Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 1/2020

01-01-2020 | Stroke | Original Article

Deep regression neural networks for collateral imaging from dynamic susceptibility contrast-enhanced magnetic resonance perfusion in acute ischemic stroke

Authors: Minh Nguyen Nhat To, Hyun Jeong Kim, Hong Gee Roh, Yoon-Sik Cho, Jin Tae Kwak

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 1/2020

Login to get access

Abstract

Purpose

Acute ischemic stroke is one of the primary causes of death worldwide. Recent studies have shown that the assessment of collateral status could aid in improving the treatment for patients with acute ischemic stroke. We present a 3D deep regression neural network to automatically generate the collateral images from dynamic susceptibility contrast-enhanced magnetic resonance perfusion (DSC-MRP) in acute ischemic stroke.

Methods

This retrospective study includes 144 subjects with acute ischemic stroke (stroke cases) and 201 subjects without acute ischemic stroke (controls). DSC-MRP images of these subjects were manually inspected for collateral assessment in arterial, capillary, early and late venous, and delay phases. The proposed network was trained on 205 subjects, and the optimal model was chosen using the validation set of 64 subjects. The predictive power of the network was assessed on the test set of 76 subjects using the squared correlation coefficient (R-squared), mean absolute error (MAE), Tanimoto measure (TM), and structural similarity index (SSIM).

Results

The proposed network was able to predict the five phase maps with high accuracy. On average, 0.897 R-squared, 0.581 × 10−1 MAE, 0.946 TM, and 0.846 SSIM were achieved for the five phase maps. No statistically significant difference was, in general, found between controls and stroke cases. The performance of the proposed network was lower in the arterial and venous phases than the other three phases.

Conclusion

The results suggested that the proposed network performs equally well for both control and acute ischemic stroke groups. The proposed network could help automate the assessment of collateral status in an efficient and effective manner and improve the quality and yield of diagnosis of acute ischemic stroke. The follow-up study will entail the clinical evaluation of the collateral images that are generated by the proposed network.
Literature
1.
go back to reference Liebeskind DS, Tomsick TA, Foster LD, Yeatts SD, Carrozzella J, Demchuk AM, Jovin TG, Khatri P, von Kummer R, Sugg RM (2014) Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke 45(3):759–764CrossRef Liebeskind DS, Tomsick TA, Foster LD, Yeatts SD, Carrozzella J, Demchuk AM, Jovin TG, Khatri P, von Kummer R, Sugg RM (2014) Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke 45(3):759–764CrossRef
2.
go back to reference Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372(11):1019–1030CrossRef Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372(11):1019–1030CrossRef
3.
go back to reference Bang OY, Saver JL, Buck BH, Alger JR, Starkman S, Ovbiagele B, Kim D, Jahan R, Duckwiler GR, Yoon SR (2008) Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 79(6):625–629CrossRef Bang OY, Saver JL, Buck BH, Alger JR, Starkman S, Ovbiagele B, Kim D, Jahan R, Duckwiler GR, Yoon SR (2008) Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 79(6):625–629CrossRef
4.
go back to reference Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, Goyal M (2015) Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 275(2):510–520CrossRef Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, Goyal M (2015) Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 275(2):510–520CrossRef
5.
go back to reference Garcia-Tornel A, Carvalho V, Boned S, Flores A, Rodriguez-Luna D, Pagola J, Muchada M, Sanjuan E, Coscojuela P, Juega J, Rodriguez-Villatoro N, Menon B, Goyal M, Ribo M, Tomasello A, Molina CA, Rubiera M (2016) Improving the evaluation of collateral circulation by multiphase computed tomography angiography in acute stroke patients treated with endovascular reperfusion therapies. Interv Neurol 5(3–4):209–217. https://doi.org/10.1159/000448525 CrossRefPubMedPubMedCentral Garcia-Tornel A, Carvalho V, Boned S, Flores A, Rodriguez-Luna D, Pagola J, Muchada M, Sanjuan E, Coscojuela P, Juega J, Rodriguez-Villatoro N, Menon B, Goyal M, Ribo M, Tomasello A, Molina CA, Rubiera M (2016) Improving the evaluation of collateral circulation by multiphase computed tomography angiography in acute stroke patients treated with endovascular reperfusion therapies. Interv Neurol 5(3–4):209–217. https://​doi.​org/​10.​1159/​000448525 CrossRefPubMedPubMedCentral
6.
go back to reference Kim SJ, Son JP, Ryoo S, Lee MJ, Cha J, Kim KH, Kim GM, Chung CS, Lee KH, Jeon P (2014) A novel magnetic resonance imaging approach to collateral flow imaging in ischemic stroke. Ann Neurol 76(3):356–369CrossRef Kim SJ, Son JP, Ryoo S, Lee MJ, Cha J, Kim KH, Kim GM, Chung CS, Lee KH, Jeon P (2014) A novel magnetic resonance imaging approach to collateral flow imaging in ischemic stroke. Ann Neurol 76(3):356–369CrossRef
7.
go back to reference Robson PM, Dai W, Shankaranarayanan A, Rofsky NM, Alsop DC (2010) Time-resolved vessel-selective digital subtraction MR angiography of the cerebral vasculature with arterial spin labeling. Radiology 257(2):507–515CrossRef Robson PM, Dai W, Shankaranarayanan A, Rofsky NM, Alsop DC (2010) Time-resolved vessel-selective digital subtraction MR angiography of the cerebral vasculature with arterial spin labeling. Radiology 257(2):507–515CrossRef
8.
10.
11.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
12.
go back to reference Lundervold AS, Lundervold A (2018) An overview of deep learning in medical imaging focusing on MRI. arXiv preprint arXiv:181110052 Lundervold AS, Lundervold A (2018) An overview of deep learning in medical imaging focusing on MRI. arXiv preprint arXiv:​181110052
13.
go back to reference McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, Tridandapani S, Auffermann WF (2018) Deep learning in radiology. Acad Radiol 25:1472–1480CrossRef McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, Tridandapani S, Auffermann WF (2018) Deep learning in radiology. Acad Radiol 25:1472–1480CrossRef
14.
go back to reference Sun C, Guo S, Zhang H, Li J, Chen M, Ma S, Jin L, Liu X, Li X, Qian X (2017) Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif Intell Med 83:58–66CrossRef Sun C, Guo S, Zhang H, Li J, Chen M, Ma S, Jin L, Liu X, Li X, Qian X (2017) Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif Intell Med 83:58–66CrossRef
15.
go back to reference Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRef Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRef
16.
go back to reference Vu QD, Kwak JT (2019) A dense multi-path decoder for tissue segmentation in histopathology images. Comput Methods Programs Biomed 173:119–129CrossRef Vu QD, Kwak JT (2019) A dense multi-path decoder for tissue segmentation in histopathology images. Comput Methods Programs Biomed 173:119–129CrossRef
17.
go back to reference Dong C, Loy CC, Tang X (2016) Accelerating the super-resolution convolutional neural network. In: European conference on computer vision, 2016. Springer, pp 391–407 Dong C, Loy CC, Tang X (2016) Accelerating the super-resolution convolutional neural network. In: European conference on computer vision, 2016. Springer, pp 391–407
18.
go back to reference Ravì D, Szczotka AB, Shakir DI, Pereira SP, Vercauteren T (2018) Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction. Int J Comput Assist Radiol Surg 13:1–8CrossRef Ravì D, Szczotka AB, Shakir DI, Pereira SP, Vercauteren T (2018) Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction. Int J Comput Assist Radiol Surg 13:1–8CrossRef
19.
go back to reference Garg R, BG VK, Carneiro G, Reid I (2016) Unsupervised cnn for single view depth estimation: geometry to the rescue. In: European conference on computer vision, 2016. Springer, pp 740–756 Garg R, BG VK, Carneiro G, Reid I (2016) Unsupervised cnn for single view depth estimation: geometry to the rescue. In: European conference on computer vision, 2016. Springer, pp 740–756
20.
go back to reference Mahmood F, Durr NJ (2018) Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal 48:230–243CrossRef Mahmood F, Durr NJ (2018) Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal 48:230–243CrossRef
21.
go back to reference Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331CrossRef Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331CrossRef
22.
go back to reference Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, Išgum I (2017) Deep MR to CT synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging, 2017. Springer, pp 14–23 Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, Išgum I (2017) Deep MR to CT synthesis using unpaired data. In: International workshop on simulation and synthesis in medical imaging, 2017. Springer, pp 14–23
23.
go back to reference Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima K, Carass A, Prince JL, Sugano N, Sato Y (2018) Cross-modality image synthesis from unpaired data using CycleGAN. In: International workshop on simulation and synthesis in medical imaging, 2018. Springer, pp 31–41 Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima K, Carass A, Prince JL, Sugano N, Sato Y (2018) Cross-modality image synthesis from unpaired data using CycleGAN. In: International workshop on simulation and synthesis in medical imaging, 2018. Springer, pp 31–41
24.
go back to reference Lucas C, Kemmling A, Bouteldja N, Aulmann LF, Mamlouk AM, Heinrich MP (2018) Learning to predict ischemic stroke growth on acute CT perfusion data by interpolating low-dimensional shape representations. Front Neurol 9:989CrossRef Lucas C, Kemmling A, Bouteldja N, Aulmann LF, Mamlouk AM, Heinrich MP (2018) Learning to predict ischemic stroke growth on acute CT perfusion data by interpolating low-dimensional shape representations. Front Neurol 9:989CrossRef
26.
go back to reference Stier N, Vincent N, Liebeskind D, Scalzo F (2015) Deep learning of tissue fate features in acute ischemic stroke. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), 2015. IEEE, pp 1316–1321 Stier N, Vincent N, Liebeskind D, Scalzo F (2015) Deep learning of tissue fate features in acute ischemic stroke. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), 2015. IEEE, pp 1316–1321
27.
go back to reference Pinto JAADS, Mckinley R, Alves V, Wiest R, Silva CA, Reyes M (2018) Stroke lesion outcome prediction based on MRI imaging combined with clinical information. Front Neurol 9:1060CrossRef Pinto JAADS, Mckinley R, Alves V, Wiest R, Silva CA, Reyes M (2018) Stroke lesion outcome prediction based on MRI imaging combined with clinical information. Front Neurol 9:1060CrossRef
29.
go back to reference Robben D, Suetens P (2018) Perfusion parameter estimation using neural networks and data augmentation. In: International MICCAI brainlesion workshop, 2018. Springer, pp 439–446 Robben D, Suetens P (2018) Perfusion parameter estimation using neural networks and data augmentation. In: International MICCAI brainlesion workshop, 2018. Springer, pp 439–446
30.
go back to reference Hess A, Meier R, Kaesmacher J, Jung S, Scalzo F, Liebeskind D, Wiest R, McKinley R (2018) Synthetic perfusion maps: imaging perfusion deficits in DSC-MRI with deep learning. In: International MICCAI brainlesion workshop, 2018. Springer, pp 447–455 Hess A, Meier R, Kaesmacher J, Jung S, Scalzo F, Liebeskind D, Wiest R, McKinley R (2018) Synthetic perfusion maps: imaging perfusion deficits in DSC-MRI with deep learning. In: International MICCAI brainlesion workshop, 2018. Springer, pp 447–455
31.
go back to reference Xiao Y, Alamer A, Fonov V, Lo BW, Tampieri D, Collins DL, Rivaz H, Kersten-Oertel M (2017) Towards automatic collateral circulation score evaluation in ischemic stroke using image decompositions and support vector machines. In: Jorge Cardoso M et al (eds) Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment. Springer, pp 158–167 Xiao Y, Alamer A, Fonov V, Lo BW, Tampieri D, Collins DL, Rivaz H, Kersten-Oertel M (2017) Towards automatic collateral circulation score evaluation in ischemic stroke using image decompositions and support vector machines. In: Jorge Cardoso M et al (eds) Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment. Springer, pp 158–167
32.
go back to reference Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations
33.
go back to reference Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Cortes C et al (eds) Advances in neural information processing systems, pp 2377–2385 Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Cortes C et al (eds) Advances in neural information processing systems, pp 2377–2385
34.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp 770–778
35.
go back to reference Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, vol 2, p 3 Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, vol 2, p 3
36.
go back to reference Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp 11–19 Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp 11–19
37.
go back to reference Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual dense network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp 2472–2481 Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual dense network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp 2472–2481
38.
go back to reference Li X, Chen H, Qi X, Dou Q, Fu C-W, Heng P-A (2018) H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 37(12):2663–2674CrossRef Li X, Chen H, Qi X, Dou Q, Fu C-W, Heng P-A (2018) H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 37(12):2663–2674CrossRef
39.
go back to reference Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Medical image computing and computer assisted intervention—MICCAI 2018. Springer, Cham, pp 421–429 Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Medical image computing and computer assisted intervention—MICCAI 2018. Springer, Cham, pp 421–429
41.
go back to reference Fu Y, Mazur TR, Wu X, Liu S, Chang X, Lu Y, Li HH, Kim H, Roach MC, Henke L (2018) A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med Phys 45(11):5129–5137CrossRef Fu Y, Mazur TR, Wu X, Liu S, Chang X, Lu Y, Li HH, Kim H, Roach MC, Henke L (2018) A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med Phys 45(11):5129–5137CrossRef
42.
go back to reference Yu L, Yang X, Chen H, Qin J, Heng P-A (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI, 2017, pp 66–72 Yu L, Yang X, Chen H, Qin J, Heng P-A (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI, 2017, pp 66–72
43.
go back to reference Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). IEEE, pp 565–571 Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). IEEE, pp 565–571
44.
go back to reference Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRef Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRef
45.
go back to reference Wachinger C, Reuter M, Klein T (2018) DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170:434–445CrossRef Wachinger C, Reuter M, Klein T (2018) DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170:434–445CrossRef
46.
go back to reference Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A (2016) Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage 129:460–469CrossRef Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A (2016) Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage 129:460–469CrossRef
47.
go back to reference Swinscow TDV, Campbell MJ (2002) Statistics at square one. BMJ, London Swinscow TDV, Campbell MJ (2002) Statistics at square one. BMJ, London
48.
go back to reference Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79–82CrossRef Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79–82CrossRef
49.
go back to reference Tanimoto TT (1958) Elementary mathematical theory of classification and prediction. IBM Corp., New York Tanimoto TT (1958) Elementary mathematical theory of classification and prediction. IBM Corp., New York
50.
go back to reference Theodoridis S, Koutroumbas K (2008) Pattern recognition, 4th edn. Academic Press, Inc, Cambridge Theodoridis S, Koutroumbas K (2008) Pattern recognition, 4th edn. Academic Press, Inc, Cambridge
51.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef
52.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, 2015. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, 2015. Springer, pp 234–241
53.
go back to reference Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5987–5995 Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5987–5995
54.
go back to reference Kinga D, Adam JB (2015) A method for stochastic optimization. In: International conference on learning representations (ICLR) Kinga D, Adam JB (2015) A method for stochastic optimization. In: International conference on learning representations (ICLR)
55.
go back to reference Wu Y, He K (2018) Group normalization. In: Proceedings of the European conference on computer vision (ECCV), 2018, pp 3–19CrossRef Wu Y, He K (2018) Group normalization. In: Proceedings of the European conference on computer vision (ECCV), 2018, pp 3–19CrossRef
56.
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Paper presented at the proceedings of the 32nd international conference on international conference on machine learning—vol 37, Lille, France Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Paper presented at the proceedings of the 32nd international conference on international conference on machine learning—vol 37, Lille, France
Metadata
Title
Deep regression neural networks for collateral imaging from dynamic susceptibility contrast-enhanced magnetic resonance perfusion in acute ischemic stroke
Authors
Minh Nguyen Nhat To
Hyun Jeong Kim
Hong Gee Roh
Yoon-Sik Cho
Jin Tae Kwak
Publication date
01-01-2020
Publisher
Springer International Publishing
Keyword
Stroke
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 1/2020
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02060-7

Other articles of this Issue 1/2020

International Journal of Computer Assisted Radiology and Surgery 1/2020 Go to the issue