Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 3/2017

01-03-2017 | Review Article

Breast ultrasound image segmentation: a survey

Authors: Qinghua Huang, Yaozhong Luo, Qiangzhi Zhang

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 3/2017

Login to get access

Abstract

Purpose

Breast cancer is the most common form of cancer among women worldwide. Ultrasound imaging is one of the most frequently used diagnostic tools to detect and classify abnormalities of the breast. Recently, computer-aided diagnosis (CAD) systems using ultrasound images have been developed to help radiologists to increase diagnosis accuracy. However, accurate ultrasound image segmentation remains a challenging problem due to various ultrasound artifacts. In this paper, we investigate approaches developed for breast ultrasound (BUS) image segmentation.

Methods

In this paper, we reviewed the literature on the segmentation of BUS images according to the techniques adopted, especially over the past 10 years. By dividing into seven classes (i.e., thresholding-based, clustering-based, watershed-based, graph-based, active contour model, Markov random field and neural network), we have introduced corresponding techniques and representative papers accordingly.

Results

We have summarized and compared many techniques on BUS image segmentation and found that all these techniques have their own pros and cons. However, BUS image segmentation is still an open and challenging problem due to various ultrasound artifacts introduced in the process of imaging, including high speckle noise, low contrast, blurry boundaries, low signal-to-noise ratio and intensity inhomogeneity

Conclusions

To the best of our knowledge, this is the first comprehensive review of the approaches developed for segmentation of BUS images. With most techniques involved, this paper will be useful and helpful for researchers working on segmentation of ultrasound images, and for BUS CAD system developers.
Literature
1.
go back to reference Cheng HD, Cai X, Chen X, Hu L, Lou X (2003) Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recognit 36(12):2967–2991CrossRef Cheng HD, Cai X, Chen X, Hu L, Lou X (2003) Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recognit 36(12):2967–2991CrossRef
2.
go back to reference Lee CH (2002) Screening mammography: proven benefit, continued controversy. Radiol Clin N Am 40(3):395–407CrossRefPubMed Lee CH (2002) Screening mammography: proven benefit, continued controversy. Radiol Clin N Am 40(3):395–407CrossRefPubMed
3.
go back to reference Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN (2006) Approaches for automated detection and classification of masses in mammograms. Pattern Recognit 39(4):646–668CrossRef Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN (2006) Approaches for automated detection and classification of masses in mammograms. Pattern Recognit 39(4):646–668CrossRef
4.
go back to reference Jesneck JL, Lo JY, Baker JA (2007) Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology 244(2):390–398CrossRefPubMed Jesneck JL, Lo JY, Baker JA (2007) Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology 244(2):390–398CrossRefPubMed
5.
go back to reference Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184(3):613–617CrossRefPubMed Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184(3):613–617CrossRefPubMed
6.
go back to reference Kerlikowske K, Carney PA, Geller B, Mandelson MT, Taplin SH, Malvin K, Ballard-Barbash R (2000) Performance of screening mammography among women with and without a first-degree relative with breast cancer. Ann Intern Med 133(11):855–863CrossRefPubMed Kerlikowske K, Carney PA, Geller B, Mandelson MT, Taplin SH, Malvin K, Ballard-Barbash R (2000) Performance of screening mammography among women with and without a first-degree relative with breast cancer. Ann Intern Med 133(11):855–863CrossRefPubMed
8.
go back to reference Sahiner B, Chan HP, Roubidoux MA, Hadjiiski LM, Helvie MA, Paramagul C, Blane C (2007) Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy 1. Radiology 242(3):716–724CrossRefPubMedPubMedCentral Sahiner B, Chan HP, Roubidoux MA, Hadjiiski LM, Helvie MA, Paramagul C, Blane C (2007) Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy 1. Radiology 242(3):716–724CrossRefPubMedPubMedCentral
9.
go back to reference Chen CM, Chou YH, Han KC, Hung GS, Tiu CM, Chiou HJ, Chiou SY (2003) Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks 1. Radiology 226(2):504–514CrossRefPubMed Chen CM, Chou YH, Han KC, Hung GS, Tiu CM, Chiou HJ, Chiou SY (2003) Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks 1. Radiology 226(2):504–514CrossRefPubMed
10.
go back to reference Drukker K, Giger ML, Horsch K, Kupinski MA, Vyborny CJ, Mendelson EB (2002) Computerized lesion detection on breast ultrasound. Med Phys 29(7):1438–1446CrossRefPubMed Drukker K, Giger ML, Horsch K, Kupinski MA, Vyborny CJ, Mendelson EB (2002) Computerized lesion detection on breast ultrasound. Med Phys 29(7):1438–1446CrossRefPubMed
11.
go back to reference Costantini M, Belli P, Lombardi R, Franceschini G, Mulè A, Bonomo L (2006) Characterization of solid breast masses use of the sonographic breast imaging reporting and data system lexicon. J Ultrasound Med 25(5):649–659CrossRefPubMed Costantini M, Belli P, Lombardi R, Franceschini G, Mulè A, Bonomo L (2006) Characterization of solid breast masses use of the sonographic breast imaging reporting and data system lexicon. J Ultrasound Med 25(5):649–659CrossRefPubMed
12.
go back to reference Anderson BO, Shyyan R, Eniu A, Smith RA, Yip CH, Bese NS, Carlson RW (2006) Breast cancer in limited-resource countries: an overview of the breast health global initiative 2005 guidelines. Breast J 12(s1):S3–S15CrossRefPubMed Anderson BO, Shyyan R, Eniu A, Smith RA, Yip CH, Bese NS, Carlson RW (2006) Breast cancer in limited-resource countries: an overview of the breast health global initiative 2005 guidelines. Breast J 12(s1):S3–S15CrossRefPubMed
13.
go back to reference Shankar PM, Piccoli CW, Reid JM, Forsberg F, Goldberg BB (2005) Application of the compound probability density function for characterization of breast masses in ultrasound B scans. Phys Med Biol 50(10):2241–2248CrossRefPubMed Shankar PM, Piccoli CW, Reid JM, Forsberg F, Goldberg BB (2005) Application of the compound probability density function for characterization of breast masses in ultrasound B scans. Phys Med Biol 50(10):2241–2248CrossRefPubMed
14.
go back to reference Taylor KJ, Merritt C, Piccoli C, Schmidt R, Rouse G, Fornage B, Mendelson E (2002) Ultrasound as a complement to mammography and breast examination to characterize breast masses. Ultrasound Med Biol 28(1):19–26CrossRefPubMed Taylor KJ, Merritt C, Piccoli C, Schmidt R, Rouse G, Fornage B, Mendelson E (2002) Ultrasound as a complement to mammography and breast examination to characterize breast masses. Ultrasound Med Biol 28(1):19–26CrossRefPubMed
15.
go back to reference Zhi H, Ou B, Luo BM, Feng X, Wen YL, Yang HY (2007) Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med 26(6):807–815CrossRefPubMed Zhi H, Ou B, Luo BM, Feng X, Wen YL, Yang HY (2007) Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med 26(6):807–815CrossRefPubMed
16.
go back to reference Drukker K, Giger M, Meinel LA, Starkey A, Janardanan J, Abe H (2013) Quantitative ultrasound image analysis of axillary lymph node status in breast cancer patients. Int J Comput Assist Radiol Surg 8(6):895–903CrossRefPubMed Drukker K, Giger M, Meinel LA, Starkey A, Janardanan J, Abe H (2013) Quantitative ultrasound image analysis of axillary lymph node status in breast cancer patients. Int J Comput Assist Radiol Surg 8(6):895–903CrossRefPubMed
17.
go back to reference Chang RF, Wu WJ, Moon WK, Chen DR (2003) Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. Ultrasound Med Biol 29(5):679–686CrossRefPubMed Chang RF, Wu WJ, Moon WK, Chen DR (2003) Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. Ultrasound Med Biol 29(5):679–686CrossRefPubMed
18.
go back to reference André MP, Galperin M, Olson LK, Richman K, Payrovi S, Phan P (2002) Improving the accuracy of diagnostic breast ultrasound. In: Maev RG (ed) Acoustical imaging. Springer, US, pp 453–460 André MP, Galperin M, Olson LK, Richman K, Payrovi S, Phan P (2002) Improving the accuracy of diagnostic breast ultrasound. In: Maev RG (ed) Acoustical imaging. Springer, US, pp 453–460
19.
go back to reference Huang YL, Chen DR, Liu YK (2004, October) Breast cancer diagnosis using image retrieval for different ultrasonic systems. In: 2004 International conference on image processing, 2004. ICIP’04, vol 5. IEEE, pp 2957–2960 Huang YL, Chen DR, Liu YK (2004, October) Breast cancer diagnosis using image retrieval for different ultrasonic systems. In: 2004 International conference on image processing, 2004. ICIP’04, vol 5. IEEE, pp 2957–2960
20.
go back to reference Ikedo Y, Morita T, Fukuoka D, Hara T, Lee G, Fujita H, Endo T (2009) Automated analysis of breast parenchymal patterns in whole breast ultrasound images: preliminary experience. Int J Comput Assist Radiol Surg 4(3):299–306CrossRefPubMed Ikedo Y, Morita T, Fukuoka D, Hara T, Lee G, Fujita H, Endo T (2009) Automated analysis of breast parenchymal patterns in whole breast ultrasound images: preliminary experience. Int J Comput Assist Radiol Surg 4(3):299–306CrossRefPubMed
21.
go back to reference Yu-Len H, Yu-Ru J, Jia-Jia S, Dar-Ren C, Kyung MW (2007) Computer-aided diagnosis with morphological features for breast lesion on sonograms. Int J Comput Assist Radiol Surg 2(Suppl. 1):S344–S346 Yu-Len H, Yu-Ru J, Jia-Jia S, Dar-Ren C, Kyung MW (2007) Computer-aided diagnosis with morphological features for breast lesion on sonograms. Int J Comput Assist Radiol Surg 2(Suppl. 1):S344–S346
22.
go back to reference Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010CrossRefPubMed Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010CrossRefPubMed
23.
go back to reference Wells PNT, Halliwell M (1981) Speckle in ultrasonic imaging. Ultrasonics 19(5):225–229CrossRef Wells PNT, Halliwell M (1981) Speckle in ultrasonic imaging. Ultrasonics 19(5):225–229CrossRef
24.
go back to reference Xiao G, Brady M, Noble JA, Zhang Y (2002) Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Trans Med Imaging 21(1):48–57CrossRefPubMed Xiao G, Brady M, Noble JA, Zhang Y (2002) Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Trans Med Imaging 21(1):48–57CrossRefPubMed
25.
go back to reference Cheng HD, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recognit 43(1):299–317CrossRef Cheng HD, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recognit 43(1):299–317CrossRef
26.
go back to reference Jalalian A, Mashohor SB, Mahmud HR, Saripan MIB, Ramli ARB, Karasfi B (2013) Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging 37(3):420–426CrossRefPubMed Jalalian A, Mashohor SB, Mahmud HR, Saripan MIB, Ramli ARB, Karasfi B (2013) Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging 37(3):420–426CrossRefPubMed
27.
go back to reference Horsch K, Giger ML, Venta LA, Vyborny CJ (2001) Automatic segmentation of breast lesions on ultrasound. Med Phys 28(8):1652–1659CrossRefPubMed Horsch K, Giger ML, Venta LA, Vyborny CJ (2001) Automatic segmentation of breast lesions on ultrasound. Med Phys 28(8):1652–1659CrossRefPubMed
28.
go back to reference Horsch K, Giger ML, Venta LA, Vyborny CJ (2002) Computerized diagnosis of breast lesions on ultrasound. Med Phys 29(2):157–164CrossRefPubMed Horsch K, Giger ML, Venta LA, Vyborny CJ (2002) Computerized diagnosis of breast lesions on ultrasound. Med Phys 29(2):157–164CrossRefPubMed
29.
go back to reference Xian M, Zhang Y, Cheng HD (2015) Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recognit 48(2):485–497CrossRef Xian M, Zhang Y, Cheng HD (2015) Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recognit 48(2):485–497CrossRef
30.
go back to reference Horsch K, Giger ML, Vyborny CJ, Venta LA (2004) Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad Radiol 11(3):272–280CrossRefPubMed Horsch K, Giger ML, Vyborny CJ, Venta LA (2004) Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad Radiol 11(3):272–280CrossRefPubMed
31.
go back to reference Yap MH, Edirisinghe EA, Bez HE (2007, March) Fully automatic lesion boundary detection in ultrasound breast images. In: Pluim JPW, Reinhardt JM (eds) International Society for Optics and Photonics. Medical Imaging, San Diego, CA, pp 65123I-1–65123I-8 Yap MH, Edirisinghe EA, Bez HE (2007, March) Fully automatic lesion boundary detection in ultrasound breast images. In: Pluim JPW, Reinhardt JM (eds) International Society for Optics and Photonics. Medical Imaging, San Diego, CA, pp 65123I-1–65123I-8
32.
go back to reference Rodrigues PS, Giraldi GA (2011) Improving the non-extensive medical image segmentation based on Tsallis entropy. Pattern Anal Appl 14(4):369–379CrossRef Rodrigues PS, Giraldi GA (2011) Improving the non-extensive medical image segmentation based on Tsallis entropy. Pattern Anal Appl 14(4):369–379CrossRef
33.
go back to reference Mustaqeem A, Javed A, Fatima T (2012) An efficient brain tumor detection algorithm using watershed & thresholding based segmentation. Int J Image Graph Signal Process 4(10):34CrossRef Mustaqeem A, Javed A, Fatima T (2012) An efficient brain tumor detection algorithm using watershed & thresholding based segmentation. Int J Image Graph Signal Process 4(10):34CrossRef
34.
go back to reference Filipczuk P, Kowal M, Obuchowicz A (2011) Fuzzy clustering and adaptive thresholding based segmentation method for breast cancer diagnosis. In: Burduk R, Kurzyński M, Woźniak M, Żołnierek A (eds) Computer recognition systems, vol 4. Springer, Berlin, pp 613–622 Filipczuk P, Kowal M, Obuchowicz A (2011) Fuzzy clustering and adaptive thresholding based segmentation method for breast cancer diagnosis. In: Burduk R, Kurzyński M, Woźniak M, Żołnierek A (eds) Computer recognition systems, vol 4. Springer, Berlin, pp 613–622
35.
go back to reference Altarawneh NM, Luo S, Regan B, Sun C, Jia F (2014) Global threshold and region-based active contour model for accurate image segmentation. Signal Image Process 5(3):1 Altarawneh NM, Luo S, Regan B, Sun C, Jia F (2014) Global threshold and region-based active contour model for accurate image segmentation. Signal Image Process 5(3):1
36.
go back to reference Dirami A, Hammouche K, Diaf M, Siarry P (2013) Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process 93(1):139–153CrossRef Dirami A, Hammouche K, Diaf M, Siarry P (2013) Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process 93(1):139–153CrossRef
37.
go back to reference Kekre HB, Shrinath P (2013) Tumour delineation using statistical properties of the breast US images and vector quantization based clustering algorithms. Int J Image Graph Signal Process 5(11):1–12CrossRef Kekre HB, Shrinath P (2013) Tumour delineation using statistical properties of the breast US images and vector quantization based clustering algorithms. Int J Image Graph Signal Process 5(11):1–12CrossRef
38.
go back to reference Moon WK, Lo CM, Chen RT, Shen YW, Chang JM, Huang CS, Chang RF (2014) Tumor detection in automated breast ultrasound images using quantitative tissue clustering. Med Phys 41(4):042901CrossRefPubMed Moon WK, Lo CM, Chen RT, Shen YW, Chang JM, Huang CS, Chang RF (2014) Tumor detection in automated breast ultrasound images using quantitative tissue clustering. Med Phys 41(4):042901CrossRefPubMed
39.
go back to reference Shan J, Cheng HD, Wang Y (2012) A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering. Med Phys 39(9):5669–5682CrossRefPubMed Shan J, Cheng HD, Wang Y (2012) A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering. Med Phys 39(9):5669–5682CrossRefPubMed
40.
go back to reference Huang YL, Chen DR (2004) Watershed segmentation for breast tumor in 2-D sonography. Ultrasound Med Biol 30(5):625–632CrossRefPubMed Huang YL, Chen DR (2004) Watershed segmentation for breast tumor in 2-D sonography. Ultrasound Med Biol 30(5):625–632CrossRefPubMed
41.
go back to reference Huang YL, Chen DR (2006) Automatic contouring for breast tumors in 2-D sonography. In: 2005 27th annual conference IEEE engineering in medicine and biology. IEEE, pp 3225–3228 Huang YL, Chen DR (2006) Automatic contouring for breast tumors in 2-D sonography. In: 2005 27th annual conference IEEE engineering in medicine and biology. IEEE, pp 3225–3228
42.
go back to reference Gomez W, Leija L, Pereira WCA, Infantosi AFC (2009, March) Morphological operators on the segmentation of breast ultrasound images. In: 2009 Pan American Health Care Exchanges. IEEE, pp 67–71 Gomez W, Leija L, Pereira WCA, Infantosi AFC (2009, March) Morphological operators on the segmentation of breast ultrasound images. In: 2009 Pan American Health Care Exchanges. IEEE, pp 67–71
43.
go back to reference Gomez W, Leija L, Alvarenga AV, Infantosi AFC, Pereira WCA (2010) Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Med Phys 37(1):82–95CrossRefPubMed Gomez W, Leija L, Alvarenga AV, Infantosi AFC, Pereira WCA (2010) Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Med Phys 37(1):82–95CrossRefPubMed
44.
go back to reference Zhang L, Zhang M (2011) A fully automatic image segmentation using an extended fuzzy set. In: Yu Y, Yu Z, Zhao J (eds) Computer science for environmental engineering and ecoinformatics. Springer, Berlin, pp 412–417 Zhang L, Zhang M (2011) A fully automatic image segmentation using an extended fuzzy set. In: Yu Y, Yu Z, Zhao J (eds) Computer science for environmental engineering and ecoinformatics. Springer, Berlin, pp 412–417
45.
go back to reference Lo CM, Chen RT, Chang YC, Yang YW, Hung MJ, Huang CS, Chang RF (2014) Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed. IEEE Trans Med Imaging 33(7):1503–1511CrossRefPubMed Lo CM, Chen RT, Chang YC, Yang YW, Hung MJ, Huang CS, Chang RF (2014) Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed. IEEE Trans Med Imaging 33(7):1503–1511CrossRefPubMed
46.
go back to reference Zhou Z, Wu W, Wu S, Tsui PH, Lin CC, Zhang L, Wang T (2014) Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts. Ultrason Imaging 0161734614524735:1–21 Zhou Z, Wu W, Wu S, Tsui PH, Lin CC, Zhang L, Wang T (2014) Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts. Ultrason Imaging 0161734614524735:1–21
47.
go back to reference Huang QH, Lee SY, Liu LZ, Lu MH, Jin LW, Li AH (2012) A robust graph-based segmentation method for breast tumors in ultrasound images. Ultrasonics 52(2):266–275CrossRefPubMed Huang QH, Lee SY, Liu LZ, Lu MH, Jin LW, Li AH (2012) A robust graph-based segmentation method for breast tumors in ultrasound images. Ultrasonics 52(2):266–275CrossRefPubMed
48.
go back to reference Huang Q, Bai X, Li Y, Jin L, Li X (2014) Optimized graph-based segmentation for ultrasound images. Neurocomputing 129:216–224CrossRef Huang Q, Bai X, Li Y, Jin L, Li X (2014) Optimized graph-based segmentation for ultrasound images. Neurocomputing 129:216–224CrossRef
49.
go back to reference Chang H, Chen Z, Huang Q, Shi J, Li X (2015) Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151:632–644CrossRef Chang H, Chen Z, Huang Q, Shi J, Li X (2015) Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151:632–644CrossRef
50.
go back to reference Huang Q, Yang F, Liu L, Li X (2015) Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis. Inf Sci 314:293–310CrossRef Huang Q, Yang F, Liu L, Li X (2015) Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis. Inf Sci 314:293–310CrossRef
51.
go back to reference Eapena MM, Ancelita MSJA, Geetha G (2015) Segmentation of tumors from ultrasound images with PAORGB. Procedia Comput Sci 50:663–668CrossRef Eapena MM, Ancelita MSJA, Geetha G (2015) Segmentation of tumors from ultrasound images with PAORGB. Procedia Comput Sci 50:663–668CrossRef
52.
go back to reference Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181CrossRef Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181CrossRef
54.
go back to reference Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J (2010) Probability density difference-based active contour for ultrasound image segmentation. Pattern Recognit 43(6):2028–2042CrossRef Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J (2010) Probability density difference-based active contour for ultrasound image segmentation. Pattern Recognit 43(6):2028–2042CrossRef
55.
go back to reference Gao L, Liu X, Chen W (2012) Phase-and GVF-based level set segmentation of ultrasonic breast tumors. J Appl Math 2012:1–22 Gao L, Liu X, Chen W (2012) Phase-and GVF-based level set segmentation of ultrasonic breast tumors. J Appl Math 2012:1–22
56.
go back to reference Rodtook A, Makhanov SS (2013) Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer. J Vis Commun Image Represent 24(8):1414–1430CrossRef Rodtook A, Makhanov SS (2013) Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer. J Vis Commun Image Represent 24(8):1414–1430CrossRef
57.
go back to reference Moraru L, Moldovanu S, Biswas A (2014) Optimization of breast lesion segmentation in texture feature space approach. Med Eng Phys 36(1):129–135CrossRefPubMed Moraru L, Moldovanu S, Biswas A (2014) Optimization of breast lesion segmentation in texture feature space approach. Med Eng Phys 36(1):129–135CrossRefPubMed
58.
go back to reference Wang W, Zhu L, Qin J, Chui YP, Li BN, Heng PA (2014) Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion. Opt Lasers Eng 54:105–116CrossRef Wang W, Zhu L, Qin J, Chui YP, Li BN, Heng PA (2014) Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion. Opt Lasers Eng 54:105–116CrossRef
59.
go back to reference Rodrigues R, Braz R, Pereira M, Moutinho J, Pinheiro AM (2015) A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis. Ultrasound Med Biol 41(6):1737–1748CrossRefPubMed Rodrigues R, Braz R, Pereira M, Moutinho J, Pinheiro AM (2015) A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis. Ultrasound Med Biol 41(6):1737–1748CrossRefPubMed
60.
go back to reference Takemura A, Shimizu A, Hamamoto K (2010) A cost-sensitive extension of AdaBoost with markov random field priors for automated segmentation of breast tumors in ultrasonic images. Int J Comput Assist Radiol Surg 5(5):537–547CrossRefPubMed Takemura A, Shimizu A, Hamamoto K (2010) A cost-sensitive extension of AdaBoost with markov random field priors for automated segmentation of breast tumors in ultrasonic images. Int J Comput Assist Radiol Surg 5(5):537–547CrossRefPubMed
61.
go back to reference Xian M, Huang J, Zhang Y, Tang X (2012, September) Multiple-domain knowledge based MRF model for tumor segmentation in breast ultrasound images. In 2012 19th IEEE international conference on image processing. IEEE, pp 2021–2024 Xian M, Huang J, Zhang Y, Tang X (2012, September) Multiple-domain knowledge based MRF model for tumor segmentation in breast ultrasound images. In 2012 19th IEEE international conference on image processing. IEEE, pp 2021–2024
62.
go back to reference Pons G, Martí J, Martí R, Ganau S, Vilanova JC, Noble JA (2013) Evaluating lesion segmentation on breast sonography as related to lesion type. J Ultrasound Med 32(9):1659–1670CrossRefPubMed Pons G, Martí J, Martí R, Ganau S, Vilanova JC, Noble JA (2013) Evaluating lesion segmentation on breast sonography as related to lesion type. J Ultrasound Med 32(9):1659–1670CrossRefPubMed
63.
go back to reference Huang SF, Chen YC, Moon WK (2008, May) Neural network analysis applied to tumor segmentation on 3D breast ultrasound images. In: 2008 5th IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 1303–1306 Huang SF, Chen YC, Moon WK (2008, May) Neural network analysis applied to tumor segmentation on 3D breast ultrasound images. In: 2008 5th IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 1303–1306
64.
go back to reference Shi J, Xiao Z, Zhou S (2010) Automatic segmentation of breast tumor in ultrasound image with simplified PCNN and improved fuzzy mutual information. In: Visual communications and image processing 2010. International Society for Optics and Photonics, pp 77441P–77441P-8 Shi J, Xiao Z, Zhou S (2010) Automatic segmentation of breast tumor in ultrasound image with simplified PCNN and improved fuzzy mutual information. In: Visual communications and image processing 2010. International Society for Optics and Photonics, pp 77441P–77441P-8
65.
go back to reference Jiao J, Wang Y (2011) Automatic boundary detection in breast ultrasound images based on improved pulse coupled neural network and active contour model. In: 2011 5th International conference on bioinformatics and biomedical engineering (iCBBE). IEEE, pp 1–4 Jiao J, Wang Y (2011) Automatic boundary detection in breast ultrasound images based on improved pulse coupled neural network and active contour model. In: 2011 5th International conference on bioinformatics and biomedical engineering (iCBBE). IEEE, pp 1–4
66.
go back to reference Othman AA, Tizhoosh HR (2011) Segmentation of breast ultrasound images using neural networks. In: Iliadis L, Jayne C (eds) Engineering applications of neural networks. Springer, Berlin, pp 260–269 Othman AA, Tizhoosh HR (2011) Segmentation of breast ultrasound images using neural networks. In: Iliadis L, Jayne C (eds) Engineering applications of neural networks. Springer, Berlin, pp 260–269
67.
go back to reference Shan J, Cheng HD, Wang Y (2012) Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 38(2):262–275CrossRefPubMed Shan J, Cheng HD, Wang Y (2012) Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 38(2):262–275CrossRefPubMed
68.
go back to reference Marcomini KD, Schiabel H, Carneiro AAO (2013, February) Quantitative evaluation of automatic methods for lesions detection in breast ultrasound images. In: Novak CL, Aylward S (eds) SPIE medical imaging. International Society for Optics and Photonics, Orlando, pp 867027–867027-7 Marcomini KD, Schiabel H, Carneiro AAO (2013, February) Quantitative evaluation of automatic methods for lesions detection in breast ultrasound images. In: Novak CL, Aylward S (eds) SPIE medical imaging. International Society for Optics and Photonics, Orlando, pp 867027–867027-7
69.
go back to reference Torbati N, Ayatollahi A, Kermani A (2014) An efficient neural network based method for medical image segmentation. Comput Biol Med 44:76–87CrossRefPubMed Torbati N, Ayatollahi A, Kermani A (2014) An efficient neural network based method for medical image segmentation. Comput Biol Med 44:76–87CrossRefPubMed
70.
go back to reference Binder T, Süssner M, Moertl D, Strohmer T, Baumgartner H, Maurer G, Porenta G (1999) Artificial neural networks and spatial temporal contour linking for automated endocardial contour detection on echocardiograms: a novel approach to determine left ventricular contractile function. Ultrasound Med Biol 25(7):1069–1076CrossRefPubMed Binder T, Süssner M, Moertl D, Strohmer T, Baumgartner H, Maurer G, Porenta G (1999) Artificial neural networks and spatial temporal contour linking for automated endocardial contour detection on echocardiograms: a novel approach to determine left ventricular contractile function. Ultrasound Med Biol 25(7):1069–1076CrossRefPubMed
71.
go back to reference Madabhushi A, Yang P, Rosen M, Weinstein S (2006) Distinguishing lesions from posterior acoustic shadowing in breast ultrasound via non-linear dimensionality reduction. In: 28th Annual international conference of the IEEE engineering in medicine and biology society, 2006. EMBS’06. IEEE, pp 3070–3073 Madabhushi A, Yang P, Rosen M, Weinstein S (2006) Distinguishing lesions from posterior acoustic shadowing in breast ultrasound via non-linear dimensionality reduction. In: 28th Annual international conference of the IEEE engineering in medicine and biology society, 2006. EMBS’06. IEEE, pp 3070–3073
72.
go back to reference Drukker K, Giger ML, Mendelson EB (2003) Computerized analysis of shadowing on breast ultrasound for improved lesion detection. Med Phys 30(7):1833–1842CrossRefPubMed Drukker K, Giger ML, Mendelson EB (2003) Computerized analysis of shadowing on breast ultrasound for improved lesion detection. Med Phys 30(7):1833–1842CrossRefPubMed
73.
go back to reference Kim H, Kim H, Hong H (2015) Chest wall segmentation in automated 3D breast ultrasound using rib shadow enhancement and multi-plane cumulative probability enhanced map. In: Hadjiiski LM, Tourassi GD (eds) SPIE medical imaging. International Society for Optics and Photonics, Orlando, pp 941423-1–941423-8 Kim H, Kim H, Hong H (2015) Chest wall segmentation in automated 3D breast ultrasound using rib shadow enhancement and multi-plane cumulative probability enhanced map. In: Hadjiiski LM, Tourassi GD (eds) SPIE medical imaging. International Society for Optics and Photonics, Orlando, pp 941423-1–941423-8
74.
go back to reference Massich J, Lemaître G, Martí J, Mériaudeau F (2015) Breast ultrasound image segmentation: an optimization approach based on super-pixels and high-level descriptors. In: The international conference on quality control by artificial vision 2015. International Society for Optics and Photonics, pp 95340C–95340C-8 Massich J, Lemaître G, Martí J, Mériaudeau F (2015) Breast ultrasound image segmentation: an optimization approach based on super-pixels and high-level descriptors. In: The international conference on quality control by artificial vision 2015. International Society for Optics and Photonics, pp 95340C–95340C-8
Metadata
Title
Breast ultrasound image segmentation: a survey
Authors
Qinghua Huang
Yaozhong Luo
Qiangzhi Zhang
Publication date
01-03-2017
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 3/2017
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1513-1

Other articles of this Issue 3/2017

International Journal of Computer Assisted Radiology and Surgery 3/2017 Go to the issue