Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 10/2017

01-10-2017 | Original Article

High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control

Authors: Sebastian Tauscher, Alexander Fuchs, Fabian Baier, Lüder A. Kahrs, Tobias Ortmaier

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 10/2017

Login to get access

Abstract

Purpose

Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not.

Methods

Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks.

Results

The described drill axis estimation process results in a high angular repeatability (\(0.026^\circ \,\pm \,16^\circ \)). In the first set of drilling results, an accuracy of \((50\,\pm \,20\,\upmu {\mathrm {m}})\) at entrance and \((170\,\pm \,50\,\upmu {\mathrm {m}})\) at target point excluding imaging was achieved. With admittance feed control an accuracy of \((250\,\pm \,90\,\upmu {\mathrm {m}})\) at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of \((20\,\pm \,15\,\upmu {\mathrm {m}})\) and \((165\,\pm \,80\,\upmu {\mathrm {m}})\) was achieved.

Conclusion

The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then \(1\,\mathrm {mm}\) is achievable.
Literature
1.
go back to reference Majdani O, Rau TS, Baron S, Eilers H, Baier C, Heimann B, Leinung M (2009) A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg 4(5):475–486CrossRefPubMed Majdani O, Rau TS, Baron S, Eilers H, Baier C, Heimann B, Leinung M (2009) A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg 4(5):475–486CrossRefPubMed
2.
go back to reference Ortmaier T, Weiss H, Döbele S, Schreiber U (2006) Experiments on robot assisted navigated drilling and milling of bones for pedicle screw placement. The Int J Med Robot Comput Assist Surg 2(4):350–363CrossRef Ortmaier T, Weiss H, Döbele S, Schreiber U (2006) Experiments on robot assisted navigated drilling and milling of bones for pedicle screw placement. The Int J Med Robot Comput Assist Surg 2(4):350–363CrossRef
3.
go back to reference Schipper J, Aschendorff A, Arapakis I, Klenzner T, Teszler CB, Ridder GJ, Laszig R (2004) Navigation as a quality management tool in cochlear implant surgery. The J Laryngol Otol 118(10):764–770CrossRefPubMed Schipper J, Aschendorff A, Arapakis I, Klenzner T, Teszler CB, Ridder GJ, Laszig R (2004) Navigation as a quality management tool in cochlear implant surgery. The J Laryngol Otol 118(10):764–770CrossRefPubMed
4.
go back to reference Bowyer SA, Davies BL, Rodriguez y Baena F (2014) Active constraints/virtual fixtures: a survey. Robot IEEE Trans 30(1):138–157CrossRef Bowyer SA, Davies BL, Rodriguez y Baena F (2014) Active constraints/virtual fixtures: a survey. Robot IEEE Trans 30(1):138–157CrossRef
5.
go back to reference Eilers H, Baron S, Ortmaier T, Heimann B, Baier C, Rau TS, Leinung M, Majdani O(2009) Navigated, robot assisted drilling of a minimally invasive cochlear access. In: IEEE international conference on mechatronics (ICM) 2009 p 1–6 Eilers H, Baron S, Ortmaier T, Heimann B, Baier C, Rau TS, Leinung M, Majdani O(2009) Navigated, robot assisted drilling of a minimally invasive cochlear access. In: IEEE international conference on mechatronics (ICM) 2009 p 1–6
6.
go back to reference Bell B, Stieger C, Gerber N, Arnold A, Nauer C, Hamacher V, Kompis M, Nolte L, Caversaccio Weber S (2012) A self-developed and constructed robot for minimally invasive cochlear implantation. Acta oto-laryngol 132(4):355–360CrossRef Bell B, Stieger C, Gerber N, Arnold A, Nauer C, Hamacher V, Kompis M, Nolte L, Caversaccio Weber S (2012) A self-developed and constructed robot for minimally invasive cochlear implantation. Acta oto-laryngol 132(4):355–360CrossRef
7.
go back to reference Bell B, Gerber N, Williamson T, Gavaghan K, Wimmer W, Caversaccio M, Weber S (2013) In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otol Neurotol 34(7):1284–1290CrossRefPubMed Bell B, Gerber N, Williamson T, Gavaghan K, Wimmer W, Caversaccio M, Weber S (2013) In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otol Neurotol 34(7):1284–1290CrossRefPubMed
8.
go back to reference Bettini A, Marayong P, Lang S, Okamura AM, Hager GD (2004) Vision-assisted control for manipulation using virtual fixtures. Robot IEEE Trans 20(6):953–966CrossRef Bettini A, Marayong P, Lang S, Okamura AM, Hager GD (2004) Vision-assisted control for manipulation using virtual fixtures. Robot IEEE Trans 20(6):953–966CrossRef
9.
go back to reference Marayong P, Li M, Okamura AM, Hager GD (2003) Spatial motion constraints: theory and demonstrations for robot guidance using virtual fixtures. In: Proceedings IEEE international conference on robotics and automation, 2003, ICRA’03 , vol. 2, p 1954–1959 Marayong P, Li M, Okamura AM, Hager GD (2003) Spatial motion constraints: theory and demonstrations for robot guidance using virtual fixtures. In: Proceedings IEEE international conference on robotics and automation, 2003, ICRA’03 , vol. 2, p 1954–1959
10.
go back to reference Cruces RA, Wahrburg J (2007) Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures. The Int J Med Robot Comput Assist Surg 3(4):316–322CrossRef Cruces RA, Wahrburg J (2007) Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures. The Int J Med Robot Comput Assist Surg 3(4):316–322CrossRef
11.
go back to reference Pieck S, Gross I, Knappe P, Kuenzler S, Kerschbaumer F, Wahrburg J (2003) A navigated mechatronic system with haptic features to assist in surgical interventions. Comput Aided Surg 8(6):292–299CrossRefPubMed Pieck S, Gross I, Knappe P, Kuenzler S, Kerschbaumer F, Wahrburg J (2003) A navigated mechatronic system with haptic features to assist in surgical interventions. Comput Aided Surg 8(6):292–299CrossRefPubMed
12.
go back to reference Ortmaier T, Weiss H, Hagn U, Grebenstein M, Nickl M, Albu-Schäffer A, Ott C, Jörg S, Konietschke R, Le-Tien L, Hirzinger G (2006) A hands-on-robot for accurate placement of pedicle screws. In: Proceedings IEEE international conference on robotics and automation, ICRA, p 4179–4186 Ortmaier T, Weiss H, Hagn U, Grebenstein M, Nickl M, Albu-Schäffer A, Ott C, Jörg S, Konietschke R, Le-Tien L, Hirzinger G (2006) A hands-on-robot for accurate placement of pedicle screws. In: Proceedings IEEE international conference on robotics and automation, ICRA, p 4179–4186
13.
go back to reference Labadie RF, Mitchell J, Balachandran R, Fitzpatrick JM (2009) Customized, rapid-production microstereotactic table for surgical targeting: description of concept and in vitro validation. Int J Comput Assist Radiol Surgery 4(3):273–280CrossRef Labadie RF, Mitchell J, Balachandran R, Fitzpatrick JM (2009) Customized, rapid-production microstereotactic table for surgical targeting: description of concept and in vitro validation. Int J Comput Assist Radiol Surgery 4(3):273–280CrossRef
14.
go back to reference Kobler JP, Nuelle K, Lexow GJ, Rau TS, Majdani O, Kahrs LA, Kotlarski J, Ortmaier T (2016) Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery. Int J Comput Assist Radiol Surg 11(3):421–436CrossRefPubMed Kobler JP, Nuelle K, Lexow GJ, Rau TS, Majdani O, Kahrs LA, Kotlarski J, Ortmaier T (2016) Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery. Int J Comput Assist Radiol Surg 11(3):421–436CrossRefPubMed
15.
go back to reference Taylor RH, Mittelstadt BD, Paul HA, Hanson W, Kazanzides P, Zuhars JF, Williamson B, Musits BL, Glassman E, Bargar WL (1994) An image-directed robotic system for precise orthopaedic surgery. IEEE Trans Robot Autom 10(3):261–275CrossRef Taylor RH, Mittelstadt BD, Paul HA, Hanson W, Kazanzides P, Zuhars JF, Williamson B, Musits BL, Glassman E, Bargar WL (1994) An image-directed robotic system for precise orthopaedic surgery. IEEE Trans Robot Autom 10(3):261–275CrossRef
16.
go back to reference Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S, Kübler B, Passig G, Grger M, Frhlich F, Seibold U, Le-Tien L, Albu-Schffer A, Nothhelfer A, Hacker F, Grebenstein M, Hirzinger G (2010) DLR mirosurge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg 5(2):183–193CrossRefPubMed Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S, Kübler B, Passig G, Grger M, Frhlich F, Seibold U, Le-Tien L, Albu-Schffer A, Nothhelfer A, Hacker F, Grebenstein M, Hirzinger G (2010) DLR mirosurge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg 5(2):183–193CrossRefPubMed
17.
go back to reference Widmann G, Stoffner R, Bale R (2009) Errors and error management in image-guided craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 107(5):701–715CrossRef Widmann G, Stoffner R, Bale R (2009) Errors and error management in image-guided craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 107(5):701–715CrossRef
18.
go back to reference Kobler JP, Díaz JD, Fitzpatrick JM, Lexow GJ, Majdani O, Ortmaier T (2014) Localization accuracy of sphere fiducials in computed tomography images. In: Proceedings on International Society for optics and photonics SPIE 9036 medical imaging Kobler JP, Díaz JD, Fitzpatrick JM, Lexow GJ, Majdani O, Ortmaier T (2014) Localization accuracy of sphere fiducials in computed tomography images. In: Proceedings on International Society for optics and photonics SPIE 9036 medical imaging
19.
go back to reference Fuchs A, Tauscher S, Borcherding S, Kahrs LA, Ortmaier T (2015) Robot assisted calibration of an optical localisation system. In: Proceedings of computer assisted radiology and surgery 2015, p 1–16 Fuchs A, Tauscher S, Borcherding S, Kahrs LA, Ortmaier T (2015) Robot assisted calibration of an optical localisation system. In: Proceedings of computer assisted radiology and surgery 2015, p 1–16
20.
go back to reference Kobler JP, Prielozny L, Lexow GJ, Rau TS, Majdani O, Ortmaier T (2015) Mechanical characterization of bone anchors used with a bone-attached, parallel robot for skull surgery. Med Eng Phys 37(5):460–468CrossRefPubMed Kobler JP, Prielozny L, Lexow GJ, Rau TS, Majdani O, Ortmaier T (2015) Mechanical characterization of bone anchors used with a bone-attached, parallel robot for skull surgery. Med Eng Phys 37(5):460–468CrossRefPubMed
21.
go back to reference Schreiber G, Stemmer A, Bischoff R (2010) The fast research interface for the kuka lightweight robot. In: IEEE workshop on innovative robot control architectures for demanding (research) applications how to modify and enhance commercial controllers (ICRA 2010) Schreiber G, Stemmer A, Bischoff R (2010) The fast research interface for the kuka lightweight robot. In: IEEE workshop on innovative robot control architectures for demanding (research) applications how to modify and enhance commercial controllers (ICRA 2010)
22.
go back to reference Crause LA, O’Donoghue DE, O’Connor JE, Strümpfer F (2010) Use of a faro arm for optical alignment. In: Proceedings SPIE Astronomical Telescopes+ Instrumentation 7739. International Society for optics and photonics Crause LA, O’Donoghue DE, O’Connor JE, Strümpfer F (2010) Use of a faro arm for optical alignment. In: Proceedings SPIE Astronomical Telescopes+ Instrumentation 7739. International Society for optics and photonics
23.
go back to reference Gerber N, Gavaghan KA, Bell BJ, Williamson TM, Weisstanner C, Caversaccio MD, Weber S (2013) High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head. IEEE Trans Biomed Eng 60(4):960–968CrossRefPubMed Gerber N, Gavaghan KA, Bell BJ, Williamson TM, Weisstanner C, Caversaccio MD, Weber S (2013) High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head. IEEE Trans Biomed Eng 60(4):960–968CrossRefPubMed
24.
go back to reference Fuhrmann AL, Splechtna R, Přikryl J (2001) Comprehensive calibration and registration procedures for augmented reality. In: Immersive projection technology and virtual environments, Springer Vienna, p 219–227 Fuhrmann AL, Splechtna R, Přikryl J (2001) Comprehensive calibration and registration procedures for augmented reality. In: Immersive projection technology and virtual environments, Springer Vienna, p 219–227
25.
go back to reference Schönemann PH (1966) A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1):1–10CrossRef Schönemann PH (1966) A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1):1–10CrossRef
26.
go back to reference Albu-Schäffer A, Ott C, Frese U, Hirzinger G (2003) Cartesian impedance control of redundant robots: recent results with the DLR-light-weight-arms. In: Proceedings IEEE international conference on robotics and automation, 2003, ICRA’03, vol. 3, p 3704–3709 Albu-Schäffer A, Ott C, Frese U, Hirzinger G (2003) Cartesian impedance control of redundant robots: recent results with the DLR-light-weight-arms. In: Proceedings IEEE international conference on robotics and automation, 2003, ICRA’03, vol. 3, p 3704–3709
27.
go back to reference Li T, Kermorgant O, Krupa A (2012) Maintaining visibility constraints during tele-echography with ultrasound visual servoing. In: IEEE international conference on robotics and automation (ICRA), 2012, p 4856–4861 Li T, Kermorgant O, Krupa A (2012) Maintaining visibility constraints during tele-echography with ultrasound visual servoing. In: IEEE international conference on robotics and automation (ICRA), 2012, p 4856–4861
28.
go back to reference Labadie RF, Balachandran R, Noble JH, Blachon GS, Mitchell JE, Reda FA, Dawant BM, Fitzpatrick JM (2014) Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. The Laryngo 124(8):1915–1922CrossRef Labadie RF, Balachandran R, Noble JH, Blachon GS, Mitchell JE, Reda FA, Dawant BM, Fitzpatrick JM (2014) Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. The Laryngo 124(8):1915–1922CrossRef
29.
go back to reference Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. Med Imag IEEE Trans 17(5):694–702CrossRef Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. Med Imag IEEE Trans 17(5):694–702CrossRef
30.
go back to reference Kobler JP, Schoppe M, Lexow GJ, Rau TS, Majdani O, Kahrs LA, Ortmaier T (2014) Temporal bone borehole accuracy for cochlear implantation influenced by drilling strategy: an in vitro study. Int J Comput Assist Radiol Surg 9(6):1033–1043CrossRefPubMed Kobler JP, Schoppe M, Lexow GJ, Rau TS, Majdani O, Kahrs LA, Ortmaier T (2014) Temporal bone borehole accuracy for cochlear implantation influenced by drilling strategy: an in vitro study. Int J Comput Assist Radiol Surg 9(6):1033–1043CrossRefPubMed
31.
go back to reference Feldmann A, Gavaghan K, Stebinger M, Williamson T, Weber S, Zysset P. (2017) Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal. Ann Biomed Eng, 1–10 Feldmann A, Gavaghan K, Stebinger M, Williamson T, Weber S, Zysset P. (2017) Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal. Ann Biomed Eng, 1–10
32.
go back to reference Tauscher S, Tokuda J, Schreiber G, Neff T, Hata N, Ortmaier T (2015) OpenIGTLink interface for state control and visualisation of a robot for image-guided therapy systems. Int J Computer Assist Radiol Surg 10(3):285–292CrossRef Tauscher S, Tokuda J, Schreiber G, Neff T, Hata N, Ortmaier T (2015) OpenIGTLink interface for state control and visualisation of a robot for image-guided therapy systems. Int J Computer Assist Radiol Surg 10(3):285–292CrossRef
Metadata
Title
High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control
Authors
Sebastian Tauscher
Alexander Fuchs
Fabian Baier
Lüder A. Kahrs
Tobias Ortmaier
Publication date
01-10-2017
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 10/2017
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1638-x

Other articles of this Issue 10/2017

International Journal of Computer Assisted Radiology and Surgery 10/2017 Go to the issue