Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 10/2019

01-10-2019 | Angiography | Review Article

Deep learning-based digital subtraction angiography image generation

Authors: Yufeng Gao, Yu Song, Xiangrui Yin, Weiwen Wu, Lu Zhang, Yang Chen, Wanyin Shi

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 10/2019

Login to get access

Abstract

Purpose

Digital subtraction angiography (DSA) is a powerful technique for diagnosing cardiovascular disease. In order to avoid image artifacts caused by patient movement during imaging, we take deep learning-based methods to generate DSA image from single live image without the mask image.

Methods

Conventional clinical DSA datasets are acquired with a standard injection protocol. More than 600 sequences obtained from more than 100 subjects were used for head and leg experiments. Here, the residual dense block (RDB) is adopted to generate DSA image from single live image directly, and RDBs can extract high-level features by dense connected layers. To obtain better vessel details, a supervised generative adversarial network strategy is also used in the training stage.

Results

The human head and leg experiments show that the deep learning methods can generate DSA image from single live image, and our method can do better than other models. Specifically, the DSA image generating with our method contains less artifact and is suitable for diagnosis. We use metrics including PSNR, SSIM and FSIM, which can reach 23.731, 0.877 and 0.8946 on the head dataset and 26.555, 0.870 and 0.9284 on the leg dataset.

Conclusions

The experiment results show the model can extract the vessels from the single live image, thus avoiding the image artifacts obtained by subtracting the live image and the mask image. And our method has a better performance than other methods we have tried on this task.
Literature
1.
go back to reference Hyde DE, Fox AJ, Gulka I, Kalapos P, Lee DH, Pelz DM, Holdsworth DW (2004) Internal carotid artery stenosis measurement: comparison of 3D computed rotational angiography and conventional digital subtraction angiography. Stroke 35(12):2776–2781CrossRef Hyde DE, Fox AJ, Gulka I, Kalapos P, Lee DH, Pelz DM, Holdsworth DW (2004) Internal carotid artery stenosis measurement: comparison of 3D computed rotational angiography and conventional digital subtraction angiography. Stroke 35(12):2776–2781CrossRef
2.
go back to reference Buzug TM, Weese J (1998) Image registration for DSA quality enhancement. Comput Med Imaging Gr 22(2):103–113CrossRef Buzug TM, Weese J (1998) Image registration for DSA quality enhancement. Comput Med Imaging Gr 22(2):103–113CrossRef
3.
go back to reference Zhang X, Zhang F, Li R (2010) DSA image registration based on 3D space-time detection. Proc Eng 7:426–431CrossRef Zhang X, Zhang F, Li R (2010) DSA image registration based on 3D space-time detection. Proc Eng 7:426–431CrossRef
4.
go back to reference Meijering EH, Zuiderveld KJ, Viergever MA (1999) Image registration for digital subtraction angiography. Int J Comput Vis 31(2–3):227–246CrossRef Meijering EH, Zuiderveld KJ, Viergever MA (1999) Image registration for digital subtraction angiography. Int J Comput Vis 31(2–3):227–246CrossRef
5.
go back to reference Hipwell JH, Penney GP, McLaughlin RA, Rhode K, Summers P, Cox TC, Byrne JV, Noble JA, Hawkes DJ (2003) Intensity-based 2-D-3-D registration of cerebral angiograms. IEEE Trans Med Imaging 22(11):1417–1426CrossRef Hipwell JH, Penney GP, McLaughlin RA, Rhode K, Summers P, Cox TC, Byrne JV, Noble JA, Hawkes DJ (2003) Intensity-based 2-D-3-D registration of cerebral angiograms. IEEE Trans Med Imaging 22(11):1417–1426CrossRef
6.
go back to reference Sundarapandian M, Kalpathi R, Manason VD (2013) DSA image registration using non-uniform MRF model and pivotal control points. Comput Med Imaging Gr 37(4):323–336CrossRef Sundarapandian M, Kalpathi R, Manason VD (2013) DSA image registration using non-uniform MRF model and pivotal control points. Comput Med Imaging Gr 37(4):323–336CrossRef
7.
go back to reference Sulayman N, Al-Mawaldi M, Kanafani Q (2016) Semi-automatic detection and segmentation algorithm of saccular aneurysms in 2D cerebral DSA images. Egypt J Radiol Nucl Med 47(3):859–865CrossRef Sulayman N, Al-Mawaldi M, Kanafani Q (2016) Semi-automatic detection and segmentation algorithm of saccular aneurysms in 2D cerebral DSA images. Egypt J Radiol Nucl Med 47(3):859–865CrossRef
8.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
9.
go back to reference Greenspan H, Van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159CrossRef Greenspan H, Van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159CrossRef
10.
go back to reference Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248CrossRef Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248CrossRef
11.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
12.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
13.
go back to reference Montoya JC, Li Y, Strother C, Chen G-H (2018) Deep learning angiography (DLA): three-dimensional C-arm cone beam CT angiography generated from deep learning method using a convolutional neural network. In: Medical imaging 2018: physics of medical imaging. International Society for Optics and Photonics, p 105731N Montoya JC, Li Y, Strother C, Chen G-H (2018) Deep learning angiography (DLA): three-dimensional C-arm cone beam CT angiography generated from deep learning method using a convolutional neural network. In: Medical imaging 2018: physics of medical imaging. International Society for Optics and Photonics, p 105731N
14.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
15.
go back to reference Yu P, Song K, Lu J (2018) Generating adversarial examples with conditional generative adversarial net. In: 2018 24th International conference on pattern recognition (ICPR). IEEE, pp 676–681 Yu P, Song K, Lu J (2018) Generating adversarial examples with conditional generative adversarial net. In: 2018 24th International conference on pattern recognition (ICPR). IEEE, pp 676–681
16.
go back to reference Nie D, Cao X, Gao Y, Wang L, Shen D (2016) Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep learning and data labeling for medical applications. Springer, pp 170–178 Nie D, Cao X, Gao Y, Wang L, Shen D (2016) Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep learning and data labeling for medical applications. Springer, pp 170–178
17.
go back to reference Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D (2018) Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng 65(12):2720–2730CrossRef Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D (2018) Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng 65(12):2720–2730CrossRef
18.
go back to reference Han X (2017) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44(4):1408–1419CrossRef Han X (2017) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44(4):1408–1419CrossRef
19.
go back to reference Xiang L, Wang Q, Nie D, Zhang L, Jin X, Qiao Y, Shen D (2018) Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image. Med Image Anal 47:31–44CrossRef Xiang L, Wang Q, Nie D, Zhang L, Jin X, Qiao Y, Shen D (2018) Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image. Med Image Anal 47:31–44CrossRef
20.
go back to reference Song T, Song Y, Wang Y, Huang X (2018) Residual network with dense block. J Electron Imaging 27(5):053036CrossRef Song T, Song Y, Wang Y, Huang X (2018) Residual network with dense block. J Electron Imaging 27(5):053036CrossRef
21.
go back to reference Lee D, Yoo J, Tak S, Ye JC (2018) Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans Biomed Eng 65(9):1985–1995CrossRef Lee D, Yoo J, Tak S, Ye JC (2018) Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans Biomed Eng 65(9):1985–1995CrossRef
22.
go back to reference Cao Y, Wu Z, Shen C (2017) Estimating depth from monocular images as classification using deep fully convolutional residual networks. IEEE Trans Circuits Syst Video Technol 28(11):3174–3182CrossRef Cao Y, Wu Z, Shen C (2017) Estimating depth from monocular images as classification using deep fully convolutional residual networks. IEEE Trans Circuits Syst Video Technol 28(11):3174–3182CrossRef
23.
go back to reference Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
24.
go back to reference Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual dense network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2472–2481 Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual dense network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2472–2481
25.
go back to reference Yi Z, Zhang H, Tan P, Gong M (2017) Dualgan: unsupervised dual learning for image-to-image translation. In: Proceedings of the IEEE international conference on computer vision, pp 2849–2857 Yi Z, Zhang H, Tan P, Gong M (2017) Dualgan: unsupervised dual learning for image-to-image translation. In: Proceedings of the IEEE international conference on computer vision, pp 2849–2857
26.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef
27.
go back to reference Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386CrossRef Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386CrossRef
28.
go back to reference Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196CrossRef Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196CrossRef
Metadata
Title
Deep learning-based digital subtraction angiography image generation
Authors
Yufeng Gao
Yu Song
Xiangrui Yin
Weiwen Wu
Lu Zhang
Yang Chen
Wanyin Shi
Publication date
01-10-2019
Publisher
Springer International Publishing
Keyword
Angiography
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 10/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02040-x

Other articles of this Issue 10/2019

International Journal of Computer Assisted Radiology and Surgery 10/2019 Go to the issue