Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 10/2019

01-10-2019 | Tremor | Review Article

Toward versatile cooperative surgical robotics: a review and future challenges

Authors: Philipp Schleer, Sergey Drobinsky, Matias de la Fuente, Klaus Radermacher

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 10/2019

Login to get access

Abstract

Purpose

Surgical robotics has developed throughout the past 30 years resulting in more than 5000 different approaches proposed for various surgical disciplines supporting different surgical task sequences and differing ways of human–machine cooperation or degrees of automation. However, this diversity of systems influences cost as well as usability and might hinder their widespread adoption. In combination with the current trend toward open and modular “plug and play” dynamic networks of medical devices and IT systems in the operating room, a modular human–robot system design with versatile access to cooperative functions with varying degrees of automation on demand is desirable. Therefore, standardized robotic device profiles describing essential functional characteristics of cooperative robotic systems are mandatory.

Methods

Surgical robotics is analyzed from a human–machine interaction perspective to identify generic cooperative robotic device profiles, features and use cases. Therefore, cooperative aspects are introduced from a general point of view. Relevant communication channels used for human–machine interaction are then analyzed, referenced by surgical scenarios. Subsequently, proposed classifications of surgical task sequences and surgical robotic systems are analyzed with a focus on a modular design for cooperative robotics in surgery.

Results

Considerations based on cooperative guidelines are given and features are identified and summarized in a classification scheme used to define distinct generic cooperative robotic device profiles. The latter can be the basis for a modular architecture of future surgical robot systems.

Conclusion

Modular system design can be expanded toward functionalities or different degrees of autonomy, shared or manual control. The proposed device profiles of cooperative surgical robots could lay the foundation for integration into open and modular dynamic “plug and play” networks in the operating room to enhance versatility, benefit-to-cost ratio and, thereby, market spread of surgical robotics.
Literature
1.
go back to reference Wickens CD (1984) Engineering psychology and human performance. A Bell & Howell Company, Columbus Wickens CD (1984) Engineering psychology and human performance. A Bell & Howell Company, Columbus
2.
go back to reference Taylor RH (2006) A perspective on medical robotics. Proc IEEE 94:1652–1664CrossRef Taylor RH (2006) A perspective on medical robotics. Proc IEEE 94:1652–1664CrossRef
3.
go back to reference Luczak H (1993) Prinzipien menschlicher Informationsverarbeitung-Analytik und Gestaltung informatorisch-mentaler Arbeit. In: Arbeitswissenschaft. Springer, Berlin, Heidelberg, pp 126–213CrossRef Luczak H (1993) Prinzipien menschlicher Informationsverarbeitung-Analytik und Gestaltung informatorisch-mentaler Arbeit. In: Arbeitswissenschaft. Springer, Berlin, Heidelberg, pp 126–213CrossRef
4.
go back to reference Knight JL (1987) Manual control and tracking. In: Salvendy G (ed) Handbook of human factors. Wiley, New York, pp 182–218 Knight JL (1987) Manual control and tracking. In: Salvendy G (ed) Handbook of human factors. Wiley, New York, pp 182–218
5.
go back to reference Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35:153–160CrossRefPubMed Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35:153–160CrossRefPubMed
6.
go back to reference Dario P, Hannaford B, Menciassi A (2003) Smart surgical tools and augmenting devices. IEEE Trans Robot Autom 19:782–792CrossRef Dario P, Hannaford B, Menciassi A (2003) Smart surgical tools and augmenting devices. IEEE Trans Robot Autom 19:782–792CrossRef
7.
go back to reference Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM (2011) Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot Comput Assist Surg 7:375–392CrossRef Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM (2011) Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot Comput Assist Surg 7:375–392CrossRef
8.
go back to reference Tahboub KA (2001) Natural and manmade shared-control systems: an overview. In: Proceeding 2001 ICRA. IEEE international conference on robotics and automation. IEEE, Seoul, South Korea, pp 2655–2660 Tahboub KA (2001) Natural and manmade shared-control systems: an overview. In: Proceeding 2001 ICRA. IEEE international conference on robotics and automation. IEEE, Seoul, South Korea, pp 2655–2660
9.
go back to reference Taylor RH, Menciassi A, Fichtinger G, Dario P (2008) Medical robotics and computer-integrated surgery. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Cham, pp 1199–1222CrossRef Taylor RH, Menciassi A, Fichtinger G, Dario P (2008) Medical robotics and computer-integrated surgery. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Cham, pp 1199–1222CrossRef
10.
go back to reference Brandt G, Zimolong A, Carrat L, Merloz P, Staudte H-W, Lavallee S, Radermacher K, Rau G (1999) CRIGOS: a compact robot for image-guided orthopedic surgery. IEEE Trans Inf Technol Biomed 3:252–260CrossRefPubMed Brandt G, Zimolong A, Carrat L, Merloz P, Staudte H-W, Lavallee S, Radermacher K, Rau G (1999) CRIGOS: a compact robot for image-guided orthopedic surgery. IEEE Trans Inf Technol Biomed 3:252–260CrossRefPubMed
11.
go back to reference Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y (2003) Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom 19:893–901CrossRef Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y (2003) Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom 19:893–901CrossRef
12.
go back to reference Clark TC, Schmidt FH (2013) Robot-assisted navigation versus computer-assisted navigation in primary total knee arthroplasty: efficiency and accuracy. ISRN Orthop 2013:794827CrossRefPubMedPubMedCentral Clark TC, Schmidt FH (2013) Robot-assisted navigation versus computer-assisted navigation in primary total knee arthroplasty: efficiency and accuracy. ISRN Orthop 2013:794827CrossRefPubMedPubMedCentral
13.
go back to reference Kazanzides P, Zuhars J, Mittelstadt B, Williamson B, Cain P, Smith F, Rose L, Musits B (1992) Architecture of a surgical robot. In: IEEE international conference on systems, man and cybernetics, 1992. IEEE, New York, pp 1624–1629 Kazanzides P, Zuhars J, Mittelstadt B, Williamson B, Cain P, Smith F, Rose L, Musits B (1992) Architecture of a surgical robot. In: IEEE international conference on systems, man and cybernetics, 1992. IEEE, New York, pp 1624–1629
14.
go back to reference Kazanzides P, Mittelstadt BD, Musits BL, Bargar WL, Zuhars JF, Williamson B, Cain PW, Carbone EJ (1995) An integrated system for cementless hip replacement. IEEE Eng Med Biol Mag 14:307–313CrossRef Kazanzides P, Mittelstadt BD, Musits BL, Bargar WL, Zuhars JF, Williamson B, Cain PW, Carbone EJ (1995) An integrated system for cementless hip replacement. IEEE Eng Med Biol Mag 14:307–313CrossRef
15.
go back to reference Troccaz J, Peshkin M, Davies B (1998) Synergistic mechanical devices: a new generation of medical robots. In: Hirose S, Shirai Y (eds) Robotics research. Springer, London, pp 317–323CrossRef Troccaz J, Peshkin M, Davies B (1998) Synergistic mechanical devices: a new generation of medical robots. In: Hirose S, Shirai Y (eds) Robotics research. Springer, London, pp 317–323CrossRef
16.
go back to reference Jakopec M, Harris SJ, Rodriguez y Baena F, Gomes P, Davies BL (2003) The Acrobot® system for total knee replacement. Ind Robot An Int J 30:61–66CrossRef Jakopec M, Harris SJ, Rodriguez y Baena F, Gomes P, Davies BL (2003) The Acrobot® system for total knee replacement. Ind Robot An Int J 30:61–66CrossRef
17.
go back to reference Taylor R, Jensen P, Whitcomb L, Barnes A, Kumar R, Stoianovici D, Gupta P, Wang Z, Dejuan E, Kavoussi L (1999) A steady-hand robotic system for microsurgical augmentation. Int J Rob Res 18:1201–1210CrossRef Taylor R, Jensen P, Whitcomb L, Barnes A, Kumar R, Stoianovici D, Gupta P, Wang Z, Dejuan E, Kavoussi L (1999) A steady-hand robotic system for microsurgical augmentation. Int J Rob Res 18:1201–1210CrossRef
18.
go back to reference Brisson G, Kanade T, DiGioia A, Jaramaz B (2004) Precision freehand sculpting of bone. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 105–112 Brisson G, Kanade T, DiGioia A, Jaramaz B (2004) Precision freehand sculpting of bone. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 105–112
19.
go back to reference Follmann A, Korff A, Fuertjes T, Kunze SC, Schmieder K, Radermacher K (2012) A novel concept for smart trepanation. J Craniofac Surg 23:309–314CrossRefPubMed Follmann A, Korff A, Fuertjes T, Kunze SC, Schmieder K, Radermacher K (2012) A novel concept for smart trepanation. J Craniofac Surg 23:309–314CrossRefPubMed
20.
go back to reference Niggemeyer M, Müller M, Niesche A, de la Fuente M, Komadinic A, Radermacher K (2012) Modular design of a miniaturized surgical robot system. Biomed Tech Eng 57:261–268 Niggemeyer M, Müller M, Niesche A, de la Fuente M, Komadinic A, Radermacher K (2012) Modular design of a miniaturized surgical robot system. Biomed Tech Eng 57:261–268
21.
go back to reference Theisgen L, de la Fuente M, Radermacher K (2018) Modular design of versatile surgical mini-robots. Curr Dir Biomed Eng 4:411–414CrossRef Theisgen L, de la Fuente M, Radermacher K (2018) Modular design of versatile surgical mini-robots. Curr Dir Biomed Eng 4:411–414CrossRef
22.
go back to reference Spath D, Braun M, Bauer W (2009) Integrated human and automation systems. In: Nof SY (ed) Springer handbook of automation. Springer, Berlin, Heidelberg, pp 571–598CrossRef Spath D, Braun M, Bauer W (2009) Integrated human and automation systems. In: Nof SY (ed) Springer handbook of automation. Springer, Berlin, Heidelberg, pp 571–598CrossRef
23.
go back to reference Golatowski F, Janss A, Leucker M, Neumuth T (2018) OR. NET-secure dynamic networks in the operating room and clinic. Biomed Eng Technol 63:1–3CrossRef Golatowski F, Janss A, Leucker M, Neumuth T (2018) OR. NET-secure dynamic networks in the operating room and clinic. Biomed Eng Technol 63:1–3CrossRef
24.
go back to reference Pfeiffer JH, Kasparick M, Strathen B, Dietz C, Dingler ME, Lueth TC, Timmermann D, Radermacher K, Golatowski F (2018) OR. NET RT: how service-oriented medical device architecture meets real-time communication. Biomed Eng Technol 63:81–93CrossRef Pfeiffer JH, Kasparick M, Strathen B, Dietz C, Dingler ME, Lueth TC, Timmermann D, Radermacher K, Golatowski F (2018) OR. NET RT: how service-oriented medical device architecture meets real-time communication. Biomed Eng Technol 63:81–93CrossRef
25.
go back to reference Janß A, Thorn J, Schmitz M, Mildner A, Dell’Anna-Pudlik J, Leucker M, Radermacher K (2018) Extended device profiles and testing procedures for the approval process of integrated medical devices using the IEEE 11073 communication standard. Biomed Eng Technol 63:95–103CrossRef Janß A, Thorn J, Schmitz M, Mildner A, Dell’Anna-Pudlik J, Leucker M, Radermacher K (2018) Extended device profiles and testing procedures for the approval process of integrated medical devices using the IEEE 11073 communication standard. Biomed Eng Technol 63:95–103CrossRef
26.
go back to reference Benzko J, Krause L, Janß A, Marschollek B, Merz P, Dell’Anna J, Radermacher K (2016) Modular user interface design for integrated surgical workplaces. Biomed Eng Technol 61:183–197 Benzko J, Krause L, Janß A, Marschollek B, Merz P, Dell’Anna J, Radermacher K (2016) Modular user interface design for integrated surgical workplaces. Biomed Eng Technol 61:183–197
27.
go back to reference Flemisch FO, Adams CA, Conway SR, Goodrich KH, Palmer MT, Schutte PC (2003) The H-Metaphor as a guideline for vehicle automation and interaction. NASA Langley Research Center, Hampton, VA Flemisch FO, Adams CA, Conway SR, Goodrich KH, Palmer MT, Schutte PC (2003) The H-Metaphor as a guideline for vehicle automation and interaction. NASA Langley Research Center, Hampton, VA
28.
go back to reference Abbink DA, Mulder M, Boer ER (2012) Haptic shared control: smoothly shifting control authority? Cogn Technol Work 14:19–28CrossRef Abbink DA, Mulder M, Boer ER (2012) Haptic shared control: smoothly shifting control authority? Cogn Technol Work 14:19–28CrossRef
29.
go back to reference Flemisch F, Heesen M, Hesse T, Kelsch J, Schieben A, Beller J (2012) Towards a dynamic balance between humans and automation: authority, ability, responsibility and control in shared and cooperative control situations. Cogn Technol Work 14:3–18CrossRef Flemisch F, Heesen M, Hesse T, Kelsch J, Schieben A, Beller J (2012) Towards a dynamic balance between humans and automation: authority, ability, responsibility and control in shared and cooperative control situations. Cogn Technol Work 14:3–18CrossRef
30.
go back to reference Radermacher K, de la Fuente M, Brandt G, Zimolong A, Schkommodau E, Portheine F, Rau G (2002) Computer-und Robotertechnik für die bildgeführte Orthopädische Chirurgie (Computer and Robot Technology for Image guided Orthopaedic Surgery). at-Automatisierungstechnik Methoden und Anwendungen der Steuerungs-, Regelungs-und Informationstechnik 50:317 Radermacher K, de la Fuente M, Brandt G, Zimolong A, Schkommodau E, Portheine F, Rau G (2002) Computer-und Robotertechnik für die bildgeführte Orthopädische Chirurgie (Computer and Robot Technology for Image guided Orthopaedic Surgery). at-Automatisierungstechnik Methoden und Anwendungen der Steuerungs-, Regelungs-und Informationstechnik 50:317
31.
go back to reference de Winter JCF, Dodou D (2011) Preparing drivers for dangerous situations: a critical reflection on continuous shared control. In: 2011 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, New York, pp 1050–1056 de Winter JCF, Dodou D (2011) Preparing drivers for dangerous situations: a critical reflection on continuous shared control. In: 2011 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, New York, pp 1050–1056
32.
go back to reference Lee JD, Seppelt BD (2009) Human factors in automation design. In: Nof SY (ed) Springer handbook of automation. Springer, Berlin, Heidelberg, pp 417–436CrossRef Lee JD, Seppelt BD (2009) Human factors in automation design. In: Nof SY (ed) Springer handbook of automation. Springer, Berlin, Heidelberg, pp 417–436CrossRef
33.
go back to reference Wickens CD, Hollands JG, Banbury S, Parasuraman R (2013) Engineering psychology and human performance. Pearson, London Wickens CD, Hollands JG, Banbury S, Parasuraman R (2013) Engineering psychology and human performance. Pearson, London
35.
36.
go back to reference Radermacher K (1999) Computerunterstützte Operationsplanung und-ausführung mittels individueller Bearbeitungsschablonen in der Orthopädie. Shaker Radermacher K (1999) Computerunterstützte Operationsplanung und-ausführung mittels individueller Bearbeitungsschablonen in der Orthopädie. Shaker
38.
go back to reference Weber EH (1978) The sense of touch. Academic Press, Berlin Weber EH (1978) The sense of touch. Academic Press, Berlin
41.
go back to reference Wagner CR (2006) Force feedback in surgery: physical constraints and haptic information. Harvard University, Cambridge Wagner CR (2006) Force feedback in surgery: physical constraints and haptic information. Harvard University, Cambridge
42.
go back to reference Schneider O, Troccaz J (2001) A six-degree-of-freedom passive arm with dynamic constraints (PADyC) for cardiac surgery application: preliminary experiments. Comput Aided Surg 6:340–351CrossRefPubMed Schneider O, Troccaz J (2001) A six-degree-of-freedom passive arm with dynamic constraints (PADyC) for cardiac surgery application: preliminary experiments. Comput Aided Surg 6:340–351CrossRefPubMed
43.
go back to reference Hagag B, Abovitz R, Kang H, Schmitz B, Conditt M (2011) RIO: robotic-arm interactive orthopedic system MAKOplasty: user interactive haptic orthopedic robotics. In: Rosen J, Hannaford B, Satava RM (eds) Surgical robotics. Springer, Boston, pp 219–246CrossRef Hagag B, Abovitz R, Kang H, Schmitz B, Conditt M (2011) RIO: robotic-arm interactive orthopedic system MAKOplasty: user interactive haptic orthopedic robotics. In: Rosen J, Hannaford B, Satava RM (eds) Surgical robotics. Springer, Boston, pp 219–246CrossRef
44.
go back to reference Escobar PF, Knight J, Kroh M, Chalikonda S, Kaouk J, Stein R (2012) Single-port hysterectomy with pelvic lymph node dissection in the porcine model: feasibility and validation of a novel robotic lightweight endoscope positioner. Gynecol Surg 9:97–101CrossRef Escobar PF, Knight J, Kroh M, Chalikonda S, Kaouk J, Stein R (2012) Single-port hysterectomy with pelvic lymph node dissection in the porcine model: feasibility and validation of a novel robotic lightweight endoscope positioner. Gynecol Surg 9:97–101CrossRef
45.
go back to reference Pandalai S, Kavanagh DO, Neary P (2010) Robotic assisted laparoscopic colectomy. Ir Med J 21:1701–1708 Pandalai S, Kavanagh DO, Neary P (2010) Robotic assisted laparoscopic colectomy. Ir Med J 21:1701–1708
46.
go back to reference Nathan C-AO, Chakradeo V, Malhotra K, D’agostino H, Patwardhan R (2006) The voice-controlled robotic assist scope holder AESOP for the endoscopic approach to the sella. Skull Base 16:123–131CrossRefPubMed Nathan C-AO, Chakradeo V, Malhotra K, D’agostino H, Patwardhan R (2006) The voice-controlled robotic assist scope holder AESOP for the endoscopic approach to the sella. Skull Base 16:123–131CrossRefPubMed
48.
go back to reference Guthart GS, Salisbury JK (2000) The Intuitive/sup TM/telesurgery system: overview and application. In: Proceedings. ICRA’00. IEEE international conference on robotics and automation, 2000. IEEE, New York, pp 618–621 Guthart GS, Salisbury JK (2000) The Intuitive/sup TM/telesurgery system: overview and application. In: Proceedings. ICRA’00. IEEE international conference on robotics and automation, 2000. IEEE, New York, pp 618–621
49.
go back to reference Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239:14CrossRefPubMed Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239:14CrossRefPubMed
50.
go back to reference Altendorf E, Weßel G, Baltzer M, Canpolat Y, Flemisch F (2016) Joint decision making and cooperative driver–vehicle interaction during critical driving situations. i-com 15:265–281CrossRef Altendorf E, Weßel G, Baltzer M, Canpolat Y, Flemisch F (2016) Joint decision making and cooperative driver–vehicle interaction during critical driving situations. i-com 15:265–281CrossRef
51.
go back to reference Peon AR, Prattichizzo D (2013) Reaction times to constraint violation in haptics: comparing vibration, visual and audio stimuli. In: World haptics conference (WHC), 2013. IEEE, New York, pp 657–661 Peon AR, Prattichizzo D (2013) Reaction times to constraint violation in haptics: comparing vibration, visual and audio stimuli. In: World haptics conference (WHC), 2013. IEEE, New York, pp 657–661
53.
go back to reference Mezger U, Jendrewski C, Bartels M (2013) Navigation in surgery. Langenbeck’s Arch Surg 398:501–514CrossRef Mezger U, Jendrewski C, Bartels M (2013) Navigation in surgery. Langenbeck’s Arch Surg 398:501–514CrossRef
54.
go back to reference Troccaz J, Peshkin M, Davies B (1998) Guiding systems for computer-assisted surgery: introducing synergistic devices and discussing the different approaches. Med Image Anal 2:101–119CrossRefPubMed Troccaz J, Peshkin M, Davies B (1998) Guiding systems for computer-assisted surgery: introducing synergistic devices and discussing the different approaches. Med Image Anal 2:101–119CrossRefPubMed
55.
go back to reference Vitiello V, Kwok K-W, Yang G-Z (2012) Introduction to robot-assisted minimally invasive surgery (MIS). In: Gomes P (ed) Medical robotics. Minimally invasive surgery. Elsevier, Amsterdam, pp 1–P1 Vitiello V, Kwok K-W, Yang G-Z (2012) Introduction to robot-assisted minimally invasive surgery (MIS). In: Gomes P (ed) Medical robotics. Minimally invasive surgery. Elsevier, Amsterdam, pp 1–P1
56.
go back to reference Hoeckelmann M, Rudas IJ, Fiorini P, Kirchner F, Haidegger T (2015) Current capabilities and development potential in surgical robotics. Int J Adv Robot Syst 12:61CrossRef Hoeckelmann M, Rudas IJ, Fiorini P, Kirchner F, Haidegger T (2015) Current capabilities and development potential in surgical robotics. Int J Adv Robot Syst 12:61CrossRef
57.
go back to reference Cinquin P, Bainville E, Barbe C, Bittar E, Bouchard V, Bricault L, Champleboux G, Chenin M, Chevalier L, Delnondedieu Y (1995) Computer assisted medical interventions. IEEE Eng Med Biol Mag 14:254–263CrossRef Cinquin P, Bainville E, Barbe C, Bittar E, Bouchard V, Bricault L, Champleboux G, Chenin M, Chevalier L, Delnondedieu Y (1995) Computer assisted medical interventions. IEEE Eng Med Biol Mag 14:254–263CrossRef
58.
go back to reference Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng Part H J Eng Med 214:129–140CrossRef Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng Part H J Eng Med 214:129–140CrossRef
59.
go back to reference Follmann A, Korff A, Kunze S, Schmieder K, Radermacher K (2010) Protection of dura mater using a semiautomatic trepanation system. Int J Comput Assist Radiol Surg 5:311–312 Follmann A, Korff A, Kunze S, Schmieder K, Radermacher K (2010) Protection of dura mater using a semiautomatic trepanation system. Int J Comput Assist Radiol Surg 5:311–312
60.
go back to reference Ang WT, Riviere CN, Khosla PK (2001) Design and implementation of active error canceling in hand-held microsurgical instrument. In: Proceedings. 2001 IEEE/RSJ international conference on intelligent robots and systems, 2001. IEEE, New York, pp 1106–1111 Ang WT, Riviere CN, Khosla PK (2001) Design and implementation of active error canceling in hand-held microsurgical instrument. In: Proceedings. 2001 IEEE/RSJ international conference on intelligent robots and systems, 2001. IEEE, New York, pp 1106–1111
61.
go back to reference Rodriguez y Baena F, Davies B (2010) Robotic surgery: from autonomous systems to intelligent tools. Robotica 28:163–170CrossRef Rodriguez y Baena F, Davies B (2010) Robotic surgery: from autonomous systems to intelligent tools. Robotica 28:163–170CrossRef
62.
go back to reference Digioia AM, Kanade T, Wells P (1996) Final report for the second international workshop on robotics and computer assisted medical interventions. In: Computer aided surgery, pp 69–101 Digioia AM, Kanade T, Wells P (1996) Final report for the second international workshop on robotics and computer assisted medical interventions. In: Computer aided surgery, pp 69–101
63.
go back to reference Yang S (2015) Handheld micromanipulator for robot-assisted microsurgery. Dissertation. Robotics Institute, Carnegie Mellon University Yang S (2015) Handheld micromanipulator for robot-assisted microsurgery. Dissertation. Robotics Institute, Carnegie Mellon University
64.
go back to reference Wagner A, Pott PP, Schwarz ML, Scharf H-P, Weiser P, Köpfle A, Männer R, Badreddin E (2004) Control of a handheld robot for orthopaedic surgery. IFAC Proc 37:477–482CrossRef Wagner A, Pott PP, Schwarz ML, Scharf H-P, Weiser P, Köpfle A, Männer R, Badreddin E (2004) Control of a handheld robot for orthopaedic surgery. IFAC Proc 37:477–482CrossRef
65.
go back to reference Comparetti MD, De Momi E, De Lorenzo D, Beyl T, Raczkowsky J, Ferrigno G (2012) Safe surgical robotic system and workflow design in the active project for awake neurosurgery. In: Proceedings of the 2012 IEEE international conference on intelligent robots and systems (IROS, Vilamoura), workshop on safety in human–robot coexistence and interaction: how can standardization and research benefit from each other Comparetti MD, De Momi E, De Lorenzo D, Beyl T, Raczkowsky J, Ferrigno G (2012) Safe surgical robotic system and workflow design in the active project for awake neurosurgery. In: Proceedings of the 2012 IEEE international conference on intelligent robots and systems (IROS, Vilamoura), workshop on safety in human–robot coexistence and interaction: how can standardization and research benefit from each other
66.
go back to reference Davies B, Starkie S, Harris SJ, Agterhuis E, Paul V, Auer LM (2000) Neurobot: a special-purpose robot for neurosurgery. In: Proceedings. ICRA’00. IEEE international conference on robotics and automation, 2000. IEEE, New York, pp 4103–4108 Davies B, Starkie S, Harris SJ, Agterhuis E, Paul V, Auer LM (2000) Neurobot: a special-purpose robot for neurosurgery. In: Proceedings. ICRA’00. IEEE international conference on robotics and automation, 2000. IEEE, New York, pp 4103–4108
68.
go back to reference Strauss G, Koulechov K, Richter R, Dietz A, Trantakis C, Lüth T (2005) Navigated control in functional endoscopic sinus surgery. Int J Med Robot Comput Assist Surg 1:31–41CrossRef Strauss G, Koulechov K, Richter R, Dietz A, Trantakis C, Lüth T (2005) Navigated control in functional endoscopic sinus surgery. Int J Med Robot Comput Assist Surg 1:31–41CrossRef
70.
go back to reference Chng C-B, Ho Y, Chui C-K (2015) Automation of retinal surgery: a shared control robotic system for laser ablation. In: 2015 IEEE international conference on information and automation. IEEE, New York, pp 1957–1962 Chng C-B, Ho Y, Chui C-K (2015) Automation of retinal surgery: a shared control robotic system for laser ablation. In: 2015 IEEE international conference on information and automation. IEEE, New York, pp 1957–1962
71.
go back to reference Kang H, Wen JT (2001) Endobot: a robotic assistant in minimally invasive surgeries. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation, 2001. IEEE, New York, pp 2031–2036 Kang H, Wen JT (2001) Endobot: a robotic assistant in minimally invasive surgeries. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation, 2001. IEEE, New York, pp 2031–2036
72.
go back to reference Tadano K, Kawashima K, Kojima K, Tanaka N (2010) Development of a pneumatic surgical manipulator IBIS IV. J Robot Mechatron 22:179–188CrossRef Tadano K, Kawashima K, Kojima K, Tanaka N (2010) Development of a pneumatic surgical manipulator IBIS IV. J Robot Mechatron 22:179–188CrossRef
74.
go back to reference Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S, Kübler B, Passig G, Gröger M, Fröhlich F, Seibold U (2010) DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg 5:183–193CrossRefPubMed Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S, Kübler B, Passig G, Gröger M, Fröhlich F, Seibold U (2010) DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg 5:183–193CrossRefPubMed
75.
go back to reference Hendrix R (2011) Robotically assisted eye surgery: a haptic master console. Tech Univ Eindhoven, Eindhoven Hendrix R (2011) Robotically assisted eye surgery: a haptic master console. Tech Univ Eindhoven, Eindhoven
76.
go back to reference Das H, Ohm TIM, Boswell C, Steele ROB, Rodriguez G (2001) Robot-assisted microsurgery development at JPL. Patent Med 85 Das H, Ohm TIM, Boswell C, Steele ROB, Rodriguez G (2001) Robot-assisted microsurgery development at JPL. Patent Med 85
77.
go back to reference Nawrat Z, Kostka P (2008) Robin heart–perspectives of application of mini invasive tools in cardiac surgery. In: Bozovic V (ed) Medical robotics. InTech, London, pp 265–290 Nawrat Z, Kostka P (2008) Robin heart–perspectives of application of mini invasive tools in cardiac surgery. In: Bozovic V (ed) Medical robotics. InTech, London, pp 265–290
80.
go back to reference Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg J, Rha KH, Schurr M, Kaouk J, Patel V (2017) Future of robotic surgery in urology. BJU Int 120:822–841CrossRefPubMed Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg J, Rha KH, Schurr M, Kaouk J, Patel V (2017) Future of robotic surgery in urology. BJU Int 120:822–841CrossRefPubMed
81.
go back to reference Sutherland GR, Latour I, Greer AD (2008) Integrating an image-guided robot with intraoperative MRI. IEEE Eng Med Biol Mag 27:59–65CrossRefPubMed Sutherland GR, Latour I, Greer AD (2008) Integrating an image-guided robot with intraoperative MRI. IEEE Eng Med Biol Mag 27:59–65CrossRefPubMed
82.
go back to reference Marescaux J, Rubino F (2003) The ZEUS robotic system: experimental and clinical applications. Surg Clin North Am 83:1305–1315CrossRefPubMed Marescaux J, Rubino F (2003) The ZEUS robotic system: experimental and clinical applications. Surg Clin North Am 83:1305–1315CrossRefPubMed
83.
go back to reference Massie TH (1993) Design of a three degree of freedom force-reflecting haptic interface. Dissertation. Massachusetts Institute of Technology Massie TH (1993) Design of a three degree of freedom force-reflecting haptic interface. Dissertation. Massachusetts Institute of Technology
84.
go back to reference O’Malley M, Goldfarb M (2002) The effect of force saturation on the haptic perception of detail. IEEE/ASME Trans Mechatron 7:280–288CrossRef O’Malley M, Goldfarb M (2002) The effect of force saturation on the haptic perception of detail. IEEE/ASME Trans Mechatron 7:280–288CrossRef
85.
go back to reference Sutter PH, Iatridis JC, Thakor NV (1989) Response to reflected-force feedback to fingers in teleoperations. In: Proceedings of the NASA conference on space telerobotics, vol 4, pp 65–74 Sutter PH, Iatridis JC, Thakor NV (1989) Response to reflected-force feedback to fingers in teleoperations. In: Proceedings of the NASA conference on space telerobotics, vol 4, pp 65–74
86.
go back to reference van Oosterhout J, Wildenbeest JGW, Boessenkool H, Heemskerk CJM, de Baar MR, van der Helm FCT, Abbink DA (2015) Haptic shared control in tele-manipulation: effects of inaccuracies in guidance on task execution. IEEE Trans Haptics 8:164–175CrossRefPubMed van Oosterhout J, Wildenbeest JGW, Boessenkool H, Heemskerk CJM, de Baar MR, van der Helm FCT, Abbink DA (2015) Haptic shared control in tele-manipulation: effects of inaccuracies in guidance on task execution. IEEE Trans Haptics 8:164–175CrossRefPubMed
87.
go back to reference Smisek J, van Paassen MM, Schiele A (2015) Haptic guidance in bilateral teleoperation: effects of guidance inaccuracy. In: World haptics conference (WHC), 2015 IEEE. IEEE, New York, pp 500–505 Smisek J, van Paassen MM, Schiele A (2015) Haptic guidance in bilateral teleoperation: effects of guidance inaccuracy. In: World haptics conference (WHC), 2015 IEEE. IEEE, New York, pp 500–505
Metadata
Title
Toward versatile cooperative surgical robotics: a review and future challenges
Authors
Philipp Schleer
Sergey Drobinsky
Matias de la Fuente
Klaus Radermacher
Publication date
01-10-2019
Publisher
Springer International Publishing
Keyword
Tremor
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 10/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-01927-z

Other articles of this Issue 10/2019

International Journal of Computer Assisted Radiology and Surgery 10/2019 Go to the issue