Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 2/2017

01-02-2017 | Original Article

Automatic 3D liver location and segmentation via convolutional neural network and graph cut

Authors: Fang Lu, Fa Wu, Peijun Hu, Zhiyi Peng, Dexing Kong

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 2/2017

Login to get access

Abstract

Purpose

Segmentation of the liver from abdominal computed tomography (CT) images is an essential step in some computer-assisted clinical interventions, such as surgery planning for living donor liver transplant, radiotherapy and volume measurement. In this work, we develop a deep learning algorithm with graph cut refinement to automatically segment the liver in CT scans.

Methods

The proposed method consists of two main steps: (i) simultaneously liver detection and probabilistic segmentation using 3D convolutional neural network; (ii) accuracy refinement of the initial segmentation with graph cut and the previously learned probability map.

Results

The proposed approach was validated on forty CT volumes taken from two public databases MICCAI-Sliver07 and 3Dircadb1. For the MICCAI-Sliver07 test dataset, the calculated mean ratios of volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root-mean-square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSD) are 5.9, 2.7 %, 0.91, 1.88 and 18.94 mm, respectively. For the 3Dircadb1 dataset, the calculated mean ratios of VOE, RVD, ASD, RMSD and MSD are 9.36, 0.97 %, 1.89, 4.15 and 33.14 mm, respectively.

Conclusions

The proposed method is fully automatic without any user interaction. Quantitative results reveal that the proposed approach is efficient and accurate for hepatic volume estimation in a clinical setup. The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and nonreproducible manual segmentation method.
Footnotes
1
In detail, they are the livers 02, 04, 06, 08, 10, 12, 14, 16, 18 and 20.
 
2
In detail, they are the livers 01, 03, 05, 07, 09, 11, 13, 15, 17 and 19.
 
Literature
1.
go back to reference Afifi A, Nakaguchi T (2012) Liver segmentation approach using graph cuts and iteratively estimated shape and intensity constrains. Int Conf Med Image Comput Comput Assist Interv 15:395–403 Afifi A, Nakaguchi T (2012) Liver segmentation approach using graph cuts and iteratively estimated shape and intensity constrains. Int Conf Med Image Comput Comput Assist Interv 15:395–403
2.
go back to reference Al-Shaikhli S, Yang M, Rosenhahn B (2015) 3D automatic liver segmentation using feature-constrained mahalanobis distance in CT images. Biomed Tech Biomed Eng. doi:10.1515/bmt-2015-0017 Al-Shaikhli S, Yang M, Rosenhahn B (2015) 3D automatic liver segmentation using feature-constrained mahalanobis distance in CT images. Biomed Tech Biomed Eng. doi:10.​1515/​bmt-2015-0017
4.
go back to reference Beichel R, Bornik A, Bauer C, Sorantin E (2012) Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods. Med Phys 39(3):1361–1373CrossRefPubMedPubMedCentral Beichel R, Bornik A, Bauer C, Sorantin E (2012) Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods. Med Phys 39(3):1361–1373CrossRefPubMedPubMedCentral
5.
go back to reference Bland J, Altman D (2010) Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 47:931–936CrossRef Bland J, Altman D (2010) Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 47:931–936CrossRef
6.
go back to reference Boykov Y, Funka-Lea G (2006) Graph cuts and efficient N-D image segmentation. Int J Comput Vision 70(2):109–131CrossRef Boykov Y, Funka-Lea G (2006) Graph cuts and efficient N-D image segmentation. Int J Comput Vision 70(2):109–131CrossRef
7.
go back to reference Boykov Y, Jolly M (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings 8th IEEE international conference on computer vision. ICCV 2001. IEEE 1, pp 105–112 Boykov Y, Jolly M (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings 8th IEEE international conference on computer vision. ICCV 2001. IEEE 1, pp 105–112
8.
go back to reference Cernazanu-Glavan C, Holban S (2013) Segmentation of bone structure in X-ray images using convolutional neural network. Adv Electr Comput Eng 13(1):87–94CrossRef Cernazanu-Glavan C, Holban S (2013) Segmentation of bone structure in X-ray images using convolutional neural network. Adv Electr Comput Eng 13(1):87–94CrossRef
10.
go back to reference Chung F, Delingette H (2013) Regional appearance modeling based on the clustering of intensity profiles. Comput Vis Image Underst 117(6):705–717CrossRef Chung F, Delingette H (2013) Regional appearance modeling based on the clustering of intensity profiles. Comput Vis Image Underst 117(6):705–717CrossRef
11.
go back to reference Dan CC, Giusti A, Gambardella LM (2012) Schmidhuber: deep neural networks segment neuronal membranes in electron microscopy images. Nips 4:2843–2851 Dan CC, Giusti A, Gambardella LM (2012) Schmidhuber: deep neural networks segment neuronal membranes in electron microscopy images. Nips 4:2843–2851
12.
go back to reference Erdt M, Steger S, Kirschner M, Wesarg S (2010) Fast automatic liver segmentation combining learned shape priors with observed shape deviation. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems, pp 249–254 Erdt M, Steger S, Kirschner M, Wesarg S (2010) Fast automatic liver segmentation combining learned shape priors with observed shape deviation. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems, pp 249–254
13.
go back to reference Freiman M, Eliassaf O, Taieb Y, Joskowicz L, Azraq Y, Sosna J (2008) An iterative Bayesian approach for nearly automatic liver segmentation: algorithm and validation. Int J Comput Assist Radiol Surg 3(5):439–446CrossRef Freiman M, Eliassaf O, Taieb Y, Joskowicz L, Azraq Y, Sosna J (2008) An iterative Bayesian approach for nearly automatic liver segmentation: algorithm and validation. Int J Comput Assist Radiol Surg 3(5):439–446CrossRef
14.
go back to reference Gauriau R, Cuingnet R, Prevost R, Mory B, Ardon R, Lesage D, Bloch I (2013) A generic, robust and fully-automatic workflow for 3D CT liver segmentation. Springer, BerlinCrossRef Gauriau R, Cuingnet R, Prevost R, Mory B, Ardon R, Lesage D, Bloch I (2013) A generic, robust and fully-automatic workflow for 3D CT liver segmentation. Springer, BerlinCrossRef
15.
go back to reference Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563CrossRefPubMed Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563CrossRefPubMed
16.
go back to reference Heimann T, Meinzer HP, Wolf I (2007) A statistical deformable model for the segmentation of liver CT volumes. In: Miccai workshop on 3D segmentation in the clinic, pp 161–166 Heimann T, Meinzer HP, Wolf I (2007) A statistical deformable model for the segmentation of liver CT volumes. In: Miccai workshop on 3D segmentation in the clinic, pp 161–166
17.
go back to reference Heimann T, van Ginneken B, Styner M, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman P, Chi Y, Cordova A, Dawant B, Fidrich M, Furst J, Furukawa D, Grenacher L, Hornegger J, Kainmuller D, Kitney R, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G, Raicu D, Rau AM, van Rikxoort E, Rousson M, Rusko L, Saddi K, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite J, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265CrossRefPubMed Heimann T, van Ginneken B, Styner M, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman P, Chi Y, Cordova A, Dawant B, Fidrich M, Furst J, Furukawa D, Grenacher L, Hornegger J, Kainmuller D, Kitney R, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G, Raicu D, Rau AM, van Rikxoort E, Rousson M, Rusko L, Saddi K, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite J, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265CrossRefPubMed
18.
go back to reference Huang C, Jia F, Li Y, Zhang X, Luo H, Fang C, Fan Y (2012) Automatic liver segmentation based on shape constrained differeomorphic demons atlas registration. In: International conference on electronics, communications and control, pp 126–129 Huang C, Jia F, Li Y, Zhang X, Luo H, Fang C, Fan Y (2012) Automatic liver segmentation based on shape constrained differeomorphic demons atlas registration. In: International conference on electronics, communications and control, pp 126–129
19.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90CrossRefPubMed
20.
go back to reference Kainmüller D, Lange T, Lamecker H (2007) Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Proceeding MICCAI workshop 3-D segmentat. Clinic: a gand challenge, pp 109–116 Kainmüller D, Lange T, Lamecker H (2007) Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Proceeding MICCAI workshop 3-D segmentat. Clinic: a gand challenge, pp 109–116
21.
go back to reference Kinda A, Saddi Rousson M, Hotel CC, Cheriet F (2007) Global to local shape matching for liver segmentation in CT imaging. In: Miccai workshop on 3D segmentation in the clinic, pp 207–214 Kinda A, Saddi Rousson M, Hotel CC, Cheriet F (2007) Global to local shape matching for liver segmentation in CT imaging. In: Miccai workshop on 3D segmentation in the clinic, pp 207–214
22.
go back to reference Kirschner M (2013) The probabilistic active shape model: from model construction to flexible medical image segmentation. Ph.D. dissertation Kirschner M (2013) The probabilistic active shape model: from model construction to flexible medical image segmentation. Ph.D. dissertation
23.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25(2):2012 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25(2):2012
24.
go back to reference Lécun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef Lécun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
25.
go back to reference Lee J, Kim N, Lee H, Seo JB, Won HJ, Shin YM, Shin YG, Kim SH (2007) Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images. Comput Methods Programs Biomed 88(1):26–38CrossRefPubMed Lee J, Kim N, Lee H, Seo JB, Won HJ, Shin YM, Shin YG, Kim SH (2007) Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images. Comput Methods Programs Biomed 88(1):26–38CrossRefPubMed
26.
go back to reference Li G, Chen X, Shi F, Zhu W, Tian J (2015) Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Trans Image Process 24(12):5315–5329CrossRefPubMed Li G, Chen X, Shi F, Zhu W, Tian J (2015) Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Trans Image Process 24(12):5315–5329CrossRefPubMed
27.
go back to reference Linguraru MG, Richbourg WJ, Watt JM, Pamulapati V, Summers RM (2011) Liver and tumor segmentation and analysis from CT of diseased patients via a generic affine invariant shape parameterization and graph cuts. In: International conference on abdominal imaging: computational and clinical applications, pp 198–206 Linguraru MG, Richbourg WJ, Watt JM, Pamulapati V, Summers RM (2011) Liver and tumor segmentation and analysis from CT of diseased patients via a generic affine invariant shape parameterization and graph cuts. In: International conference on abdominal imaging: computational and clinical applications, pp 198–206
28.
go back to reference Massoptier L, Casciaro S (2007) Fully automatic liver segmentation through graph-cut technique. In: 29th annual international conference of the IEEE engineering in medicine and biology society 2007, pp 5243–5246 Massoptier L, Casciaro S (2007) Fully automatic liver segmentation through graph-cut technique. In: 29th annual international conference of the IEEE engineering in medicine and biology society 2007, pp 5243–5246
29.
go back to reference Ni K, Bresson X, Chan T, Esedoglu S (2007) Local histogram based segmentation using the wasserstein distance. In: Scale space and variational methods in computer vision, first international conference, pp 97–111 Ni K, Bresson X, Chan T, Esedoglu S (2007) Local histogram based segmentation using the wasserstein distance. In: Scale space and variational methods in computer vision, first international conference, pp 97–111
30.
go back to reference Pan S, Dawant BM (2006) Automatic 3D segmentation of the liver from abdominal CT images: a level-set approach. Proc SPIE 4322:128–138CrossRef Pan S, Dawant BM (2006) Automatic 3D segmentation of the liver from abdominal CT images: a level-set approach. Proc SPIE 4322:128–138CrossRef
31.
go back to reference Park H, Bland P, Meyer C (2003) Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Trans Med Imaging 22(4):483–492CrossRefPubMed Park H, Bland P, Meyer C (2003) Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Trans Med Imaging 22(4):483–492CrossRefPubMed
32.
go back to reference Peng J, Dong F, Chen Y, Kong D (2014) A region appearance based adaptive variational model for 3D liver segmentation. Med Phys 41(4):043502CrossRefPubMed Peng J, Dong F, Chen Y, Kong D (2014) A region appearance based adaptive variational model for 3D liver segmentation. Med Phys 41(4):043502CrossRefPubMed
33.
go back to reference Peng J, Wang Y, Kong D (2014) Liver segmentation with constrained convex variational model. Pattern Recognit Lett 43:81–88CrossRef Peng J, Wang Y, Kong D (2014) Liver segmentation with constrained convex variational model. Pattern Recognit Lett 43:81–88CrossRef
34.
go back to reference Peng J, Hu P, Lu F, Peng Z, Kong D, Zhang H (2015) 3D liver segmentation using multiple region appearances and graph cuts. Med Phys 42(12):6840–6852CrossRefPubMed Peng J, Hu P, Lu F, Peng Z, Kong D, Zhang H (2015) 3D liver segmentation using multiple region appearances and graph cuts. Med Phys 42(12):6840–6852CrossRefPubMed
35.
go back to reference Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: International conference on medical image computing and computer-assisted intervention, pp 246–253 Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M (2013) Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: International conference on medical image computing and computer-assisted intervention, pp 246–253
36.
go back to reference Ruskó L, Bekes G, Fidrich M (2009) Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images. Med Image Anal 13(6):871–882CrossRefPubMed Ruskó L, Bekes G, Fidrich M (2009) Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images. Med Image Anal 13(6):871–882CrossRefPubMed
37.
go back to reference Shi C, Cheng Y, Liu F, Wang Y, Bai J, Tamura S (2015) A hierarchical local region-based sparse shape composition for liver segmentation in CT scans. Pattern Recognit 50(C):88–106 Shi C, Cheng Y, Liu F, Wang Y, Bai J, Tamura S (2015) A hierarchical local region-based sparse shape composition for liver segmentation in CT scans. Pattern Recognit 50(C):88–106
38.
go back to reference Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. Adv Neural Inf Process Syst 1:2555–2563 Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. Adv Neural Inf Process Syst 1:2555–2563
39.
go back to reference Tomoshige S, Oost E, Shimizu A, Watanabe H, Nawano S (2014) A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images. Med Image Anal 18(1):130–143CrossRefPubMed Tomoshige S, Oost E, Shimizu A, Watanabe H, Nawano S (2014) A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images. Med Image Anal 18(1):130–143CrossRefPubMed
40.
go back to reference Wang G, Zhang S, Li F, Gu L (2013) A new segmentation framework based on sparse shape composition in liver surgery planning system. Med Phys 40(5):792–796CrossRef Wang G, Zhang S, Li F, Gu L (2013) A new segmentation framework based on sparse shape composition in liver surgery planning system. Med Phys 40(5):792–796CrossRef
41.
go back to reference Wang J, Cheng Y, Guo C, Wang Y, Tamura S (2016) Shape–intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images. Int J Comput Assist Radiol Surg 11:817–826 Wang J, Cheng Y, Guo C, Wang Y, Tamura S (2016) Shape–intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images. Int J Comput Assist Radiol Surg 11:817–826
42.
go back to reference Weickert J, Romeny BMTH, Viergever MA (1998) Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Image Process 7(3):398–410CrossRefPubMed Weickert J, Romeny BMTH, Viergever MA (1998) Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Image Process 7(3):398–410CrossRefPubMed
43.
go back to reference Wimmer A, Hornegger J, Soza G (2009) Implicit active shape model employing boundary classifier. In: 19th international conference on pattern recognition, 2008. ICPR 2008, pp 1–4 Wimmer A, Hornegger J, Soza G (2009) Implicit active shape model employing boundary classifier. In: 19th international conference on pattern recognition, 2008. ICPR 2008, pp 1–4
44.
go back to reference Wimmer A, Soza G, Hornegger J (2009) A generic probabilistic active shape model for organ segmentation. Lect Notes Comput Sci 12:26–33 Wimmer A, Soza G, Hornegger J (2009) A generic probabilistic active shape model for organ segmentation. Lect Notes Comput Sci 12:26–33
45.
go back to reference Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 818–833 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 818–833
46.
go back to reference Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108:214–224CrossRefPubMedPubMedCentral Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108:214–224CrossRefPubMedPubMedCentral
Metadata
Title
Automatic 3D liver location and segmentation via convolutional neural network and graph cut
Authors
Fang Lu
Fa Wu
Peijun Hu
Zhiyi Peng
Dexing Kong
Publication date
01-02-2017
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 2/2017
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1467-3

Other articles of this Issue 2/2017

International Journal of Computer Assisted Radiology and Surgery 2/2017 Go to the issue