Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 3/2017

01-03-2017 | Original Article

GRAPE: a graphical pipeline environment for image analysis in adaptive magnetic resonance imaging

Authors: Refaat E. Gabr, Getaneh B. Tefera, William J. Allen, Amol S. Pednekar, Ponnada A. Narayana

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 3/2017

Login to get access

Abstract

Purpose

We present a platform, GRAphical Pipeline Environment (GRAPE), to facilitate the development of patient-adaptive magnetic resonance imaging (MRI) protocols.

Methods

GRAPE is an open-source project implemented in the Qt C++ framework to enable graphical creation, execution, and debugging of real-time image analysis algorithms integrated with the MRI scanner. The platform provides the tools and infrastructure to design new algorithms, and build and execute an array of image analysis routines, and provides a mechanism to include existing analysis libraries, all within a graphical environment. The application of GRAPE is demonstrated in multiple MRI applications, and the software is described in detail for both the user and the developer.

Results

GRAPE was successfully used to implement and execute three applications in MRI of the brain, performed on a 3.0-T MRI scanner: (i) a multi-parametric pipeline for segmenting the brain tissue and detecting lesions in multiple sclerosis (MS), (ii) patient-specific optimization of the 3D fluid-attenuated inversion recovery MRI scan parameters to enhance the contrast of brain lesions in MS, and (iii) an algebraic image method for combining two MR images for improved lesion contrast.

Conclusions

GRAPE allows graphical development and execution of image analysis algorithms for inline, real-time, and adaptive MRI applications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dhawan AP (2011) Medical image analysis, vol 31. John Wiley & Sons Dhawan AP (2011) Medical image analysis, vol 31. John Wiley & Sons
2.
go back to reference Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173CrossRefPubMed Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173CrossRefPubMed
3.
go back to reference Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRefPubMed Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRefPubMed
4.
go back to reference Friston KJ, Holmes P, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef Friston KJ, Holmes P, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef
5.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341CrossRefPubMedPubMedCentral Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341CrossRefPubMedPubMedCentral
7.
go back to reference Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9:594–604CrossRefPubMed Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9:594–604CrossRefPubMed
8.
9.
go back to reference Lucas BC, Bogovic JA, Carass A, Bazin PL, Prince JL, Pham DL, Landman BA (2010) The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software. Neuroinformatics 8:5–17CrossRefPubMedPubMedCentral Lucas BC, Bogovic JA, Carass A, Bazin PL, Prince JL, Pham DL, Landman BA (2010) The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software. Neuroinformatics 8:5–17CrossRefPubMedPubMedCentral
10.
go back to reference Zwart NR, Pipe JG (2014) Graphical programming interface: a development environment for MRI methods. Magn Reson Med 74:1449–1460CrossRefPubMed Zwart NR, Pipe JG (2014) Graphical programming interface: a development environment for MRI methods. Magn Reson Med 74:1449–1460CrossRefPubMed
12.
go back to reference Bitter I, Van Uitert R, Wolf I, Ibáñez L, Kuhnigk JM (2007) Comparison of four freely available frameworks for image processing and visualization that use ITK. IEEE Trans Vis Comput Gr 13(3):483–493 Bitter I, Van Uitert R, Wolf I, Ibáñez L, Kuhnigk JM (2007) Comparison of four freely available frameworks for image processing and visualization that use ITK. IEEE Trans Vis Comput Gr 13(3):483–493
13.
go back to reference Gabr RE, Sun X, Pednekar A, Narayana PA (2016) Automated patient-specific optimization of three-dimensional double inversion recovery magnetic resonance imaging. Magn Reson Med 75:585–593CrossRefPubMed Gabr RE, Sun X, Pednekar A, Narayana PA (2016) Automated patient-specific optimization of three-dimensional double inversion recovery magnetic resonance imaging. Magn Reson Med 75:585–593CrossRefPubMed
14.
go back to reference Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (2008) Extensible markup language (XML) 1.0 (fifth edition). W3C Recomm 2008:1–38 Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (2008) Extensible markup language (XML) 1.0 (fifth edition). W3C Recomm 2008:1–38
16.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320CrossRefPubMedPubMedCentral Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320CrossRefPubMedPubMedCentral
17.
go back to reference Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multi-modality image registration based on information theory. Inf Process Med Imaging 3:263–274 Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multi-modality image registration based on information theory. Inf Process Med Imaging 3:263–274
18.
go back to reference Avants BB, Tustison NJ, Wu J, Cook PA, Gee JC (2011) An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9:381–400CrossRefPubMedPubMedCentral Avants BB, Tustison NJ, Wu J, Cook PA, Gee JC (2011) An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9:381–400CrossRefPubMedPubMedCentral
19.
go back to reference Marcus DS, Olsen TR, Ramaratnam M, Buckner RL (2007) The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5:11–34CrossRefPubMed Marcus DS, Olsen TR, Ramaratnam M, Buckner RL (2007) The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 5:11–34CrossRefPubMed
20.
go back to reference Milo R, Kahana E (2010) Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev 9:A387–A394CrossRefPubMed Milo R, Kahana E (2010) Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev 9:A387–A394CrossRefPubMed
21.
go back to reference Sahraian MA, Eshaghi A (2010) Role of MRI in diagnosis and treatment of multiple sclerosis. Clin Neurol Neurosurg 112:609–615CrossRefPubMed Sahraian MA, Eshaghi A (2010) Role of MRI in diagnosis and treatment of multiple sclerosis. Clin Neurol Neurosurg 112:609–615CrossRefPubMed
22.
go back to reference Sweeney EM, Shinohara RT, Shiee N, Mateen FJ, Chudgar A, Cuzzocreo JL, Calabresi P, Pham DL, Reich DS, Crainiceanu CM (2013) OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI. NeuroImage Clin 2:402–413CrossRefPubMedPubMedCentral Sweeney EM, Shinohara RT, Shiee N, Mateen FJ, Chudgar A, Cuzzocreo JL, Calabresi P, Pham DL, Reich DS, Crainiceanu CM (2013) OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI. NeuroImage Clin 2:402–413CrossRefPubMedPubMedCentral
23.
go back to reference Karimaghaloo Z, Shah M, Francis SJ, Arnold DL, Collins DL, Arbel T (2012) Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields. IEEE Trans Med Imaging 31:1181–1194CrossRefPubMed Karimaghaloo Z, Shah M, Francis SJ, Arnold DL, Collins DL, Arbel T (2012) Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields. IEEE Trans Med Imaging 31:1181–1194CrossRefPubMed
24.
go back to reference Datta S, Narayana P (2013) A comprehensive approach to the segmentation of multichannel three-dimensional MR brain images in multiple sclerosis. NeuroImage Clin 2:184–196 Datta S, Narayana P (2013) A comprehensive approach to the segmentation of multichannel three-dimensional MR brain images in multiple sclerosis. NeuroImage Clin 2:184–196
25.
go back to reference Sajja BR, Datta S, He R, Mehta M, Gupta RK, Wolinsky JS, Narayana PA (2006) Unified approach for multiple sclerosis lesion segmentation on brain MRI. Ann Biomed Eng 34:142–151CrossRefPubMedPubMedCentral Sajja BR, Datta S, He R, Mehta M, Gupta RK, Wolinsky JS, Narayana PA (2006) Unified approach for multiple sclerosis lesion segmentation on brain MRI. Ann Biomed Eng 34:142–151CrossRefPubMedPubMedCentral
26.
go back to reference Gabr RE, Pednekar AS, Sun X, Narayana PA (2016) A framework for precision magnetic resonance imaging: initial results. In: IEEE-EMBS international conference biomedical and health informatics, Las Vegas, NV, USA, pp 276–279 Gabr RE, Pednekar AS, Sun X, Narayana PA (2016) A framework for precision magnetic resonance imaging: initial results. In: IEEE-EMBS international conference biomedical and health informatics, Las Vegas, NV, USA, pp 276–279
27.
go back to reference Wiggermann V, Hernandez-Torres E, Traboulsee A, Li DKB, Rauscher A (2015) FLAIR2: a combination of FLAIR and T2 for improved MS lesion detection. Am J Neuroradiol 37(2):259–265 Wiggermann V, Hernandez-Torres E, Traboulsee A, Li DKB, Rauscher A (2015) FLAIR2: a combination of FLAIR and T2 for improved MS lesion detection. Am J Neuroradiol 37(2):259–265
28.
go back to reference Gabr RE, Hasan KM, Haque ME, Nelson FM, Wolinsky JS, Narayana PA (2016) Optimal combination of FLAIR and T2-weighted MRI for improved lesion contrast in multiple sclerosis. J Magn Reson Imaging. doi:10.1002/jmri.25281 Gabr RE, Hasan KM, Haque ME, Nelson FM, Wolinsky JS, Narayana PA (2016) Optimal combination of FLAIR and T2-weighted MRI for improved lesion contrast in multiple sclerosis. J Magn Reson Imaging. doi:10.​1002/​jmri.​25281
29.
go back to reference Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PCM (2005) Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 22:13–22CrossRefPubMed Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PCM (2005) Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 22:13–22CrossRefPubMed
30.
go back to reference Polak P, Magnano C, Zivadinov R, Poloni G (2012) 3D FLAIRED: 3D fluid attenuated inversion recovery for enhanced detection of lesions in multiple sclerosis. Magn Reson Med 68:874–81CrossRefPubMed Polak P, Magnano C, Zivadinov R, Poloni G (2012) 3D FLAIRED: 3D fluid attenuated inversion recovery for enhanced detection of lesions in multiple sclerosis. Magn Reson Med 68:874–81CrossRefPubMed
Metadata
Title
GRAPE: a graphical pipeline environment for image analysis in adaptive magnetic resonance imaging
Authors
Refaat E. Gabr
Getaneh B. Tefera
William J. Allen
Amol S. Pednekar
Ponnada A. Narayana
Publication date
01-03-2017
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 3/2017
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1495-z

Other articles of this Issue 3/2017

International Journal of Computer Assisted Radiology and Surgery 3/2017 Go to the issue