson. 2021;23(1):10.CrossRefPubMedPubMedCentral Kido T, Hirai K, Ogawa R, Tanabe Y, Nakamura M, Kawaguchi N, et al. Comparison between conventional and compressed sensing cine cardiovascular magnetic resonance for feature tracking global circumferential strain assessment. J Cardiovasc Magn Reson. 2021;23(1):10.CrossRefPubMedPubMedCentral
27.
go back to reference Alfuhied A, Marrow BA, Elfawal S, Gulsin GS, Graham-Brown MP, Steadman CD, et al. Reproducibility of left atrial function using cardiac magnetic resonance imaging. Eur Radiol. 2021;31(5):2788–97.CrossRefPubMed Alfuhied A, Marrow BA, Elfawal S, Gulsin GS, Graham-Brown MP, Steadman CD, et al. Reproducibility of left atrial function using cardiac magnetic resonance imaging. Eur Radiol. 2021;31(5):2788–97.CrossRefPubMed
28.
go back to reference Kowallick JT, Morton G, Lamata P, Jogiya R, Kutty S, Hasenfuss G, et al. Quantification of atrial dynamics using cardiovascular magnetic resonance: inter-study reproducibility. J Cardiovasc Magn Reson. 2015;17:36.CrossRefPubMedPubMedCentral Kowallick JT, Morton G, Lamata P, Jogiya R, Kutty S, Hasenfuss G, et al. Quantification of atrial dynamics using cardiovascular magnetic resonance: inter-study reproducibility. J Cardiovasc Magn Reson. 2015;17:36.CrossRefPubMedPubMedCentral
29.
go back to reference Peters DC, Lamy J, Sinusas AJ, Baldassarre LA. Left atrial evaluation by cardiovascular magnetic resonance: sensitive and unique biomarkers. Eur Heart J Cardiovasc Imaging. 2021;23(1):14–30.CrossRefPubMedPubMedCentral Peters DC, Lamy J, Sinusas AJ, Baldassarre LA. Left atrial evaluation by cardiovascular magnetic resonance: sensitive and unique biomarkers. Eur Heart J Cardiovasc Imaging. 2021;23(1):14–30.CrossRefPubMedPubMedCentral
30.
go back to reference Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRefPubMedPubMedCentral Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.CrossRefPubMedPubMedCentral
31.
go back to reference de Siqueira ME, Pozo E, Fernandes VR, Sengupta PP, Modesto K, Gupta SS, et al. Characterization and clinical significance of right ventricular mechanics in pulmonary hypertension evaluated with cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson. 2016;18(1):39.CrossRefPubMedPubMedCentral de Siqueira ME, Pozo E, Fernandes VR, Sengupta PP, Modesto K, Gupta SS, et al. Characterization and clinical significance of right ventricular mechanics in pulmonary hypertension evaluated with cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson. 2016;18(1):39.CrossRefPubMedPubMedCentral
32.
go back to reference Weidemann F, Jamal F, Sutherland GR, Claus P, Kowalski M, Hatle L, et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol. 2002;283(2):H792–9.CrossRefPubMed Weidemann F, Jamal F, Sutherland GR, Claus P, Kowalski M, Hatle L, et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol. 2002;283(2):H792–9.CrossRefPubMed
33.
go back to reference Vermersch M, Longere B, Coisne A, Schmidt M, Forman C, Monnet A, et al. Compressed sensing real-time cine imaging for assessment of ventricular function, volumes and mass in clinical practice. Eur Radiol. 2020;30(1):609–19.CrossRefPubMed Vermersch M, Longere B, Coisne A, Schmidt M, Forman C, Monnet A, et al. Compressed sensing real-time cine imaging for assessment of ventricular function, volumes and mass in clinical practice. Eur Radiol. 2020;30(1):609–19.CrossRefPubMed
34.
go back to reference Guyton C (2006) Textbook of medical physiology, 11th edn. Elsevier Saunders, pp 106–106 Guyton C (2006) Textbook of medical physiology, 11th edn. Elsevier Saunders, pp 106–106
35.
go back to reference Hou J, Yu HK, Wong SJ, Cheung YF. Atrial mechanics after surgical repair of tetralogy of Fallot. Echocardiography. 2015;32(1):126–34.CrossRefPubMed Hou J, Yu HK, Wong SJ, Cheung YF. Atrial mechanics after surgical repair of tetralogy of Fallot. Echocardiography. 2015;32(1):126–34.CrossRefPubMed
Metadata
Title
Compressed sensing cine imaging with higher temporal resolution for analysis of left atrial strain and strain rate by cardiac magnetic resonance feature tracking
Authors
Jingyu Zhang
Ziqi Xiong
Di Tian
Shuai Hu
Qingwei Song
Zhiyong Li
Publication date
17-04-2023
Publisher
Springer Nature Singapore
Published in
Japanese Journal of Radiology / Issue 10/2023
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-023-01433-y

Other articles of this Issue 10/2023

Japanese Journal of Radiology 10/2023 Go to the issue