Skip to main content
Top
Published in: Forensic Toxicology 2/2018

Open Access 01-07-2018 | Original Article

In vitro metabolism of synthetic cannabinoid AM1220 by human liver microsomes and Cunninghamella elegans using liquid chromatography coupled with high resolution mass spectrometry

Authors: Shimpei Watanabe, Unnikrishnan Kuzhiumparambil, Shanlin Fu

Published in: Forensic Toxicology | Issue 2/2018

Login to get access

Abstract

Purpose

Identifying intake of synthetic cannabinoids generally requires the metabolism data of the drugs so that appropriate metabolite markers can be targeted in urine testing. However, the continuous appearance of new cannabinoids during the last decade has made it difficult to keep up with all the compounds including {1-[(1-methylpiperidin-2-yl)methyl]-1H-indol-3-yl}(naphthalen-1-yl)methanone (AM1220). In this study, metabolism of AM1220 was investigated with human liver microsomes and the fungus Cunninghamella elegans.

Methods

Metabolic stability of AM1220 was analysed by liquid chromatography–tandem mass spectrometry in multiple reaction monitoring mode after 1 µM incubation in human liver microsomes for 30 min. Tentative structure elucidation of metabolites was performed on both human liver microsome and fungal incubation samples using liquid chromatography–high-resolution mass spectrometry.

Results

Half-life of AM1220 was estimated to be 3.7 min, indicating a high clearance drug. Nine metabolites were detected after incubating human liver microsomes while seven were found after incubating Cunninghamella elegans, leading to 11 metabolites in total (five metabolites were common to both systems). Demethylation, dihydrodiol formation, combination of the two, hydroxylation and dihydroxylation were the observed biotransformations.

Conclusions

Three most abundant metabolites in both human liver microsomes and Cunninghamella elegans were desmethyl, dihydrodiol and hydroxy metabolites, despite different isomers of dihydrodiol and hydroxy metabolites in each model. These abundant metabolites can potentially be useful markers in urinalysis for AM1220 intake.
Literature
1.
go back to reference D’Ambra TE, Eissenstat MA, Abt J, Ackerman JH, Bacon ER, Bell MR, Carabateas PM, Josef KA, Kumar V, Weaver Iii JD, Arnold R, Casiano FM, Chippari SM, Haycock DA, Kuster JE, Luttinger DA, Stevenson JI, Ward SJ, Hill WA, Khanolkar A, Makriyannis A (1996) C-Attached aminoalkylindoles: potent cannabinoid mimetics. Bioorg Med Chem Lett 6:17–22. https://doi.org/10.1016/0960-894X(95)00560-G CrossRef D’Ambra TE, Eissenstat MA, Abt J, Ackerman JH, Bacon ER, Bell MR, Carabateas PM, Josef KA, Kumar V, Weaver Iii JD, Arnold R, Casiano FM, Chippari SM, Haycock DA, Kuster JE, Luttinger DA, Stevenson JI, Ward SJ, Hill WA, Khanolkar A, Makriyannis A (1996) C-Attached aminoalkylindoles: potent cannabinoid mimetics. Bioorg Med Chem Lett 6:17–22. https://​doi.​org/​10.​1016/​0960-894X(95)00560-G CrossRef
2.
go back to reference Makriyannis A, Deng H (2008) Cannabimimetic indole derivatives. US 2008/0090871 A1 Makriyannis A, Deng H (2008) Cannabimimetic indole derivatives. US 2008/0090871 A1
3.
go back to reference Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125. https://doi.org/10.1007/s11419-012-0136-7 CrossRef Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125. https://​doi.​org/​10.​1007/​s11419-012-0136-7 CrossRef
4.
5.
go back to reference Nakajima J, Takahashi M, Seto T, Kanai C, Suzuki J, Yoshida M, Uemura N, Hamano T (2013) Analysis of azepane isomers of AM-2233 and AM-1220, and detection of an inhibitor of fatty acid amide hydrolase [3′-(aminocarbonyl)(1,1′-biphenyl)-3-yl]-cyclohexylcarbamate (URB597) obtained as designer drugs in the Tokyo area. Forensic Toxicol 31:76–85. https://doi.org/10.1007/s11419-012-0169-y CrossRef Nakajima J, Takahashi M, Seto T, Kanai C, Suzuki J, Yoshida M, Uemura N, Hamano T (2013) Analysis of azepane isomers of AM-2233 and AM-1220, and detection of an inhibitor of fatty acid amide hydrolase [3′-(aminocarbonyl)(1,1′-biphenyl)-3-yl]-cyclohexylcarbamate (URB597) obtained as designer drugs in the Tokyo area. Forensic Toxicol 31:76–85. https://​doi.​org/​10.​1007/​s11419-012-0169-y CrossRef
9.
go back to reference Nakajima J, Takahashi M, Uemura N, Seto T, Fukaya H, Suzuki J, Yoshida M, Kusano M, Nakayama H, Zaitsu K, Ishii A, Moriyasu T, Nakae D (2015) Identification of N, N-bis(1-pentylindol-3-yl-carboxy)naphthylamine (BiPICANA) found in an herbal blend product in the Tokyo metropolitan area and its cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 33:84–92. https://doi.org/10.1007/s11419-014-0253-6 CrossRef Nakajima J, Takahashi M, Uemura N, Seto T, Fukaya H, Suzuki J, Yoshida M, Kusano M, Nakayama H, Zaitsu K, Ishii A, Moriyasu T, Nakae D (2015) Identification of N, N-bis(1-pentylindol-3-yl-carboxy)naphthylamine (BiPICANA) found in an herbal blend product in the Tokyo metropolitan area and its cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 33:84–92. https://​doi.​org/​10.​1007/​s11419-014-0253-6 CrossRef
10.
go back to reference Zaitsu K, Nakayama H, Yamanaka M, Hisatsune K, Taki K, Asano T, Kamata T, Katagai M, Hayashi Y, Kusano M, Tsuchihashi H, Ishii A (2015) High-resolution mass spectrometric determination of the synthetic cannabinoids MAM-2201, AM-2201, AM-2232, and their metabolites in postmortem plasma and urine by LC/Q-TOFMS. Int J Legal Med 129:1233–1245. https://doi.org/10.1007/s00414-015-1257-4 CrossRefPubMed Zaitsu K, Nakayama H, Yamanaka M, Hisatsune K, Taki K, Asano T, Kamata T, Katagai M, Hayashi Y, Kusano M, Tsuchihashi H, Ishii A (2015) High-resolution mass spectrometric determination of the synthetic cannabinoids MAM-2201, AM-2201, AM-2232, and their metabolites in postmortem plasma and urine by LC/Q-TOFMS. Int J Legal Med 129:1233–1245. https://​doi.​org/​10.​1007/​s00414-015-1257-4 CrossRefPubMed
23.
go back to reference Steuer AE, Williner E, Staeheli S, Kraemer T (2017) Studies on the metabolism of the fentanyl-derived designer drug butyrfentanyl in human in vitro liver preparations and authentic human samples using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Drug Test Anal 9:1085–1092. https://doi.org/10.1002/dta.2111 CrossRefPubMed Steuer AE, Williner E, Staeheli S, Kraemer T (2017) Studies on the metabolism of the fentanyl-derived designer drug butyrfentanyl in human in vitro liver preparations and authentic human samples using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Drug Test Anal 9:1085–1092. https://​doi.​org/​10.​1002/​dta.​2111 CrossRefPubMed
27.
go back to reference Obach RS (1999) Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 27:1350–1359 (PMID: 10534321) PubMed Obach RS (1999) Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 27:1350–1359 (PMID: 10534321) PubMed
28.
go back to reference Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y (2001) Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos 29:1316–1324 (PMID: 11560875) PubMed Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y (2001) Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos 29:1316–1324 (PMID: 11560875) PubMed
30.
go back to reference McNaney CA, Drexler DM, Hnatyshyn SY, Zvyaga TA, Knipe JO, Belcastro JV, Sanders M (2008) An automated liquid chromatography-mass spectrometry process to determine metabolic stability half-life and intrinsic clearance of drug candidates by substrate depletion. Assay Drug Dev Technol 6:121–129. https://doi.org/10.1089/adt.2007.103 CrossRefPubMed McNaney CA, Drexler DM, Hnatyshyn SY, Zvyaga TA, Knipe JO, Belcastro JV, Sanders M (2008) An automated liquid chromatography-mass spectrometry process to determine metabolic stability half-life and intrinsic clearance of drug candidates by substrate depletion. Assay Drug Dev Technol 6:121–129. https://​doi.​org/​10.​1089/​adt.​2007.​103 CrossRefPubMed
33.
go back to reference Mardal M, Gracia-Lor E, Leibnitz S, Castiglioni S, Meyer MR (2016) Toxicokinetics of new psychoactive substances: plasma protein binding, metabolic stability, and human phase I metabolism of the synthetic cannabinoid WIN 55,212-2 studied using in vitro tools and LC-HR-MS/MS. Drug Test Anal 8:1039–1048. https://doi.org/10.1002/dta.1938 CrossRefPubMed Mardal M, Gracia-Lor E, Leibnitz S, Castiglioni S, Meyer MR (2016) Toxicokinetics of new psychoactive substances: plasma protein binding, metabolic stability, and human phase I metabolism of the synthetic cannabinoid WIN 55,212-2 studied using in vitro tools and LC-HR-MS/MS. Drug Test Anal 8:1039–1048. https://​doi.​org/​10.​1002/​dta.​1938 CrossRefPubMed
43.
go back to reference Zhang D, Evans FE, Freeman JP, Duhart B Jr, Cerniglia CE (1995) Biotransformation of amitriptyline by Cunninghamella elegans. Drug Metab Dispos 23:1417–1425 (PMID: 8689954) PubMed Zhang D, Evans FE, Freeman JP, Duhart B Jr, Cerniglia CE (1995) Biotransformation of amitriptyline by Cunninghamella elegans. Drug Metab Dispos 23:1417–1425 (PMID: 8689954) PubMed
Metadata
Title
In vitro metabolism of synthetic cannabinoid AM1220 by human liver microsomes and Cunninghamella elegans using liquid chromatography coupled with high resolution mass spectrometry
Authors
Shimpei Watanabe
Unnikrishnan Kuzhiumparambil
Shanlin Fu
Publication date
01-07-2018
Publisher
Springer Japan
Published in
Forensic Toxicology / Issue 2/2018
Print ISSN: 1860-8965
Electronic ISSN: 1860-8973
DOI
https://doi.org/10.1007/s11419-018-0424-y

Other articles of this Issue 2/2018

Forensic Toxicology 2/2018 Go to the issue