Skip to main content
Top
Published in: Journal of Urban Health 1/2019

01-03-2019

Environmental Exposures, the Epigenome, and African American Women’s Health

Author: Joyce E. Ohm

Published in: Journal of Urban Health | Special Issue 1/2019

Login to get access

Abstract

Stress is a common feature of modern life, but both the extent of exposure to stressors and the downstream effects of these stress exposures can vary considerably among individuals, communities, and populations. When individuals are exposed to repeated or chronic stress, wear and tear on the body can accumulate and manifest in many ways. The term “allostatic load” represents the physiological consequences of repeated or chronic exposure to environmental stressors and is linked to fluctuating and/or heightened neural or neuroendocrine responses. African American women are one population subgroup that has been identified as potentially having both an elevated allostatic load and an enhanced resilience to external factors. One mechanism by which environmental stressors may impact human health is via epigenetic remodeling of the genome. This review will focus on what is known about how different types of environmental stressors may affect the epigenome and explore links between epigenetic reprogramming and altered allostatic load and resilience as it pertains to African American women’s health.
Literature
1.
go back to reference McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153(18):2093–101.CrossRefPubMed McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153(18):2093–101.CrossRefPubMed
2.
go back to reference Logan JG, Barksdale DJ. Allostasis and allostatic load: expanding the discourse on stress and cardiovascular disease. J Clin Nurs. 2008;17(7B):201–8.CrossRefPubMed Logan JG, Barksdale DJ. Allostasis and allostatic load: expanding the discourse on stress and cardiovascular disease. J Clin Nurs. 2008;17(7B):201–8.CrossRefPubMed
3.
go back to reference Edes AN, Crews DE. Allostatic load and biological anthropology. Am J Phys Anthropol. 2017;162 Suppl 63:44–70.CrossRefPubMed Edes AN, Crews DE. Allostatic load and biological anthropology. Am J Phys Anthropol. 2017;162 Suppl 63:44–70.CrossRefPubMed
5.
6.
go back to reference Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70.CrossRefPubMedPubMedCentral Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70.CrossRefPubMedPubMedCentral
7.
go back to reference Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1(7):686–92.CrossRefPubMed Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1(7):686–92.CrossRefPubMed
8.
go back to reference Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–30.PubMed Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–30.PubMed
9.
go back to reference Gonzalez-Zulueta M, Bender CM, Yang AS, et al. Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995;55(20):4531–5.PubMed Gonzalez-Zulueta M, Bender CM, Yang AS, et al. Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995;55(20):4531–5.PubMed
10.
go back to reference Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427–40.CrossRefPubMed Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427–40.CrossRefPubMed
11.
go back to reference Maurano Matthew T, Wang H, John S, et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 2015;12(7):1184–95.CrossRefPubMed Maurano Matthew T, Wang H, John S, et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 2015;12(7):1184–95.CrossRefPubMed
12.
go back to reference Edgar R, Tan PP, Portales-Casamar E, Pavlidis P. Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin. 2014;7(1):28.CrossRefPubMedPubMedCentral Edgar R, Tan PP, Portales-Casamar E, Pavlidis P. Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin. 2014;7(1):28.CrossRefPubMedPubMedCentral
13.
go back to reference Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.CrossRefPubMedPubMedCentral Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.CrossRefPubMedPubMedCentral
14.
go back to reference Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.CrossRefPubMedPubMedCentral Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.CrossRefPubMedPubMedCentral
15.
go back to reference Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145(3):423–34.CrossRefPubMedPubMedCentral Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145(3):423–34.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell. 2011;147(7):1498–510.CrossRefPubMedPubMedCentral Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell. 2011;147(7):1498–510.CrossRefPubMedPubMedCentral
18.
go back to reference Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14(12):1607–16.CrossRefPubMedPubMedCentral Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14(12):1607–16.CrossRefPubMedPubMedCentral
20.
go back to reference Li S, Papale LA, Zhang Q, et al. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress. Neurobiol Dis. 2016;86:99–108.CrossRefPubMed Li S, Papale LA, Zhang Q, et al. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress. Neurobiol Dis. 2016;86:99–108.CrossRefPubMed
22.
go back to reference Zhang J, Parvin J, Huang K. Redistribution of H3K4me2 on neural tissue specific genes during mouse brain development. BMC Genomics. 2012;13(Suppl 8):S5.PubMedPubMedCentral Zhang J, Parvin J, Huang K. Redistribution of H3K4me2 on neural tissue specific genes during mouse brain development. BMC Genomics. 2012;13(Suppl 8):S5.PubMedPubMedCentral
23.
24.
go back to reference Luo C, Lancaster MA, Castanon R, Nery JR, Knoblich JA, Ecker JR. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 2016;17(12):3369–84.CrossRefPubMedPubMedCentral Luo C, Lancaster MA, Castanon R, Nery JR, Knoblich JA, Ecker JR. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 2016;17(12):3369–84.CrossRefPubMedPubMedCentral
25.
go back to reference Taouis M. MicroRNAs in the hypothalamus. Best Pract Res Clin Endocrinol Metab. 2016;30(5):641–51.CrossRefPubMed Taouis M. MicroRNAs in the hypothalamus. Best Pract Res Clin Endocrinol Metab. 2016;30(5):641–51.CrossRefPubMed
27.
go back to reference Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308(5723):833–8.CrossRefPubMed Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308(5723):833–8.CrossRefPubMed
28.
go back to reference Ramey SL, Schafer P, DeClerque JL, et al. The preconception stress and resiliency pathways model: a multi-level framework on maternal, paternal, and child health disparities derived by community-based participatory research. Matern Child Health J. 2015;19(4):707–19.CrossRefPubMed Ramey SL, Schafer P, DeClerque JL, et al. The preconception stress and resiliency pathways model: a multi-level framework on maternal, paternal, and child health disparities derived by community-based participatory research. Matern Child Health J. 2015;19(4):707–19.CrossRefPubMed
29.
go back to reference Dahlen HG, Kennedy HP, Anderson CM, Bell AF, Clark A, Foureur M, et al. The EPIIC hypothesis: intrapartum effects on the neonatal epigenome and consequent health outcomes. Med Hypotheses. 2013;80(5):656–62.CrossRefPubMedPubMedCentral Dahlen HG, Kennedy HP, Anderson CM, Bell AF, Clark A, Foureur M, et al. The EPIIC hypothesis: intrapartum effects on the neonatal epigenome and consequent health outcomes. Med Hypotheses. 2013;80(5):656–62.CrossRefPubMedPubMedCentral
30.
go back to reference Saban KL, Mathews HL, DeVon HA, Janusek LW. Epigenetics and social context: implications for disparity in cardiovascular disease. Aging Dis. 2014;5(5):346–55.PubMedPubMedCentral Saban KL, Mathews HL, DeVon HA, Janusek LW. Epigenetics and social context: implications for disparity in cardiovascular disease. Aging Dis. 2014;5(5):346–55.PubMedPubMedCentral
31.
go back to reference Djuric Z, Bird CE, Furumoto-Dawson A, Rauscher GH, Ruffin IV MT, Stowe RP, et al. Biomarkers of psychological stress in health disparities research. Open Biomark J. 2008;1(1):7–19.CrossRefPubMedPubMedCentral Djuric Z, Bird CE, Furumoto-Dawson A, Rauscher GH, Ruffin IV MT, Stowe RP, et al. Biomarkers of psychological stress in health disparities research. Open Biomark J. 2008;1(1):7–19.CrossRefPubMedPubMedCentral
32.
go back to reference Rubin LP. Maternal and pediatric health and disease: integrating biopsychosocial models and epigenetics. Pediatr Res. 2016;79(1–2):127–35.CrossRefPubMed Rubin LP. Maternal and pediatric health and disease: integrating biopsychosocial models and epigenetics. Pediatr Res. 2016;79(1–2):127–35.CrossRefPubMed
34.
go back to reference Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17(1):171.CrossRefPubMedPubMedCentral Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17(1):171.CrossRefPubMedPubMedCentral
35.
go back to reference Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.CrossRef Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.CrossRef
36.
go back to reference Chen E, Miller GE, Yu T, Brody GH. The great recession and health risks in African American youth. Brain Behav Immun. 2016;53:234–41.CrossRefPubMed Chen E, Miller GE, Yu T, Brody GH. The great recession and health risks in African American youth. Brain Behav Immun. 2016;53:234–41.CrossRefPubMed
37.
go back to reference Newman LA, Kaljee LM. Health disparities and triple-negative breast Cancer in African American women: a review. JAMA Surg. May 1 2017;152(5):485–93.CrossRefPubMed Newman LA, Kaljee LM. Health disparities and triple-negative breast Cancer in African American women: a review. JAMA Surg. May 1 2017;152(5):485–93.CrossRefPubMed
38.
go back to reference Barcelona de Mendoza V, Wright ML, Agaba C, Prescott L, Desir A, Crusto CA, et al. A systematic review of DNA methylation and preterm birth in African American women. Biol Res Nurs. 2017;19(3):308–17.CrossRefPubMed Barcelona de Mendoza V, Wright ML, Agaba C, Prescott L, Desir A, Crusto CA, et al. A systematic review of DNA methylation and preterm birth in African American women. Biol Res Nurs. 2017;19(3):308–17.CrossRefPubMed
39.
go back to reference Wright ML, Huang Y, Hui Q, Newhall K, Crusto C, Sun YV, et al. Parenting stress and DNA methylation among African Americans in the InterGEN study. J Clin Transl Sci. 2017;1(6):328–33.CrossRefPubMed Wright ML, Huang Y, Hui Q, Newhall K, Crusto C, Sun YV, et al. Parenting stress and DNA methylation among African Americans in the InterGEN study. J Clin Transl Sci. 2017;1(6):328–33.CrossRefPubMed
40.
go back to reference de Mendoza VB, Huang Y, Crusto CA, Sun YV, Taylor JY. Perceived racial discrimination and DNA methylation among African American women in the InterGEN study. Biol Res Nurs. 2018;20(2):145–52.CrossRef de Mendoza VB, Huang Y, Crusto CA, Sun YV, Taylor JY. Perceived racial discrimination and DNA methylation among African American women in the InterGEN study. Biol Res Nurs. 2018;20(2):145–52.CrossRef
41.
go back to reference Brody GH, Miller GE, Yu T, Beach SR, Chen E. Supportive family environments ameliorate the link between racial discrimination and epigenetic aging: a replication across two longitudinal cohorts. Psychol Sci. 2016;27(4):530–41.CrossRefPubMedPubMedCentral Brody GH, Miller GE, Yu T, Beach SR, Chen E. Supportive family environments ameliorate the link between racial discrimination and epigenetic aging: a replication across two longitudinal cohorts. Psychol Sci. 2016;27(4):530–41.CrossRefPubMedPubMedCentral
Metadata
Title
Environmental Exposures, the Epigenome, and African American Women’s Health
Author
Joyce E. Ohm
Publication date
01-03-2019
Publisher
Springer US
Published in
Journal of Urban Health / Issue Special Issue 1/2019
Print ISSN: 1099-3460
Electronic ISSN: 1468-2869
DOI
https://doi.org/10.1007/s11524-018-00332-2

Other articles of this Special Issue 1/2019

Journal of Urban Health 1/2019 Go to the issue