Skip to main content
Log in

Microbial Models of Mammalian Metabolism: Stereoselective Metabolism of Warfarin in the Fungus Cunninghamella elegans

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Biotransformation stereoselectivity of warfarin was studied in the fungus Cunninghamella elegans (ATCC 36112) as a model of mammalian metabolism. This organism was previously shown to produce all known phenolic mammalian metabolites of warfarin, including 6-, 7-, 8-, and 4′-hydroxywarfarin, and the previously unreported 3′-hydroxywarfarin, as well as the diastereomeric warfarin alcohols, warfarin diketone, and aliphatic hydroxywarfarins. Using S-warfarin and R-warfarin as substrates, and an HPLC assay with fluorescence detection to analyze metabolite profiles, the biotransformation of warfarin was found to be highly substrate and product stereoselective. Both aromatic hydroxylation and ketone reduction were found to be stereoselective for R-warfarin. Ketone reduction with the warfarin enantiomers exhibited a high level of product stereoselectivity in that R-warfarin was predominantly reduced to its S-alcohol, while S-warfarin was reduced primarily to the corresponding R-alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. S. Kaminsky, M. J. Fasco, and F. P. Guengerich. J. Biol. Chem. 255:85–91 (1980).

    Google Scholar 

  2. F. P. Guengerich, S. T. Dannan, S. T. Wright, M. V. Martin, and L. S. Kaminsky. Biochemistry 21:6019–6030 (1982).

    Google Scholar 

  3. L. S. Kaminsky, F. P. Guengerich, G. A. Dannan, and S. P. Aust. Arch. Biochem. Biophys. 255:398–404 (1983).

    Google Scholar 

  4. P. P. Wang, P. Beaune, L. S. Kaminsky, G. A. Dannan, F. F. Kadlubar, D. Larrey, and F. P. Guengerich. Biochemistry 22:5375–5383 (1983).

    Google Scholar 

  5. L. S. Kaminsky, D. A. Dunbar, P. P. Wang, P. Beaune, D. Larrey, F. P. Guengerich, R. G. Schnellmann, and E. G. Sipes. Drug Metab. Dispos. 12:470–477 (1984).

    Google Scholar 

  6. A. E. Rettie, L. Heimark, R. T. Mayer, M. D. Burke, W. F. Trager, and M. R. Juchau. Biochem. Biophys. Res. Commun. 126:1013–1021 (1985).

    Google Scholar 

  7. W. F. Trager, R. J. Lewis, and W. A. Garland. J. Med. Chem. 13:1196–1204 (1970).

    Google Scholar 

  8. M. J. Fasco, P. P. Dymerski, J. D. Wos, and L. S. Kaminsky. J. Med. Chem. 21:1054–1059 (1978).

    Google Scholar 

  9. L. R. Pohl, R. Bales, and W. R. Trager. Res. Commun. Chem. Path. Pharmacol. 15:233–256 (1976).

    Google Scholar 

  10. L. R. Pohl, S. D. Nelson, W. R. Porter, W. F. Trager, M. J. Fasco, F. D. Baker, and J. W. Fenton. Biochem. Pharmacol. 25:2153–2162 (1976).

    Google Scholar 

  11. L. S. Kaminsky, M. J. Fasco, and F. P. Guengerich. J. Biol. Chem. 254:9657–9662 (1979).

    Google Scholar 

  12. T. A. Moreland and D. S. Hewick. Biochem. Pharmacol. 24:1953–1957 (1975).

    Google Scholar 

  13. R. V. Smith and J. P. Rosazza. J. Pharm. Sci. 64:1737–1759 (1975).

    Google Scholar 

  14. R. V. Smith, D. Acosta, and J. P. Rosazza. Adv. Biochem. Eng. 5:69–100 (1977).

    Google Scholar 

  15. J. P. Rosazza. Recent Results Cancer Res. 63:58–68 (1978).

    Google Scholar 

  16. J. P. Rosazza and R. V. Smith. Adv. Appl. Microbiol. 25:169–208 (1979).

    Google Scholar 

  17. R. V. Smith and J. P. Rosazza. In J. P. Rosazza (ed.), Microbial Transformations of Bioactive Compounds, Vol. 2, CRC Press, Boca Raton, FL, 1982, pp. 1–42.

    Google Scholar 

  18. R. V. Smith and P. J. Rosazza. J. Nat. Prod. 46:79–91 (1983).

    Google Scholar 

  19. A. M. Clark, J. D. McChesney, and C. D. Hufford. Med. Res. Rev. 5:231–253 (1985).

    Google Scholar 

  20. P. J. Davis. In S. B. Lamba and C. A. Walker (eds.), Antibiotics and Microbial Transformations, CRC Press, Boca Raton, FL, 1987, pp. 47–70.

    Google Scholar 

  21. P. J. Davis. Dev. Indust. Microbiol. 29:197–219 (1988).

    Google Scholar 

  22. Y. W. J. Wong. Ph.D. dissertation, University of Texas at Austin, Austin, 1988.

  23. B. D. West, S. Preis, C. H. Schroeder, and K. P. Link. J. Am. Chem. Soc. 83:2676–2679 (1961).

    Google Scholar 

  24. P. J. Davis and J. D. Rizzo. Appl. Environ. Microbiol. 43:884–890 (1982).

    Google Scholar 

  25. M. A. Hermodson, W. M. Barker, and K. P. Link. J. Med. Chem. 15:1265–1270 (1972).

    Google Scholar 

  26. E. Bush and W. F. Trager. J. Pharm. Sci. 72:830–831 (1983).

    Google Scholar 

  27. K. K. Chan, R. J. Lewis, and W. F. Trager. J. Med. Chem. 15:1265–1270 (1972).

    Google Scholar 

  28. Y. W. J. Wong and P. J. Davis. J. Chromatogr. 469:281–291 (1989).

    Google Scholar 

  29. J. D. Rizzo and P. J. Davis. J. Pharm. Sci. 78:183–189 (1989).

    Google Scholar 

  30. C. E. Cerniglia. Adv. Appl. Microbiol. 30:31–71 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, Y.W.J., Davis, P.J. Microbial Models of Mammalian Metabolism: Stereoselective Metabolism of Warfarin in the Fungus Cunninghamella elegans . Pharm Res 6, 982–987 (1989). https://doi.org/10.1023/A:1015905832184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015905832184

Navigation