Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 8/2019

01-08-2019 | Ultrasound | Original Article

On the accuracy of optically tracked transducers for image-guided transcranial ultrasound

Authors: V. Chaplin, M. A. Phipps, S. V. Jonathan, W. A. Grissom, P. F. Yang, L. M. Chen, C. F. Caskey

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 8/2019

Login to get access

Abstract

Purpose

Transcranial focused ultrasound (FUS) is increasingly being explored to modulate neuronal activity. To target neuromodulation, researchers often localize the FUS beam onto the brain region(s) of interest using spatially tracked tools overlaid on pre-acquired images. Here, we quantify the accuracy of optically tracked image-guided FUS with magnetic resonance imaging (MRI) thermometry, evaluate sources of error and demonstrate feasibility of these procedures to target the macaque somatosensory region.

Methods

We developed an optically tracked FUS system capable of projecting the transducer focus onto a pre-acquired MRI volume. To measure the target registration error (TRE), we aimed the transducer focus at a desired target in a phantom under image guidance, heated the target while imaging with MR thermometry and then calculated the TRE as the difference between the targeted and heated locations. Multiple targets were measured using either an unbiased or bias-corrected calibration. We then targeted the macaque S1 brain region, where displacement induced by the acoustic radiation force was measured using MR acoustic radiation force imaging (MR-ARFI).

Results

All calibration methods enabled registration with TRE on the order of 3 mm. Unbiased calibration resulted in an average TRE of 3.26 mm (min–max: 2.80–4.53 mm), which was not significantly changed by prospective bias correction (TRE of 3.05 mm; 2.06–3.81 mm, p = 0.55). Restricting motion between the transducer and target and increasing the distance between tracked markers reduced the TRE to 2.43 mm (min–max: 0.79–3.88 mm). MR-ARFI images showed qualitatively similar shape and extent as projected beam profiles in a living non-human primate.

Conclusions

Our study describes methods for image guidance of FUS neuromodulation and quantifies errors associated with this method in a large animal. The workflow is efficient enough for in vivo use, and we demonstrate transcranial MR-ARFI in vivo in macaques for the first time.
Appendix
Available only for authorised users
Literature
2.
go back to reference Wan H et al (1996) Ultrasound surgery: comparison of strategies using phased array systems. IEEE Trans Ultrason Ferroelectr Freq Control 43(6):1085–1098CrossRef Wan H et al (1996) Ultrasound surgery: comparison of strategies using phased array systems. IEEE Trans Ultrason Ferroelectr Freq Control 43(6):1085–1098CrossRef
3.
go back to reference Mestas JL, Fowler RA, Evjen TJ, Somaglino L, Moussatov A, Ngo J, Chesnais S, Rognvaldsson S, Fossheim SL, Nilssen EA, Lafon C (2014) Therapeutic efficacy of the combination of doxorubicin-loaded liposomes with inertial cavitation generated by confocal ultrasound in AT2 dunning rat tumour model. J Drug Target 22:688–697. https://doi.org/10.3109/1061186X.2014.906604 CrossRefPubMed Mestas JL, Fowler RA, Evjen TJ, Somaglino L, Moussatov A, Ngo J, Chesnais S, Rognvaldsson S, Fossheim SL, Nilssen EA, Lafon C (2014) Therapeutic efficacy of the combination of doxorubicin-loaded liposomes with inertial cavitation generated by confocal ultrasound in AT2 dunning rat tumour model. J Drug Target 22:688–697. https://​doi.​org/​10.​3109/​1061186X.​2014.​906604 CrossRefPubMed
11.
17.
go back to reference Airan RD, Meyer RA, Ellens NPK, Rhodes KR, Farahani K, Pomper MG, Kadam SD, Green JJ (2017) Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett 17:652–659CrossRefPubMedPubMedCentral Airan RD, Meyer RA, Ellens NPK, Rhodes KR, Farahani K, Pomper MG, Kadam SD, Green JJ (2017) Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett 17:652–659CrossRefPubMedPubMedCentral
19.
go back to reference Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG (2018) Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng 2:475CrossRefPubMed Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG (2018) Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng 2:475CrossRefPubMed
31.
go back to reference Burlew MM, Madsen EL, Zagzebski JA, Banjavic RA, Sum SW (1980) A new ultrasound tissue-equivalent material. Radiology 134:517–520CrossRefPubMed Burlew MM, Madsen EL, Zagzebski JA, Banjavic RA, Sum SW (1980) A new ultrasound tissue-equivalent material. Radiology 134:517–520CrossRefPubMed
32.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341CrossRefPubMedPubMedCentral Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341CrossRefPubMedPubMedCentral
35.
go back to reference Jonathan S, Phipps MA, Chaplin VL, Singh A, Yang PF, Newton AT, Gore JC, Chen LM, Caskey CF, Grissom WA (2018) Optical tracking-guided MR-ARFI for targeting focused ultrasound neuromodulationin non-human primates. In: Grissom WA, Caskey CF (eds) In The 18th international society of therapeutic ultrasound, pp 176–178. Nashville Jonathan S, Phipps MA, Chaplin VL, Singh A, Yang PF, Newton AT, Gore JC, Chen LM, Caskey CF, Grissom WA (2018) Optical tracking-guided MR-ARFI for targeting focused ultrasound neuromodulationin non-human primates. In: Grissom WA, Caskey CF (eds) In The 18th international society of therapeutic ultrasound, pp 176–178. Nashville
36.
go back to reference Labadie RF, Davis BM, Fitzpatrick JM (2005) Image-guided surgery: what is the accuracy? Curr Opin Otolaryngol Head Neck Surg 13:27–31CrossRefPubMed Labadie RF, Davis BM, Fitzpatrick JM (2005) Image-guided surgery: what is the accuracy? Curr Opin Otolaryngol Head Neck Surg 13:27–31CrossRefPubMed
Metadata
Title
On the accuracy of optically tracked transducers for image-guided transcranial ultrasound
Authors
V. Chaplin
M. A. Phipps
S. V. Jonathan
W. A. Grissom
P. F. Yang
L. M. Chen
C. F. Caskey
Publication date
01-08-2019
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 8/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-01988-0

Other articles of this Issue 8/2019

International Journal of Computer Assisted Radiology and Surgery 8/2019 Go to the issue