Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 3/2019

01-03-2019 | Original Article

Dual-modality multi-atlas segmentation of torso organs from [18F]FDG-PET/CT images

Authors: Hongkai Wang, Nan Zhang, Li Huo, Bin Zhang

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 3/2019

Login to get access

Abstract

Purpose

Automated segmentation of torso organs from positron emission tomography/computed tomography (PET/CT) images is a prerequisite step for nuclear medicine image analysis. However, accurate organ segmentation from clinical PET/CT is challenging due to the poor soft tissue contrast in the low-dose CT image and the low spatial resolution of the PET image. To overcome these challenges, we developed a multi-atlas segmentation (MAS) framework for torso organ segmentation from 2-deoxy-2-[18F]fluoro-d-glucose PET/CT images.

Method

Our key idea is to use PET information to compensate for the imperfect CT contrast and use surface-based atlas fusion to overcome the low PET resolution. First, all the organs are segmented from CT using a conventional MAS method, and then the abdomen region of the PET image is automatically cropped. Focusing on the cropped PET image, a refined MAS segmentation of the abdominal organs is performed, using a surface-based atlas fusion approach to reach subvoxel accuracy.

Results

This method was validated based on 69 PET/CT images. The Dice coefficients of the target organs were between 0.80 and 0.96, and the average surface distances were between 1.58 and 2.44 mm. Compared to the CT-based segmentation, the PET-based segmentation gained a Dice increase of 0.06 and an ASD decrease of 0.38 mm. The surface-based atlas fusion leads to significant accuracy improvement for the liver and kidneys and saved ~ 10 min computation time compared to volumetric atlas fusion.

Conclusions

The presented method achieves better segmentation accuracy than conventional MAS method within acceptable computation time for clinical applications.
Literature
1.
go back to reference Jimenez-Del-Toro O, Muller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodriguez A, Goksel O, Jakab A (2016) Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans Med Imag 35(11):2459–2475CrossRef Jimenez-Del-Toro O, Muller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodriguez A, Goksel O, Jakab A (2016) Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans Med Imag 35(11):2459–2475CrossRef
2.
go back to reference Norajitra T, Maier-Hein KH (2017) 3D statistical shape models incorporating landmark-wise random regression forests for omni-directional landmark detection. IEEE Trans Med Imaging 36(1):155–168CrossRefPubMed Norajitra T, Maier-Hein KH (2017) 3D statistical shape models incorporating landmark-wise random regression forests for omni-directional landmark detection. IEEE Trans Med Imaging 36(1):155–168CrossRefPubMed
3.
go back to reference Criminisi A, Robertson D, Konukoglu E, Shotton J, Pathak S, White S, Siddiqui K (2013) Regression forests for efficient anatomy detection and localization in computed tomography scans. Med Image Anal 17(8):1293–1303CrossRefPubMed Criminisi A, Robertson D, Konukoglu E, Shotton J, Pathak S, White S, Siddiqui K (2013) Regression forests for efficient anatomy detection and localization in computed tomography scans. Med Image Anal 17(8):1293–1303CrossRefPubMed
4.
go back to reference Zhou X, Wang S, Chen H, Hara T, Yokoyama R, Kanematsu M, Fujita H (2012) Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning. Comput Med Imag Gr Off J Comput Med Imag Soc 36(4):304–313CrossRef Zhou X, Wang S, Chen H, Hara T, Yokoyama R, Kanematsu M, Fujita H (2012) Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning. Comput Med Imag Gr Off J Comput Med Imag Soc 36(4):304–313CrossRef
5.
go back to reference Seifert S (2010) Semantic annotation of medical images. Acta Biol Colomb 15(3):181–196 Seifert S (2010) Semantic annotation of medical images. Acta Biol Colomb 15(3):181–196
6.
go back to reference Seifert S, Barbu A, Feulner J, Suehling M (2008) Hierarchical parsing and semantic navigation of full body CT data. Proc SPIE 2008:725902–725908 Seifert S, Barbu A, Feulner J, Suehling M (2008) Hierarchical parsing and semantic navigation of full body CT data. Proc SPIE 2008:725902–725908
7.
go back to reference Zhou X, Watanabe A, Zhou X, Hara T, Yokoyama R, Kanematsu M, Fujita H (2012) Automatic organ segmentation on torso CT images by using content-based image retrieval. Proc SPIE Int Soc Opt Eng 8314:116–123 Zhou X, Watanabe A, Zhou X, Hara T, Yokoyama R, Kanematsu M, Fujita H (2012) Automatic organ segmentation on torso CT images by using content-based image retrieval. Proc SPIE Int Soc Opt Eng 8314:116–123
8.
go back to reference Udupa JK, Odhner D, Zhao L, Tong Y, Matsumoto MMS, Ciesielski KC, Falcao AX, Vaideeswaran P, Ciesielski V, Saboury B (2014) Body-Wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Med Image Anal 18(5):752–771CrossRefPubMedPubMedCentral Udupa JK, Odhner D, Zhao L, Tong Y, Matsumoto MMS, Ciesielski KC, Falcao AX, Vaideeswaran P, Ciesielski V, Saboury B (2014) Body-Wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Med Image Anal 18(5):752–771CrossRefPubMedPubMedCentral
9.
go back to reference Wang CSO (2014) Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors. Proc VISC Chall ISBI 1194:25–31 Wang CSO (2014) Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors. Proc VISC Chall ISBI 1194:25–31
10.
go back to reference Wang H, Udupa JK, Odhner D, Tong Y, Zhao L, Torigian DA (2016) Automatic anatomy recognition in whole-body PET/CT images. Med Phys 43(1):613–629CrossRefPubMed Wang H, Udupa JK, Odhner D, Tong Y, Zhao L, Torigian DA (2016) Automatic anatomy recognition in whole-body PET/CT images. Med Phys 43(1):613–629CrossRefPubMed
11.
go back to reference Lay N, Birkbeck N, Zhang J, Zhou SK (2013) Rapid multi-organ segmentation using context integration and discriminative models. Int Conf Inf Process Med Imag (IPIM), 2013. Springer, Berlin, pp 450–462 Lay N, Birkbeck N, Zhang J, Zhou SK (2013) Rapid multi-organ segmentation using context integration and discriminative models. Int Conf Inf Process Med Imag (IPIM), 2013. Springer, Berlin, pp 450–462
12.
go back to reference Gauriau R, Ardori R, Lesage D, Bloch I (2015) Multiple template deformation application to abdominal organ segmentation. In: IEEE international symposium on biomedical imaging, pp 359–362 Gauriau R, Ardori R, Lesage D, Bloch I (2015) Multiple template deformation application to abdominal organ segmentation. In: IEEE international symposium on biomedical imaging, pp 359–362
13.
go back to reference Bagci U, Chen X, Udupa JK (2012) Hierarchical scale-based multiobject recognition of 3-D anatomical structures. IEEE Trans Med Imag 31(3):777–789CrossRef Bagci U, Chen X, Udupa JK (2012) Hierarchical scale-based multiobject recognition of 3-D anatomical structures. IEEE Trans Med Imag 31(3):777–789CrossRef
14.
go back to reference Chen X, Udupa JK, Bağcı U, Ying Z, Yao J (2012) Medical image segmentation by combining graph cut and oriented active appearance models. IEEE Trans Image Process 21(4):2035–2046CrossRefPubMedPubMedCentral Chen X, Udupa JK, Bağcı U, Ying Z, Yao J (2012) Medical image segmentation by combining graph cut and oriented active appearance models. IEEE Trans Image Process 21(4):2035–2046CrossRefPubMedPubMedCentral
15.
go back to reference Hu P, Wu F, Peng J, Bao Y, Chen F, Kong D (2017) Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg 12(3):399–411CrossRefPubMed Hu P, Wu F, Peng J, Bao Y, Chen F, Kong D (2017) Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg 12(3):399–411CrossRefPubMed
16.
go back to reference Shin H-C, Orton MR, Collins DJ, Doran SJ, Leach MO (2013) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans Pattern Anal Mach Intell 35(8):1930–1943CrossRefPubMed Shin H-C, Orton MR, Collins DJ, Doran SJ, Leach MO (2013) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans Pattern Anal Mach Intell 35(8):1930–1943CrossRefPubMed
17.
go back to reference Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 32(9):1723–1730CrossRefPubMed Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 32(9):1723–1730CrossRefPubMed
18.
go back to reference Zikic D, Glocker B, Criminisi A (2014) Encoding atlases by randomized classification forests for efficient multi-atlas label propagation. Med Image Anal 18(8):1262–1273CrossRefPubMed Zikic D, Glocker B, Criminisi A (2014) Encoding atlases by randomized classification forests for efficient multi-atlas label propagation. Med Image Anal 18(8):1262–1273CrossRefPubMed
19.
go back to reference Oliveira B, Queiros S, Morais P, Torres HR, Gomes-Fonseca J, Fonseca JC, Vilaca JL (2018) A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from computed tomography. Med Image Anal 45:108–120CrossRefPubMed Oliveira B, Queiros S, Morais P, Torres HR, Gomes-Fonseca J, Fonseca JC, Vilaca JL (2018) A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from computed tomography. Med Image Anal 45:108–120CrossRefPubMed
20.
go back to reference Wang H, Zhang N, Huo L, Zhang B (2017) Evaluation of different atlas selection strategies for multi-atlas segmentation of low-dose computed tomographic images of whole-body positron emission tomography/computed tomography. Dig Med 3(4):186–192CrossRef Wang H, Zhang N, Huo L, Zhang B (2017) Evaluation of different atlas selection strategies for multi-atlas segmentation of low-dose computed tomographic images of whole-body positron emission tomography/computed tomography. Dig Med 3(4):186–192CrossRef
21.
go back to reference Bagci U, Udupa JK, Mendhiratta N, Foster B, Xu Z, Yao J, Chen X, Mollura DJ (2013) Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images. Med Image Anal 17(8):929–945CrossRefPubMedPubMedCentral Bagci U, Udupa JK, Mendhiratta N, Foster B, Xu Z, Yao J, Chen X, Mollura DJ (2013) Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images. Med Image Anal 17(8):929–945CrossRefPubMedPubMedCentral
22.
go back to reference Ballangan C, Wang X, Feng D (2011) Lung tumor delineation in PET-CT images based on a new segmentation energy. In: Nuclear science symposium and medical imaging conference, pp 3202–3205 Ballangan C, Wang X, Feng D (2011) Lung tumor delineation in PET-CT images based on a new segmentation energy. In: Nuclear science symposium and medical imaging conference, pp 3202–3205
23.
go back to reference Cui H, Wang X, Lin W, Zhou J, Eberl S, Feng D, Fulham M (2016) Primary lung tumor segmentation from PET–CT volumes with spatial–topological constraint. Int J Comput Assist Radiol Surg 11(1):1–11CrossRef Cui H, Wang X, Lin W, Zhou J, Eberl S, Feng D, Fulham M (2016) Primary lung tumor segmentation from PET–CT volumes with spatial–topological constraint. Int J Comput Assist Radiol Surg 11(1):1–11CrossRef
24.
go back to reference Cui H, Wang X, Zhou J, Eberl S, Feng D, Fulham M (2015) Improved segmentation accuracy for thoracic PET-CT in patients with NSCLC using a multi-graph model (MGM). J Nucl Med 56(Suppl 3):2527 Cui H, Wang X, Zhou J, Eberl S, Feng D, Fulham M (2015) Improved segmentation accuracy for thoracic PET-CT in patients with NSCLC using a multi-graph model (MGM). J Nucl Med 56(Suppl 3):2527
25.
go back to reference Cui H, Wang X, Zhou J, Eberl S, Yin Y, Feng D, Fulham M (2015) Topology polymorphism graph for lung tumor segmentation in PET-CT images. Phys Med Biol 60(12):4893–4914CrossRefPubMed Cui H, Wang X, Zhou J, Eberl S, Yin Y, Feng D, Fulham M (2015) Topology polymorphism graph for lung tumor segmentation in PET-CT images. Phys Med Biol 60(12):4893–4914CrossRefPubMed
26.
go back to reference Ju W, Xiang D, Zhang B, Wang L, Kopriva I, Chen X (2015) Random walk and graph cut for co-segmentation of Lung tumor on PET-CT images. IEEE Trans Image Process 24(12):5854–5867CrossRefPubMed Ju W, Xiang D, Zhang B, Wang L, Kopriva I, Chen X (2015) Random walk and graph cut for co-segmentation of Lung tumor on PET-CT images. IEEE Trans Image Process 24(12):5854–5867CrossRefPubMed
27.
go back to reference Markel D, Caldwell C, Alasti H, Soliman H, Ung Y, Lee J, Sun A (2013) Automatic Segmentation of Lung Carcinoma Using 3D Texture Features in 18-FDG PET/CT. Int J Mol Imag 2013(980769):1–13 Markel D, Caldwell C, Alasti H, Soliman H, Ung Y, Lee J, Sun A (2013) Automatic Segmentation of Lung Carcinoma Using 3D Texture Features in 18-FDG PET/CT. Int J Mol Imag 2013(980769):1–13
28.
go back to reference Song Q, Bai J, Han D, Bhatia S, Sun W, Rockey W, Bayouth JE, Buatti JM, Wu X (2013) Optimal co-segmentation of tumor in PET-CT images with context information. IEEE Trans Med Imaging 32(9):1685–1697CrossRefPubMedPubMedCentral Song Q, Bai J, Han D, Bhatia S, Sun W, Rockey W, Bayouth JE, Buatti JM, Wu X (2013) Optimal co-segmentation of tumor in PET-CT images with context information. IEEE Trans Med Imaging 32(9):1685–1697CrossRefPubMedPubMedCentral
29.
go back to reference Xiang D, Chen X (2016) Automatic co-segmentation of lung tumor based on random forest in PET-CT images. In: Medical imaging 2016: image processing, 2016, vol 9784, pp 97842W1–97842W7 Xiang D, Chen X (2016) Automatic co-segmentation of lung tumor based on random forest in PET-CT images. In: Medical imaging 2016: image processing, 2016, vol 9784, pp 97842W1–97842W7
30.
go back to reference Bi L, Kim J, Wen L, Feng DD (2012) Automatic descending aorta segmentation in whole-body PET-CT studies for PERCIST-based thresholding. In: International conference on digital image computing techniques and applications, pp 1–6 Bi L, Kim J, Wen L, Feng DD (2012) Automatic descending aorta segmentation in whole-body PET-CT studies for PERCIST-based thresholding. In: International conference on digital image computing techniques and applications, pp 1–6
31.
go back to reference Wang J, Xia Y, Feng DD (2012) Differential evolution based variational bayes inference for brain PET-CT image segmentation. In: International conference on digital image computing techniques and applications, pp 330–334 Wang J, Xia Y, Feng DD (2012) Differential evolution based variational bayes inference for brain PET-CT image segmentation. In: International conference on digital image computing techniques and applications, pp 330–334
32.
go back to reference Xia AY, Wen L, Eberl S, Fulham M, Feng D (2009) Segmentation of brain PET-CT images based on adaptive use of complementary information. Proc SPIE Int Soc Opt Eng 7259:72593A1–72593A8 Xia AY, Wen L, Eberl S, Fulham M, Feng D (2009) Segmentation of brain PET-CT images based on adaptive use of complementary information. Proc SPIE Int Soc Opt Eng 7259:72593A1–72593A8
33.
go back to reference Xia Y, Eberl S, Feng D (2010) Dual-modality 3D brain PET-CT image segmentation based on probabilistic brain atlas and classification fusion. In: IEEE international conference on image processing, pp 2557–2560 Xia Y, Eberl S, Feng D (2010) Dual-modality 3D brain PET-CT image segmentation based on probabilistic brain atlas and classification fusion. In: IEEE international conference on image processing, pp 2557–2560
34.
go back to reference Xia Y, Eberl S, Wen L, Fulham M, Feng DD (2012) Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information. Comput Med Imag Gr 36(1):47–53CrossRef Xia Y, Eberl S, Wen L, Fulham M, Feng DD (2012) Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information. Comput Med Imag Gr 36(1):47–53CrossRef
35.
go back to reference Xia Y, Wang J, Eberl S, Fulham M, Feng DD (2011) Brain tissue segmentation in PET-CT images using probabilistic atlas and variational Bayes inference. In: International conference of the IEEE engineering in medicine & biology society, pp 7969–7972 Xia Y, Wang J, Eberl S, Fulham M, Feng DD (2011) Brain tissue segmentation in PET-CT images using probabilistic atlas and variational Bayes inference. In: International conference of the IEEE engineering in medicine & biology society, pp 7969–7972
36.
go back to reference Xia Y, Wen L, Eberl S, Fulham M (2008) Segmentation of dual modality brain PET/CT images using the MAP-MRF model. In: 2008 IEEE workshop on multimedia signal processing, pp 107–110 Xia Y, Wen L, Eberl S, Fulham M (2008) Segmentation of dual modality brain PET/CT images using the MAP-MRF model. In: 2008 IEEE workshop on multimedia signal processing, pp 107–110
37.
go back to reference Iglesias JE, Sabuncu MR (2014) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24(1):205–219CrossRef Iglesias JE, Sabuncu MR (2014) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24(1):205–219CrossRef
38.
go back to reference Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46(3):726–738CrossRefPubMed Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46(3):726–738CrossRefPubMed
39.
go back to reference Aljabar P, Heckemann R, Hammers A, Hajnal JV, Rueckert D (2007) Classifier selection strategies for label fusion using large atlas databases. Med Image Comput Comput Assist Interv 10(Pt 1):523–531PubMed Aljabar P, Heckemann R, Hammers A, Hajnal JV, Rueckert D (2007) Classifier selection strategies for label fusion using large atlas databases. Med Image Comput Comput Assist Interv 10(Pt 1):523–531PubMed
40.
go back to reference Aribisala BS, Cox SR, Ferguson KJ, Macpherson SE, Maclullich AM, Royle NA, Valdés Hernández MC, Bastin ME, Deary IJ, Wardlaw JM (2013) Assessing the performance of atlas-based prefrontal brain parcellation in an ageing cohort. J Comput Assist Tomogr 37(2):257–264CrossRefPubMed Aribisala BS, Cox SR, Ferguson KJ, Macpherson SE, Maclullich AM, Royle NA, Valdés Hernández MC, Bastin ME, Deary IJ, Wardlaw JM (2013) Assessing the performance of atlas-based prefrontal brain parcellation in an ageing cohort. J Comput Assist Tomogr 37(2):257–264CrossRefPubMed
41.
go back to reference Rohlfing T, Brandt R, Menzel R, Maurer MC Jr (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21(4):1428–1442CrossRefPubMed Rohlfing T, Brandt R, Menzel R, Maurer MC Jr (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21(4):1428–1442CrossRefPubMed
42.
go back to reference Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1):115–126CrossRefPubMed Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1):115–126CrossRefPubMed
43.
go back to reference Wan J, Carass A, Resnick SM, Prince JL (2008) Automated reliable labeling of the cortical surface. Proc IEEE Int Symp Biomed Imaging 6:440–443 Wan J, Carass A, Resnick SM, Prince JL (2008) Automated reliable labeling of the cortical surface. Proc IEEE Int Symp Biomed Imaging 6:440–443
44.
go back to reference Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vision 61(2):139–157CrossRef Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vision 61(2):139–157CrossRef
45.
go back to reference Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45(1):S61–S72CrossRefPubMed Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45(1):S61–S72CrossRefPubMed
46.
go back to reference Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral
47.
go back to reference Artaechevarria X, Munoz-Barrutia A, Ortiz-De-Solorzano C (2009) Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging 28(8):1266–1277CrossRefPubMed Artaechevarria X, Munoz-Barrutia A, Ortiz-De-Solorzano C (2009) Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging 28(8):1266–1277CrossRefPubMed
48.
go back to reference Avants BB, Tustison NJ, Song G, Gee JC (2009) Ants: Open-source tools for normalization and neuroanatomy. Transac Med Imagins Penn Image Comput Sci Lab Avants BB, Tustison NJ, Song G, Gee JC (2009) Ants: Open-source tools for normalization and neuroanatomy. Transac Med Imagins Penn Image Comput Sci Lab
49.
go back to reference Commowick O, Warfield SK (2009) A continuous STAPLE for scalar, vector, and tensor images: an application to DTI analysis. IEEE Trans Med Imag 28(6):838–846CrossRef Commowick O, Warfield SK (2009) A continuous STAPLE for scalar, vector, and tensor images: an application to DTI analysis. IEEE Trans Med Imag 28(6):838–846CrossRef
50.
go back to reference Rajon DA, Bolch WE (2003) Marching cube algorithm: review and trilinear interpolation adaptation for image-based dosimetric models. Comput Med Imag Gr 27(5):411–435CrossRef Rajon DA, Bolch WE (2003) Marching cube algorithm: review and trilinear interpolation adaptation for image-based dosimetric models. Comput Med Imag Gr 27(5):411–435CrossRef
51.
go back to reference Chui H, Rangarajan A (2000) A new algorithm for non-rigid point matching. In: Proceedings IEEE conference on computer vision and pattern recognition, pp 44–51 Chui H, Rangarajan A (2000) A new algorithm for non-rigid point matching. In: Proceedings IEEE conference on computer vision and pattern recognition, pp 44–51
52.
go back to reference Glaister J, Carass A, Pham DL, Butman JA, Prince JL (2017) Falx cerebri segmentation via multi-atlas boundary fusion. In: International conference on medical image computing and computer-assisted intervention pp 92–99 Glaister J, Carass A, Pham DL, Butman JA, Prince JL (2017) Falx cerebri segmentation via multi-atlas boundary fusion. In: International conference on medical image computing and computer-assisted intervention pp 92–99
53.
go back to reference Gardner MJ, Altman DG (1986) Confidence intervals rather than P values: estimation rather than hypothesis testing. BMJ 292(6522):746–750CrossRefPubMed Gardner MJ, Altman DG (1986) Confidence intervals rather than P values: estimation rather than hypothesis testing. BMJ 292(6522):746–750CrossRefPubMed
54.
go back to reference Kohlberger T, Sofka M, Zhang J, Birkbeck N, Wetzl J, Kaftan J, Declerck J, Zhou SK (2011) Automatic multi-organ segmentation using learning-based segmentation and level set optimization. Med Image Comput Comput Assist Interv 14(Pt 3):338–345PubMed Kohlberger T, Sofka M, Zhang J, Birkbeck N, Wetzl J, Kaftan J, Declerck J, Zhou SK (2011) Automatic multi-organ segmentation using learning-based segmentation and level set optimization. Med Image Comput Comput Assist Interv 14(Pt 3):338–345PubMed
55.
go back to reference Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M, Mori K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. Med Image Anal 23(1):92–104CrossRefPubMed Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M, Mori K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. Med Image Anal 23(1):92–104CrossRefPubMed
56.
go back to reference Jimenez-del-Toro O, Muller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodriguez A, Goksel O, Jakab A, Kontokotsios G, Langs G, Menze BH, Fernandez TS, Schaer R, Walleyo A, Weber MA, Cid YD, Gass T, Heinrich M, Jia FC, Kahl F, Kechichian R, Mai D, Spanier AB, Vincent G, Wang CL, Wyeth D, Hanbury A (2016) Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans Med Imag 35(11):2459–2475CrossRef Jimenez-del-Toro O, Muller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodriguez A, Goksel O, Jakab A, Kontokotsios G, Langs G, Menze BH, Fernandez TS, Schaer R, Walleyo A, Weber MA, Cid YD, Gass T, Heinrich M, Jia FC, Kahl F, Kechichian R, Mai D, Spanier AB, Vincent G, Wang CL, Wyeth D, Hanbury A (2016) Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans Med Imag 35(11):2459–2475CrossRef
Metadata
Title
Dual-modality multi-atlas segmentation of torso organs from [18F]FDG-PET/CT images
Authors
Hongkai Wang
Nan Zhang
Li Huo
Bin Zhang
Publication date
01-03-2019
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 3/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1879-3

Other articles of this Issue 3/2019

International Journal of Computer Assisted Radiology and Surgery 3/2019 Go to the issue