Skip to main content
Top
Published in: Japanese Journal of Radiology 9/2018

01-09-2018 | Review

Imaging findings in radiation therapy complications of the central nervous system

Authors: Tomonori Kanda, Yuichi Wakabayashi, Feibi Zeng, Yoshiko Ueno, Keitaro Sofue, Takaki Maeda, Munenobu Nogami, Takamichi Murakami

Published in: Japanese Journal of Radiology | Issue 9/2018

Login to get access

Abstract

Radiation therapy is a useful treatment for tumors and vascular malformations of the central nervous system. Radiation therapy is associated with complications, including leukoencephalopathy, radiation necrosis, vasculopathy, and optic neuropathy. Secondary tumors are also often seen long after radiation therapy. Secondary tumors are often benign tumors, such as hemangiomas and meningiomas, but sometimes malignant gliomas and soft tissue sarcomas emerge. We review the imaging findings of complications that may occur after brain radiation therapy.
Literature
1.
go back to reference Tofilon PJ, Fike JR. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 2000;153:357–70.CrossRefPubMed Tofilon PJ, Fike JR. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 2000;153:357–70.CrossRefPubMed
2.
go back to reference Rogers LR. Neurologic complications of radiation. Continuum (Minneap Minn). 2012;18:343–54. Rogers LR. Neurologic complications of radiation. Continuum (Minneap Minn). 2012;18:343–54.
3.
go back to reference Hoeffner EG. Central nervous system complications of oncologic therapy. Hematol Oncol Clin North Am. 2016;30:899–920.CrossRefPubMed Hoeffner EG. Central nervous system complications of oncologic therapy. Hematol Oncol Clin North Am. 2016;30:899–920.CrossRefPubMed
4.
go back to reference Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. Lancet. 2009;374:1639–51.CrossRefPubMed Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. Lancet. 2009;374:1639–51.CrossRefPubMed
5.
go back to reference Ebi J, Sato H, Nakajima M, Shishido F, et al. Incidence of leukoencephalopathy after whole-brain radiation therapy for brain metastases. Int J Radiat Oncol Biol Phys. 2013;85:1212–7.CrossRefPubMed Ebi J, Sato H, Nakajima M, Shishido F, et al. Incidence of leukoencephalopathy after whole-brain radiation therapy for brain metastases. Int J Radiat Oncol Biol Phys. 2013;85:1212–7.CrossRefPubMed
6.
go back to reference Zhong X, Huang B, Feng J, Yang W, Liu H. Delayed leukoencephalopathy of non-small cell lung cancer patients with brain metastases underwent whole brain radiation therapy. J Neurooncol. 2015;125:177–81.CrossRefPubMed Zhong X, Huang B, Feng J, Yang W, Liu H. Delayed leukoencephalopathy of non-small cell lung cancer patients with brain metastases underwent whole brain radiation therapy. J Neurooncol. 2015;125:177–81.CrossRefPubMed
8.
go back to reference Kohutek ZA, Yamada Y, Chan TA, Brennan CW, Tabar V, Gutin PH, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 2015;125:149–56.CrossRefPubMedPubMedCentral Kohutek ZA, Yamada Y, Chan TA, Brennan CW, Tabar V, Gutin PH, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 2015;125:149–56.CrossRefPubMedPubMedCentral
9.
go back to reference Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377–84.CrossRefPubMed Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377–84.CrossRefPubMed
10.
go back to reference Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol. 2005;26:1967–72.PubMed Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol. 2005;26:1967–72.PubMed
11.
go back to reference Rogers LR, Gutierrez J, Scarpace L, Schultz L, Ryu S, Lord B, Movsas B, et al. Morphologic magnetic resonance imaging features of therapy-induced cerebral necrosis. J Neurooncol. 2011;101:25–32.CrossRefPubMed Rogers LR, Gutierrez J, Scarpace L, Schultz L, Ryu S, Lord B, Movsas B, et al. Morphologic magnetic resonance imaging features of therapy-induced cerebral necrosis. J Neurooncol. 2011;101:25–32.CrossRefPubMed
12.
go back to reference Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26:1455–60.PubMed Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26:1455–60.PubMed
13.
go back to reference Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25:201–9.PubMed Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25:201–9.PubMed
14.
go back to reference Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30:552–8.CrossRefPubMed Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30:552–8.CrossRefPubMed
15.
go back to reference Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21:901–9.PubMed Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21:901–9.PubMed
16.
17.
go back to reference Weybright P, Sundgren PC, Maly P, Hassan DG, Nan B, Rohrer S, et al. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol. 2005;185:1471–6.CrossRefPubMed Weybright P, Sundgren PC, Maly P, Hassan DG, Nan B, Rohrer S, et al. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol. 2005;185:1471–6.CrossRefPubMed
18.
go back to reference Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40:615–35.CrossRefPubMed Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40:615–35.CrossRefPubMed
19.
go back to reference Tomura N, Kokubun M, Saginoya T, Mizuno Y, Kikuchi Y. Differentiation between treatment-induced necrosis and recurrent tumors in patients with metastatic brain tumors: comparison among 11C-Methionine-PET, FDG-PET, MR permeability imaging, and MRI-ADC-preliminary results. AJNR Am J Neuroradiol. 2017;38:1520–7.CrossRefPubMed Tomura N, Kokubun M, Saginoya T, Mizuno Y, Kikuchi Y. Differentiation between treatment-induced necrosis and recurrent tumors in patients with metastatic brain tumors: comparison among 11C-Methionine-PET, FDG-PET, MR permeability imaging, and MRI-ADC-preliminary results. AJNR Am J Neuroradiol. 2017;38:1520–7.CrossRefPubMed
20.
go back to reference Kim YH, Oh SW, Lim YJ, Park CK, Lee SH, Kang KW, et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg. 2010;112:758–65.CrossRefPubMed Kim YH, Oh SW, Lim YJ, Park CK, Lee SH, Kang KW, et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg. 2010;112:758–65.CrossRefPubMed
21.
go back to reference Kano H, Kondziolka D, Lobato-Polo J, Zorro O, Flickinger JC, Lunsford LD. T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neurosurgery. 2010;66:486–91.CrossRefPubMed Kano H, Kondziolka D, Lobato-Polo J, Zorro O, Flickinger JC, Lunsford LD. T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neurosurgery. 2010;66:486–91.CrossRefPubMed
22.
go back to reference Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453–61.CrossRefPubMed Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453–61.CrossRefPubMed
23.
go back to reference Young RJ, Gupta A, Shah AD, Graber JJ, Zhang Z, Shi W, et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology. 2011;76:1918–24.CrossRefPubMedPubMedCentral Young RJ, Gupta A, Shah AD, Graber JJ, Zhang Z, Shi W, et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology. 2011;76:1918–24.CrossRefPubMedPubMedCentral
24.
go back to reference Murphy ES, Xie H, Merchant TE, Yu JS, Chao ST, Suh JH. Review of cranial radiotherapy-induced vasculopathy. J Neurooncol. 2015;122:421–9.CrossRefPubMed Murphy ES, Xie H, Merchant TE, Yu JS, Chao ST, Suh JH. Review of cranial radiotherapy-induced vasculopathy. J Neurooncol. 2015;122:421–9.CrossRefPubMed
25.
go back to reference Zhou L, Xing P, Zou L, Shen J, Tian Y, Lu X. Middle cerebral artery stenosis in patients with nasopharyngeal carcinoma after radiotherapy: the incidence of stenosis and the risk factors. Br J Radiol. 2016;89:20150815.CrossRefPubMedPubMedCentral Zhou L, Xing P, Zou L, Shen J, Tian Y, Lu X. Middle cerebral artery stenosis in patients with nasopharyngeal carcinoma after radiotherapy: the incidence of stenosis and the risk factors. Br J Radiol. 2016;89:20150815.CrossRefPubMedPubMedCentral
26.
go back to reference Kralik SF, Watson GA, Shih CS, Ho CY, Finke W, Buchsbaum J. Radiation-induced large vessel cerebral vasculopathy in pediatric patients with brain tumors treated with proton radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99:817–24.CrossRefPubMed Kralik SF, Watson GA, Shih CS, Ho CY, Finke W, Buchsbaum J. Radiation-induced large vessel cerebral vasculopathy in pediatric patients with brain tumors treated with proton radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99:817–24.CrossRefPubMed
27.
go back to reference Gujral DM, Chahal N, Senior R, Harrington KJ, Nutting CM. Radiation-induced carotid artery atherosclerosis. Radiother Oncol. 2014;110:31–8.CrossRefPubMed Gujral DM, Chahal N, Senior R, Harrington KJ, Nutting CM. Radiation-induced carotid artery atherosclerosis. Radiother Oncol. 2014;110:31–8.CrossRefPubMed
28.
go back to reference Sattler MG, Vroomen PC, Sluiter WJ, Schers HJ, van den Berg G, Langendijk JA, et al. Incidence, causative mechanisms, and anatomic localization of stroke in pituitary adenoma patients treated with postoperative radiation therapy versus surgery alone. Int J Radiat Oncol Biol Phys. 2013;87:53–9.CrossRefPubMed Sattler MG, Vroomen PC, Sluiter WJ, Schers HJ, van den Berg G, Langendijk JA, et al. Incidence, causative mechanisms, and anatomic localization of stroke in pituitary adenoma patients treated with postoperative radiation therapy versus surgery alone. Int J Radiat Oncol Biol Phys. 2013;87:53–9.CrossRefPubMed
29.
go back to reference Davis PC, Hoffman JC Jr, Pearl GS, Braun IF. CT evaluation of effects of cranial radiation therapy in children. AJR Am J Roentgenol. 1986;147:587–92.CrossRefPubMed Davis PC, Hoffman JC Jr, Pearl GS, Braun IF. CT evaluation of effects of cranial radiation therapy in children. AJR Am J Roentgenol. 1986;147:587–92.CrossRefPubMed
30.
go back to reference Srinivasan KG, Ramprabananth S, Ushanandhini KP, Srividya S, Praveen Kumar M. Radiation-induced mineralizing microangiopathy in a case of recurrent craniopharyngioma. A case report. Neuroradiol J. 2010;23:412–5.CrossRefPubMed Srinivasan KG, Ramprabananth S, Ushanandhini KP, Srividya S, Praveen Kumar M. Radiation-induced mineralizing microangiopathy in a case of recurrent craniopharyngioma. A case report. Neuroradiol J. 2010;23:412–5.CrossRefPubMed
31.
go back to reference Kikuchi A, Maeda M, Hanada R, Okimoto Y, Ishimoto K, Kaneko T, et al. Moyamoya syndrome following childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;48:268–72.CrossRefPubMed Kikuchi A, Maeda M, Hanada R, Okimoto Y, Ishimoto K, Kaneko T, et al. Moyamoya syndrome following childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;48:268–72.CrossRefPubMed
32.
go back to reference Desai SS, Paulino AC, Mai WY, Teh BS. Radiation-induced moyamoya syndrome. Int J Radiat Oncol Biol Phys. 2006;65:1222–7.CrossRefPubMed Desai SS, Paulino AC, Mai WY, Teh BS. Radiation-induced moyamoya syndrome. Int J Radiat Oncol Biol Phys. 2006;65:1222–7.CrossRefPubMed
33.
34.
go back to reference Ferguson I, Huecker J, Huang J, McClelland C, Van Stavern G. Risk factors for radiation-induced optic neuropathy: a case-control study. Clin Exp Ophthalmol. 2017;45:592–7.CrossRefPubMedPubMedCentral Ferguson I, Huecker J, Huang J, McClelland C, Van Stavern G. Risk factors for radiation-induced optic neuropathy: a case-control study. Clin Exp Ophthalmol. 2017;45:592–7.CrossRefPubMedPubMedCentral
35.
go back to reference Vinchon M, Leblond P, Caron S, Delestret I, Baroncini M, Coche B. Radiation-induced tumors in children irradiated for brain tumor: a longitudinal study. Childs Nerv Syst. 2011;27:445–53.CrossRefPubMed Vinchon M, Leblond P, Caron S, Delestret I, Baroncini M, Coche B. Radiation-induced tumors in children irradiated for brain tumor: a longitudinal study. Childs Nerv Syst. 2011;27:445–53.CrossRefPubMed
36.
go back to reference Yamanaka R, Hayano A, Kanayama T. Radiation-induced meningiomas: an exhaustive review of the literature. World Neurosurg. 2017;97:635–44.CrossRefPubMed Yamanaka R, Hayano A, Kanayama T. Radiation-induced meningiomas: an exhaustive review of the literature. World Neurosurg. 2017;97:635–44.CrossRefPubMed
37.
go back to reference Umansky F, Shoshan Y, Rosenthal G, Fraifeld S, Spektor S. Radiation-induced meningioma. Neurosurg Focus. 2008;24:E7.CrossRefPubMed Umansky F, Shoshan Y, Rosenthal G, Fraifeld S, Spektor S. Radiation-induced meningioma. Neurosurg Focus. 2008;24:E7.CrossRefPubMed
38.
go back to reference Di Giannatale A, Morana G, Rossi A, Cama A, Bertoluzzo L, Barra S. Natural history of cavernous malformations in children with brain tumors treated with radiotherapy and chemotherapy. J Neurooncol. 2014;117:311–20.CrossRefPubMed Di Giannatale A, Morana G, Rossi A, Cama A, Bertoluzzo L, Barra S. Natural history of cavernous malformations in children with brain tumors treated with radiotherapy and chemotherapy. J Neurooncol. 2014;117:311–20.CrossRefPubMed
39.
go back to reference Strenger V, Sovinz P, Lackner H, Dornbusch HJ, Lingitz H, Eder HG, et al. Intracerebral cavernous hemangioma after cranial irradiation in childhood. Incidence and risk factors. Strahlenther Onkol. 2008;184:276–80.CrossRefPubMed Strenger V, Sovinz P, Lackner H, Dornbusch HJ, Lingitz H, Eder HG, et al. Intracerebral cavernous hemangioma after cranial irradiation in childhood. Incidence and risk factors. Strahlenther Onkol. 2008;184:276–80.CrossRefPubMed
40.
go back to reference Koike T, Yanagimachi N, Ishiguro H, Yabe H, Yabe M, Morimoto T, et al. High incidence of radiation-induced cavernous hemangioma in long-term survivors who underwent hematopoietic stem cell transplantation with radiation therapy during childhood or adolescence. Biol Blood Marrow Transplant. 2012;18:1090–8.CrossRefPubMed Koike T, Yanagimachi N, Ishiguro H, Yabe H, Yabe M, Morimoto T, et al. High incidence of radiation-induced cavernous hemangioma in long-term survivors who underwent hematopoietic stem cell transplantation with radiation therapy during childhood or adolescence. Biol Blood Marrow Transplant. 2012;18:1090–8.CrossRefPubMed
41.
go back to reference Yamanaka R, Hayano A, Kanayama T. Radiation-induced gliomas: a comprehensive review and meta-analysis. Neurosurg Rev. 2016 Oct 5. [Epub ahead of print]. Yamanaka R, Hayano A, Kanayama T. Radiation-induced gliomas: a comprehensive review and meta-analysis. Neurosurg Rev. 2016 Oct 5. [Epub ahead of print].
42.
go back to reference Elsamadicy AA, Babu R, Kirkpatrick JP, Adamson DC. Radiation-induced malignant gliomas: a current review. World Neurosurg. 2015;83:530–42.CrossRefPubMed Elsamadicy AA, Babu R, Kirkpatrick JP, Adamson DC. Radiation-induced malignant gliomas: a current review. World Neurosurg. 2015;83:530–42.CrossRefPubMed
43.
go back to reference Salvati M, Frati A, Russo N, Caroli E, Polli FM, Minniti G, et al. Radiation-induced gliomas: report of 10 cases and review of the literature. Surg Neurol. 2003;60:60–7.CrossRefPubMed Salvati M, Frati A, Russo N, Caroli E, Polli FM, Minniti G, et al. Radiation-induced gliomas: report of 10 cases and review of the literature. Surg Neurol. 2003;60:60–7.CrossRefPubMed
44.
go back to reference Yamanaka R, Hayano A. Radiation-induced sarcomas of the central nervous system: a systematic review. World Neurosurg. 2017;98(818–828):e7. Yamanaka R, Hayano A. Radiation-induced sarcomas of the central nervous system: a systematic review. World Neurosurg. 2017;98(818–828):e7.
45.
go back to reference Koshy M, Paulino AC, Mai WY, Teh BS. Radiation-induced osteosarcomas in the pediatric population. Int J Radiat Oncol Biol Phys. 2005;63:1169–74.CrossRefPubMed Koshy M, Paulino AC, Mai WY, Teh BS. Radiation-induced osteosarcomas in the pediatric population. Int J Radiat Oncol Biol Phys. 2005;63:1169–74.CrossRefPubMed
46.
go back to reference Debnam JM, Guha-Thakurta N, Mahfouz YM, Garden AS, Benjamin RS, Sturgis EM, et al. Radiation-associated head and neck sarcomas: spectrum of imaging findings. Oral Oncol. 2012;48:155–61.CrossRefPubMed Debnam JM, Guha-Thakurta N, Mahfouz YM, Garden AS, Benjamin RS, Sturgis EM, et al. Radiation-associated head and neck sarcomas: spectrum of imaging findings. Oral Oncol. 2012;48:155–61.CrossRefPubMed
47.
go back to reference Helms Clyde A, Tumors Malignant Bone, Helms Clyde A. Fundamentals of skeletal radiology. 3rd ed. London: Elsevier; 1994. p. 37–9. Helms Clyde A, Tumors Malignant Bone, Helms Clyde A. Fundamentals of skeletal radiology. 3rd ed. London: Elsevier; 1994. p. 37–9.
Metadata
Title
Imaging findings in radiation therapy complications of the central nervous system
Authors
Tomonori Kanda
Yuichi Wakabayashi
Feibi Zeng
Yoshiko Ueno
Keitaro Sofue
Takaki Maeda
Munenobu Nogami
Takamichi Murakami
Publication date
01-09-2018
Publisher
Springer Japan
Published in
Japanese Journal of Radiology / Issue 9/2018
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-018-0759-7

Other articles of this Issue 9/2018

Japanese Journal of Radiology 9/2018 Go to the issue