Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 10/2019

01-10-2019 | Intracranial Aneurysm | Original Article

Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms

Authors: Sylvia Saalfeld, Samuel Voß, Oliver Beuing, Bernhard Preim, Philipp Berg

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 10/2019

Login to get access

Abstract

Purpose

Image-based hemodynamic simulations have great potential for precise blood flow predictions in intracranial aneurysms. Due to model assumptions and simplifications with respect to boundary conditions, clinical acceptance remains limited.

Methods

Within this study, we analyzed the influence of outflow-splitting approaches on multiple aneurysm studies and present a new outflow-splitting approach that takes the precise morphological vessel cross sections into account. We provide a detailed comparison of five outflow strategies considering eight intracranial aneurysms: zero-pressure configuration (1), a flow splitting inspired by Murray’s law with a square (2) and a cubic (3) vessel diameter, a flow splitting incorporating vessel bifurcations based on circular vessel cross sections (4) and our novel flow splitting including vessel bifurcations and anatomical vessel cross sections (5). Other boundary conditions remain constant. For each simulation and each aneurysm, we conducted an evaluation based on common hemodynamic parameters, e.g., normalized wall shear stress and inflow concentration index.

Results

The comparison of five outflow strategies for image-based simulations shows a large variability regarding the parameters of interest. Qualitatively, our strategy based on anatomical cross sections yields a more uniform flow rate distribution with increased aneurysm inflow rates. The commonly used zero-pressure approach shows the largest variations, especially for more distal aneurysms. A rank ordering of multiple aneurysms in one patient might still be possible, since the ordering appeared to be independent of the outflow strategy.

Conclusions

The results reveal that outlet boundary conditions have a crucial impact on image-based blood flow simulations, especially for multiple aneurysm studies. We could confirm the advantages of the more complex outflow-splitting model (4) including an incremental improvement (5) compared to strategies (1), (2) and (3) for this application scenario. Furthermore, we discourage from using zero-pressure configurations that lack a physiological basis.
Literature
1.
go back to reference Adib MAHM, Ii S, Watanabe Y, Wada S (2017) Minimizing the blood velocity differences between phase-contrast magnetic resonance imaging and computational fluid dynamics simulation in cerebral arteries and aneurysms. Med Biol Eng Comput 55(9):1605–1619CrossRef Adib MAHM, Ii S, Watanabe Y, Wada S (2017) Minimizing the blood velocity differences between phase-contrast magnetic resonance imaging and computational fluid dynamics simulation in cerebral arteries and aneurysms. Med Biol Eng Comput 55(9):1605–1619CrossRef
2.
go back to reference Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46(11):1097CrossRef Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46(11):1097CrossRef
3.
go back to reference Antiga L, Steinman DA (2004) Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans Med Imaging 23(6):704–713CrossRef Antiga L, Steinman DA (2004) Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans Med Imaging 23(6):704–713CrossRef
4.
go back to reference Berg P, Roloff C, Beuing O, Voss S, Sugiyama S, Aristokleous N, Anayiotos AS, Ashton N, Revell A, Bressloff NW, Brown AG, Chung BJ, Cebral JR, Copelli G, Fu W, Qiao A, Geers AJ, Hodis S, Dragomir-Daescu D, Nordahl E, Suzen YB, Khan MO, Valen-Sendstad K, Kono K, Menon PG, Albal PG, Mierka O, Münster R, Morales HG, Bonnefous O, Osman J, Goubergrits L, Pallares J, Cito S, Passalacqua A, Piskin S, Pekkan K, Ramalho S, Marques N, Sanchi S, Schumacher Kristopher R, Sturgeon J, vSvihlová H, Hron J, Usera G, Mendina M, Xiang J, Meng H, Steinman DA, Janiga G (2015) The computational fluid dynamics rupture challenge 2013—phase II: variability of hemodynamic simulations in two intracranial aneurysms. J Biomech Eng 137(12):121008/1–13 Berg P, Roloff C, Beuing O, Voss S, Sugiyama S, Aristokleous N, Anayiotos AS, Ashton N, Revell A, Bressloff NW, Brown AG, Chung BJ, Cebral JR, Copelli G, Fu W, Qiao A, Geers AJ, Hodis S, Dragomir-Daescu D, Nordahl E, Suzen YB, Khan MO, Valen-Sendstad K, Kono K, Menon PG, Albal PG, Mierka O, Münster R, Morales HG, Bonnefous O, Osman J, Goubergrits L, Pallares J, Cito S, Passalacqua A, Piskin S, Pekkan K, Ramalho S, Marques N, Sanchi S, Schumacher Kristopher R, Sturgeon J, vSvihlová H, Hron J, Usera G, Mendina M, Xiang J, Meng H, Steinman DA, Janiga G (2015) The computational fluid dynamics rupture challenge 2013—phase II: variability of hemodynamic simulations in two intracranial aneurysms. J Biomech Eng 137(12):121008/1–13
5.
go back to reference Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thévenin D (2014) Cerebral blood flow in a healthy circle of willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng 136(4):041003CrossRef Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thévenin D (2014) Cerebral blood flow in a healthy circle of willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng 136(4):041003CrossRef
6.
go back to reference Berg P, Voß S, Saalfeld S, Janiga G, Bergersen A, Valen-Sendstad K, Bruening J, Goubergrits L, Spuler A, Cancelliere NM, Steinman DA, Pereira VM, Chiu TL, Tsang AC, Chung BJ, Cebral JR, Cito S, Pallares J, Copelli G, Csippa B, Paal G, Fujimura S, Takao H, Hodis S, Hille G, Karmonik C, Elias S, Kellermann K, Khan MO, Marsden AL, Morales HG, Piskin S, Finol EA, Pravdivtseva M, Rajabzadeh-Oghaz H, Paliwal N, Meng H, Seshadhri S, Howard M, Shojima M, Sugiyama S, Niizuma K, Sindeev S, Frolov S, Wagner T, Brawanski A, Qian Y, Wu Y, Carlson K, Dragomir-Daescu D, Beuing DO (2018) Multiple aneurysms anatomy challenge 2018 (MATCH): phase I: segmentation. Cardiovasc Eng Technol 9(4):565–581CrossRef Berg P, Voß S, Saalfeld S, Janiga G, Bergersen A, Valen-Sendstad K, Bruening J, Goubergrits L, Spuler A, Cancelliere NM, Steinman DA, Pereira VM, Chiu TL, Tsang AC, Chung BJ, Cebral JR, Cito S, Pallares J, Copelli G, Csippa B, Paal G, Fujimura S, Takao H, Hodis S, Hille G, Karmonik C, Elias S, Kellermann K, Khan MO, Marsden AL, Morales HG, Piskin S, Finol EA, Pravdivtseva M, Rajabzadeh-Oghaz H, Paliwal N, Meng H, Seshadhri S, Howard M, Shojima M, Sugiyama S, Niizuma K, Sindeev S, Frolov S, Wagner T, Brawanski A, Qian Y, Wu Y, Carlson K, Dragomir-Daescu D, Beuing DO (2018) Multiple aneurysms anatomy challenge 2018 (MATCH): phase I: segmentation. Cardiovasc Eng Technol 9(4):565–581CrossRef
7.
go back to reference Cebral JR, Mut F, Weir J, Putman C (2011) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. Am J Neuroradiol 32(1):145–151CrossRef Cebral JR, Mut F, Weir J, Putman C (2011) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. Am J Neuroradiol 32(1):145–151CrossRef
8.
go back to reference Chnafa C, Brina O, Pereira VM, Steinman DA (2018) Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations. Am J Neuroradiol 39(2):337–343CrossRef Chnafa C, Brina O, Pereira VM, Steinman DA (2018) Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations. Am J Neuroradiol 39(2):337–343CrossRef
9.
go back to reference Chnafa C, Valen-Sendstad K, Brina O, Pereira VM, Steinman DA (2017) Improved reduced-order modelling of cerebrovascular flow distribution by accounting for arterial bifurcation pressure drops. J Biomech 51:83–88CrossRef Chnafa C, Valen-Sendstad K, Brina O, Pereira VM, Steinman DA (2017) Improved reduced-order modelling of cerebrovascular flow distribution by accounting for arterial bifurcation pressure drops. J Biomech 51:83–88CrossRef
10.
go back to reference Chung B, Cebral JR (2015) CFD for evaluation and treatment planning of aneurysms: review of proposed clinical uses and their challenges. Ann Biomed Eng 43(1):122–138CrossRef Chung B, Cebral JR (2015) CFD for evaluation and treatment planning of aneurysms: review of proposed clinical uses and their challenges. Ann Biomed Eng 43(1):122–138CrossRef
11.
go back to reference Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F, Putman C, Jiménez C, Cebral JR (2018) Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Int J Comput Assist Radiol Surg 13(11):1767–1779CrossRef Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F, Putman C, Jiménez C, Cebral JR (2018) Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Int J Comput Assist Radiol Surg 13(11):1767–1779CrossRef
12.
go back to reference Glaßer S, Berg P, Neugebauer M, Preim B (2015) Reconstruction of 3D surface meshes for bood flow simulations of intracranial aneurysms. In: Proceedings of computer- and robot-assisted surgery (CURAC), pp 163–168 Glaßer S, Berg P, Neugebauer M, Preim B (2015) Reconstruction of 3D surface meshes for bood flow simulations of intracranial aneurysms. In: Proceedings of computer- and robot-assisted surgery (CURAC), pp 163–168
13.
go back to reference Goubergrits L, Hellmeier F, Bruening J, Spuler A, Hege HC, Voss S, Janiga G, Saalfeld S, Beuing O, Berg P (2019) Multiple aneurysms anatomy challenge 2018 (match)—uncertainty quantification of geometric rupture risk parameters. BioMed Eng OnLine 18(1)(35):1–16, 03 Goubergrits L, Hellmeier F, Bruening J, Spuler A, Hege HC, Voss S, Janiga G, Saalfeld S, Beuing O, Berg P (2019) Multiple aneurysms anatomy challenge 2018 (match)—uncertainty quantification of geometric rupture risk parameters. BioMed Eng OnLine 18(1)(35):1–16, 03
14.
go back to reference Linn FHH, Rinkel GJE, Algra A, Van Gijn J (1996) Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 27(4):625–629CrossRef Linn FHH, Rinkel GJE, Algra A, Van Gijn J (1996) Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 27(4):625–629CrossRef
15.
go back to reference Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12(3):207CrossRef Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12(3):207CrossRef
16.
go back to reference Onishi Y, Aoki K, Amaya K, Shimizu T, Isoda H, Takehara Y, Sakahara H, Kosugi T (2013) Accurate determination of patient-specific boundary conditions in computational vascular hemodynamics using 3D cine phase-contrast mri. Int J Numer Methods Biomed Eng 29(10):1089–1103CrossRef Onishi Y, Aoki K, Amaya K, Shimizu T, Isoda H, Takehara Y, Sakahara H, Kosugi T (2013) Accurate determination of patient-specific boundary conditions in computational vascular hemodynamics using 3D cine phase-contrast mri. Int J Numer Methods Biomed Eng 29(10):1089–1103CrossRef
17.
go back to reference Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen H-O (2011) Medical image analysis. IEEE Pulse 2(6):60–70CrossRef Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen H-O (2011) Medical image analysis. IEEE Pulse 2(6):60–70CrossRef
18.
go back to reference Sanchez M, Ecker O, Ambard D, Jourdan F, Nicoud F, Mendez S, Lejeune J-P, Thines L, Dufour HH, Brunel MP, Lobotesis K, Bonafe A, Costalat V (2014) Intracranial aneurysmal pulsatility as a new individual criterion for rupture risk evaluation: biomechanical and numeric approach (IRRAS project). Am J Neuroradiol 35(9):1765–1771CrossRef Sanchez M, Ecker O, Ambard D, Jourdan F, Nicoud F, Mendez S, Lejeune J-P, Thines L, Dufour HH, Brunel MP, Lobotesis K, Bonafe A, Costalat V (2014) Intracranial aneurysmal pulsatility as a new individual criterion for rupture risk evaluation: biomechanical and numeric approach (IRRAS project). Am J Neuroradiol 35(9):1765–1771CrossRef
19.
go back to reference Valen-Sendstad K, Piccinelli M, Krishnankutty KRR, Steinman DA (2015) Estimation of inlet flow rates for image-based aneurysm CFD models: where and how to begin? Ann Biomed Eng 43(6):1422–1431CrossRef Valen-Sendstad K, Piccinelli M, Krishnankutty KRR, Steinman DA (2015) Estimation of inlet flow rates for image-based aneurysm CFD models: where and how to begin? Ann Biomed Eng 43(6):1422–1431CrossRef
20.
go back to reference Voß S, Glaßer S, Hoffmann T, Beuing O, Weigand S, Jachau K, Preim B, Thevenin D, Janiga G, Berg P (2016) Fluid-structure simulations of a ruptured intracranial aneurysm–constant versus patient-specific wall thickness. Comput Math Methods Med. https://doi.org/10.1155/2016/9854539 Voß S, Glaßer S, Hoffmann T, Beuing O, Weigand S, Jachau K, Preim B, Thevenin D, Janiga G, Berg P (2016) Fluid-structure simulations of a ruptured intracranial aneurysm–constant versus patient-specific wall thickness. Comput Math Methods Med. https://​doi.​org/​10.​1155/​2016/​9854539
21.
go back to reference Voss S, Janiga G, Beuing O, Berg P (2019) Multiple aneurysms anatomy challenge 2018 (match) phase IB: Effect of morphology on hemodynamics. PLOS ONE page accepted for publication, 05 Voss S, Janiga G, Beuing O, Berg P (2019) Multiple aneurysms anatomy challenge 2018 (match) phase IB: Effect of morphology on hemodynamics. PLOS ONE page accepted for publication, 05
22.
go back to reference Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy ElI, Meng H (2011) Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152CrossRef Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy ElI, Meng H (2011) Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152CrossRef
Metadata
Title
Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms
Authors
Sylvia Saalfeld
Samuel Voß
Oliver Beuing
Bernhard Preim
Philipp Berg
Publication date
01-10-2019
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 10/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02036-7

Other articles of this Issue 10/2019

International Journal of Computer Assisted Radiology and Surgery 10/2019 Go to the issue