Skip to main content
Top
Published in: Japanese Journal of Radiology 3/2019

01-03-2019 | Technical Note

Can the spherical gold standards be used as an alternative to painted gold standards for the computerized detection of lesions using voxel-based classification?

Authors: Yukihiro Nomura, Naoto Hayashi, Shouhei Hanaoka, Tomomi Takenaga, Mitsutaka Nemoto, Soichiro Miki, Takeharu Yoshikawa, Osamu Abe

Published in: Japanese Journal of Radiology | Issue 3/2019

Login to get access

Abstract

Purpose

For the development of computer-assisted detection (CAD) software using voxel-based classification, gold standards defined by pixel-by-pixel painting, called painted gold standards, are desirable. However, for radiologists who define gold standards, a simplified method of definition is desirable. One of the simplest methods of defining gold standards is a spherical region, called a spherical gold standard. In this study, we investigated whether spherical gold standards can be used as an alternative to painted gold standards for computerized detection using voxel-based classification.

Materials and methods

The spherical gold standards were determined by the center of gravity and the maximum diameter. We compared two types of gold standard, painted gold standards and spherical gold standards, by two types of CAD software using voxel-based classification.

Results

The time required to paint the area of one lesion was 4.7–6.5 times longer than the time required to define a spherical gold standard. For the same performance of the CAD software, the number of training cases required for the spherical gold standard was 1.6–7.6 times that for the painted gold standards.

Conclusion

Spherical gold standards can be used as an alternative to painted gold standards for the computerized detection of lesions with simple shapes.
Appendix
Available only for authorised users
Footnotes
1
The parameters of the DoG, shape index, dot enhancement filter, line enhancement filter, and vessel enhancement filter are the same as those in the voxel-based classification.
 
Literature
1.
go back to reference Masutani Y, Nemoto M, Nomura Y, Hayashi N. Clinical machine learning in action: CAD system design, development, tuning, and long-term experience. In: Suzuki K, editor. Machine learning in computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012. p. 159–76.CrossRef Masutani Y, Nemoto M, Nomura Y, Hayashi N. Clinical machine learning in action: CAD system design, development, tuning, and long-term experience. In: Suzuki K, editor. Machine learning in computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012. p. 159–76.CrossRef
2.
go back to reference Suzuki K. A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol. 2009;54:S31–45.CrossRefPubMedPubMedCentral Suzuki K. A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Phys Med Biol. 2009;54:S31–45.CrossRefPubMedPubMedCentral
3.
go back to reference Nomura Y, Masutani Y, Miki S, et al. Performance improvement in computerized detection of cerebral aneurysms by retraining classifier using feedback data collected in routine reading environment. J Biomed Graph Comput. 2014;4(4):12–21. Nomura Y, Masutani Y, Miki S, et al. Performance improvement in computerized detection of cerebral aneurysms by retraining classifier using feedback data collected in routine reading environment. J Biomed Graph Comput. 2014;4(4):12–21.
4.
go back to reference Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging. 2016;35:1182–95.CrossRef Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging. 2016;35:1182–95.CrossRef
5.
go back to reference Debats OA, Meijs M, Litjens GJ, Huisman HJ. Automated multistructure atlas-assisted detection of lymph nodes using pelvic MR lymphography in prostate cancer patients. Med Phys. 2016;43:3132–42.CrossRefPubMed Debats OA, Meijs M, Litjens GJ, Huisman HJ. Automated multistructure atlas-assisted detection of lymph nodes using pelvic MR lymphography in prostate cancer patients. Med Phys. 2016;43:3132–42.CrossRefPubMed
6.
go back to reference Hamidian S, Sahiner B, Petrick N, Pezeshk A. 3D convolutional neural network for automatic detection of lung nodules in chest CT. Proc SPIE (Med Imaging). 2017;10134:1013409.CrossRef Hamidian S, Sahiner B, Petrick N, Pezeshk A. 3D convolutional neural network for automatic detection of lung nodules in chest CT. Proc SPIE (Med Imaging). 2017;10134:1013409.CrossRef
7.
go back to reference Nemoto M, Hayashi N, Hanaoka S, Nomura Y, Miki S, Yoshikawa T. Feasibility study of a generalized framework for developing computer-aided detection systems-a new paradigm. J Digit Imaging. 2017;30:629–39.CrossRefPubMedPubMedCentral Nemoto M, Hayashi N, Hanaoka S, Nomura Y, Miki S, Yoshikawa T. Feasibility study of a generalized framework for developing computer-aided detection systems-a new paradigm. J Digit Imaging. 2017;30:629–39.CrossRefPubMedPubMedCentral
8.
go back to reference Armato SG 3rd, McLennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38:915–31.CrossRefPubMedPubMedCentral Armato SG 3rd, McLennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38:915–31.CrossRefPubMedPubMedCentral
9.
go back to reference van Ginneken B, Armato SG 3rd, de Hoop B, et al. Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Med Image Anal. 2010;14:707–22.CrossRefPubMed van Ginneken B, Armato SG 3rd, de Hoop B, et al. Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Med Image Anal. 2010;14:707–22.CrossRefPubMed
10.
go back to reference Kuhnigk JM, Dicken V, Bornemann L, et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging. 2006;25(4):417–34.CrossRefPubMed Kuhnigk JM, Dicken V, Bornemann L, et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging. 2006;25(4):417–34.CrossRefPubMed
11.
go back to reference Diciotti S, Picozzi G, Falchini M, Mascalchi M, Villari N, Valli G. 3-D segmentation algorithm of small lung nodules in spiral CT images. IEEE Trans Inf Technol Biomed. 2008;12(1):7–19.CrossRefPubMed Diciotti S, Picozzi G, Falchini M, Mascalchi M, Villari N, Valli G. 3-D segmentation algorithm of small lung nodules in spiral CT images. IEEE Trans Inf Technol Biomed. 2008;12(1):7–19.CrossRefPubMed
12.
go back to reference Lassen BC, Jacobs C, Kuhnigk JM, van Ginneken B, van Rikxoort EM. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Phys Med Biol. 2015;60(3):1307–23.CrossRefPubMed Lassen BC, Jacobs C, Kuhnigk JM, van Ginneken B, van Rikxoort EM. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Phys Med Biol. 2015;60(3):1307–23.CrossRefPubMed
13.
go back to reference Schapire RE, Freund Y, Bartlett P, Lee WS. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat. 1998;26:1651–86.CrossRef Schapire RE, Freund Y, Bartlett P, Lee WS. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat. 1998;26:1651–86.CrossRef
14.
go back to reference Iba W, Langley P. Induction of one-level decision trees. In: Proceedings of international conference on machine learning (ICML 1992). 1992. pp. 233–240. Iba W, Langley P. Induction of one-level decision trees. In: Proceedings of international conference on machine learning (ICML 1992). 1992. pp. 233–240.
15.
go back to reference Dorai C, Jain AK. COSMOS-a representation scheme for 3D free-form objects. IEEE Trans Pattern Anal Mach Intell. 1997;19:1115–30.CrossRef Dorai C, Jain AK. COSMOS-a representation scheme for 3D free-form objects. IEEE Trans Pattern Anal Mach Intell. 1997;19:1115–30.CrossRef
16.
go back to reference Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys. 2003;30:2040–51.CrossRefPubMed Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys. 2003;30:2040–51.CrossRefPubMed
17.
go back to reference Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. MICCAI’98 LNCS. 1998;1496:130–137. Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. MICCAI’98 LNCS. 1998;1496:130–137.
18.
go back to reference Nomura Y, Nemoto M, Masutani Y, et al. Reduction of false positives at vessel bifurcations in computerized detection of lung nodules. J Biomed Graph Comput. 2014;4(3):36–46. Nomura Y, Nemoto M, Masutani Y, et al. Reduction of false positives at vessel bifurcations in computerized detection of lung nodules. J Biomed Graph Comput. 2014;4(3):36–46.
19.
go back to reference te Brake GM, Karssemeijer N, Hendriks JHCL. An automatic method to discriminate malignant masses from normal tissue in digital mammograms. Phys Med Biol. 2000;45:2843–57.CrossRef te Brake GM, Karssemeijer N, Hendriks JHCL. An automatic method to discriminate malignant masses from normal tissue in digital mammograms. Phys Med Biol. 2000;45:2843–57.CrossRef
20.
go back to reference Hanaoka S, Nomura Y, Nemoto M, et al. HoTPiG: a novel geometrical feature for vessel morphometry and its application to cerebral aneurysm detection. MICCAI Part II LNCS. 2015;2015(9350):103–10. Hanaoka S, Nomura Y, Nemoto M, et al. HoTPiG: a novel geometrical feature for vessel morphometry and its application to cerebral aneurysm detection. MICCAI Part II LNCS. 2015;2015(9350):103–10.
21.
22.
go back to reference Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.CrossRef Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.CrossRef
23.
go back to reference Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;PAMI-8:679–98.CrossRef Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;PAMI-8:679–98.CrossRef
24.
go back to reference Gu L, Peters T. 3D segmentation of medical images using a fast multistage hybrid algorithm. Int J Comput Assist Radiol Surg. 2006;1:23–31.CrossRef Gu L, Peters T. 3D segmentation of medical images using a fast multistage hybrid algorithm. Int J Comput Assist Radiol Surg. 2006;1:23–31.CrossRef
Metadata
Title
Can the spherical gold standards be used as an alternative to painted gold standards for the computerized detection of lesions using voxel-based classification?
Authors
Yukihiro Nomura
Naoto Hayashi
Shouhei Hanaoka
Tomomi Takenaga
Mitsutaka Nemoto
Soichiro Miki
Takeharu Yoshikawa
Osamu Abe
Publication date
01-03-2019
Publisher
Springer Japan
Published in
Japanese Journal of Radiology / Issue 3/2019
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-018-0784-6

Other articles of this Issue 3/2019

Japanese Journal of Radiology 3/2019 Go to the issue