Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 5/2021

Open Access 01-05-2021 | Original Article

Computer-assisted contralateral side comparison of the ankle joint using flat panel technology

Authors: Sarina Thomas, Lisa Kausch, Holger Kunze, Maxim Privalov, André Klein, Jan El Barbari, Celia Martin Vicario, Jochen Franke, Klaus Maier-Hein

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 5/2021

Login to get access

Abstract

Purpose

Reduction and osteosynthesis of ankle fractures is a challenging surgical procedure when it comes to the verification of the reduction result. Evaluation is conducted using intra-operative imaging of the injured ankle and depends on the expertise of the surgeon. Studies suggest that intra-individual variance of the ankle bone shape and pose is considerably lower than the inter-individual variance. It stands to reason that the information gain from the healthy contralateral side can help to improve the evaluation.

Method

In this paper, an assistance system is proposed that provides a side-to-side view of the two ankle joints for visual comparison and instant evaluation using only one 3D C-arm image. Two convolutional neural networks (CNN) are employed to extract the relevant image regions and pose information of each ankle so that they can be aligned with each other. A first U-Net uses a sliding window to predict the location of each ankle. The standard plane estimation is formulated as segmentation problem so that a second U-Net predicts the three viewing planes for alignment.

Results

Experiments were conducted to assess the accuracy of the individual steps on 218 unilateral ankle datasets as well as the overall performance on 7 bilateral ankle datasets. The experiments on unilateral ankles yield a median position-to-plane error of \(0.73\pm 1.36\) mm and a median angular error between 2.98\(^\circ \) and 3.71\(^\circ \) for the plane normals.

Conclusion

Standard plane estimation via segmentation outperforms direct pose regression. Furthermore, the complete pipeline was evaluated including ankle detection and subsequent plane estimation on bilateral datasets. The proposed pipeline enables a direct contralateral side comparison without additional radiation. This has the potential to ease and improve the intra-operative evaluation for the surgeons in the future and reduce the need for revision surgery.
Literature
1.
go back to reference Van Heest JT, Lafferty PM (2014) Injuries to the ankle syndesmosis. J Bone Joint Surg Am 96(7):603–13CrossRef Van Heest JT, Lafferty PM (2014) Injuries to the ankle syndesmosis. J Bone Joint Surg Am 96(7):603–13CrossRef
2.
go back to reference Thomas S, Isensee F, Kohl S, Privalov M, Beisemann N, Swartman B, Keil H, Vetter SY, Franke J, Grützner PA, Maier-Hein L, Nolden M, Maier-Hein K (2019) Computer-assisted intra-operative verification of surgical outcome for the treatment of syndesmotic injuries through contralateral side comparison. Int J Comput Assist Radiol Surg 14(12):2211–20CrossRef Thomas S, Isensee F, Kohl S, Privalov M, Beisemann N, Swartman B, Keil H, Vetter SY, Franke J, Grützner PA, Maier-Hein L, Nolden M, Maier-Hein K (2019) Computer-assisted intra-operative verification of surgical outcome for the treatment of syndesmotic injuries through contralateral side comparison. Int J Comput Assist Radiol Surg 14(12):2211–20CrossRef
3.
go back to reference Franke J, von Recum J, Suda AJ, Grützner PA, Wendl K (2012) Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J. Bone Joint Surg 94(15):1386–90CrossRef Franke J, von Recum J, Suda AJ, Grützner PA, Wendl K (2012) Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J. Bone Joint Surg 94(15):1386–90CrossRef
4.
go back to reference Mukhopadhyay S, Metcalfe A, Guha A, Mohanty K, Hemmadi S, Lyons K, Doherty D (2011) Malreduction of syndesmosis–are we considering the anatomical variation? Injury 42(10):1073–76CrossRef Mukhopadhyay S, Metcalfe A, Guha A, Mohanty K, Hemmadi S, Lyons K, Doherty D (2011) Malreduction of syndesmosis–are we considering the anatomical variation? Injury 42(10):1073–76CrossRef
5.
go back to reference Vetter SY, Primalov M, Beisemann N, Swartman B, Keil H, Kirsch J, Grützner PA (2019) Influence of ankle joint position on angles and distances of the ankle mortise using intraoperative cone beam CT: A cadaveric study. PLoS ONE 14(5):1–12CrossRef Vetter SY, Primalov M, Beisemann N, Swartman B, Keil H, Kirsch J, Grützner PA (2019) Influence of ankle joint position on angles and distances of the ankle mortise using intraoperative cone beam CT: A cadaveric study. PLoS ONE 14(5):1–12CrossRef
6.
go back to reference Brehler M, Görres J, Franke J, Barth K, Vetter SY, Grützner PA, Meinzer HP, Wolf I, Nabers D (2016) Intra-operative adjustment of standard planes in c-arm CT image data. Int J Comput Assist Radiol Surg 11(3):495–504CrossRef Brehler M, Görres J, Franke J, Barth K, Vetter SY, Grützner PA, Meinzer HP, Wolf I, Nabers D (2016) Intra-operative adjustment of standard planes in c-arm CT image data. Int J Comput Assist Radiol Surg 11(3):495–504CrossRef
7.
go back to reference Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger P, Kohl S, Wasserthal J, Koehler G, Norajitra T, Wirkert S, Maier-Hein K (2018) nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger P, Kohl S, Wasserthal J, Koehler G, Norajitra T, Wirkert S, Maier-Hein K (2018) nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:​1809.​10486
8.
go back to reference Fürnstahl P, Székely G, Gerber C, Hodler J, Snedeker JG, Harders M (2012) Computer assisted reconstruction of complex proximal humerus fractures for preoperative planning. IEEE Trans Med Image Anal 16(3):704–20CrossRef Fürnstahl P, Székely G, Gerber C, Hodler J, Snedeker JG, Harders M (2012) Computer assisted reconstruction of complex proximal humerus fractures for preoperative planning. IEEE Trans Med Image Anal 16(3):704–20CrossRef
10.
go back to reference Lu X, Georgescu B, Zheng Y, Otsuki J, Comaniciu D (2018) AutoMPR: Automatic detection of standardplanes in 3d echocardiography. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, pp 1279–1282 Lu X, Georgescu B, Zheng Y, Otsuki J, Comaniciu D (2018) AutoMPR: Automatic detection of standardplanes in 3d echocardiography. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, pp 1279–1282
11.
go back to reference Martin Vicario C, Kordon F, Denzinger F, Weiten M, Thomas S, Kausch L, Franke J, Keil H, Maier A, Kunze H (2020) Automatic plane adjustment of orthopedic intraoperative flat panel detector CT volumes,” In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2020, Springer, LNCS Martin Vicario C, Kordon F, Denzinger F, Weiten M, Thomas S, Kausch L, Franke J, Keil H, Maier A, Kunze H (2020) Automatic plane adjustment of orthopedic intraoperative flat panel detector CT volumes,” In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2020, Springer, LNCS
12.
go back to reference Li Y, Khanal B, Hou B, Alansary A, Cerrolaza JJ, Sinclair M, Matthew J, Gupta C, Knight C, Kainz B, Rueckert D (2018) Standard plane detection in 3d fetal ultrasound using an iterative transformation network. Med Image Comput Comput Assist Intervent MICCAI 2018:392–400 Li Y, Khanal B, Hou B, Alansary A, Cerrolaza JJ, Sinclair M, Matthew J, Gupta C, Knight C, Kainz B, Rueckert D (2018) Standard plane detection in 3d fetal ultrasound using an iterative transformation network. Med Image Comput Comput Assist Intervent MICCAI 2018:392–400
13.
go back to reference Hou B, Alansary A, McDonagh S, Davidson M, Hajnal JV, Rueckert D, Glocker B, Kainz B (2017) Predicting Slice-to-Volume Transformation in Presence of Arbitrary Subject Motion. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI, (2017) vol 10434, Springer, Cham Hou B, Alansary A, McDonagh S, Davidson M, Hajnal JV, Rueckert D, Glocker B, Kainz B (2017) Predicting Slice-to-Volume Transformation in Presence of Arbitrary Subject Motion. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI, (2017) vol 10434, Springer, Cham
14.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer, LNCS, 9351:234–41 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer, LNCS, 9351:234–41
15.
go back to reference Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz A, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein K, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg. 8(4):607–20CrossRef Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz A, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein K, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg. 8(4):607–20CrossRef
16.
go back to reference Kingma DP, Ba J (2014) Adam: A method for stochastic optimization CoRR, vol. abs/1412.6980 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization CoRR, vol. abs/1412.6980
17.
go back to reference Klein A, Wasserthal J, Greiner M, Zimmerer D, Maier-Hein K (2019): MIC-DKFZ/basic\_unet\_example: Release (v2019.01). Zenodo Klein A, Wasserthal J, Greiner M, Zimmerer D, Maier-Hein K (2019): MIC-DKFZ/basic\_unet\_example: Release (v2019.01). Zenodo
18.
go back to reference Isensee F, Jaeger P, Wasserthal J, Zimmerer D, Petersen J, Kohl S, Schock J, Klein A, RoSS T, Wirkert S, Neher P, Dinkelacker S, Köhler G, Maier-Hein K (2020). batchgenerators—a python framework for data augmentation Isensee F, Jaeger P, Wasserthal J, Zimmerer D, Petersen J, Kohl S, Schock J, Klein A, RoSS T, Wirkert S, Neher P, Dinkelacker S, Köhler G, Maier-Hein K (2020). batchgenerators—a python framework for data augmentation
19.
go back to reference Lin TY, Goyal P, Girshick R, He K, Dollar P (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–27CrossRef Lin TY, Goyal P, Girshick R, He K, Dollar P (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–27CrossRef
20.
go back to reference Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell 39(6) Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell 39(6)
Metadata
Title
Computer-assisted contralateral side comparison of the ankle joint using flat panel technology
Authors
Sarina Thomas
Lisa Kausch
Holger Kunze
Maxim Privalov
André Klein
Jan El Barbari
Celia Martin Vicario
Jochen Franke
Klaus Maier-Hein
Publication date
01-05-2021
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 5/2021
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-021-02329-w

Other articles of this Issue 5/2021

International Journal of Computer Assisted Radiology and Surgery 5/2021 Go to the issue