Skip to main content
Top
Published in: Molecular Imaging and Biology 2/2010

01-04-2010 | Research Article

[11C]Gefitinib ([11C]Iressa): Radiosynthesis, In Vitro Uptake, and In Vivo Imaging of Intact Murine Fibrosarcoma

Authors: Ming-Rong Zhang, Katsushi Kumata, Akiko Hatori, Nobuhiko Takai, Jun Toyohara, Tomoteru Yamasaki, Kazuhiko Yanamoto, Joji Yui, Kazunori Kawamura, Sachiko Koike, Koichi Ando, Kazutoshi Suzuki

Published in: Molecular Imaging and Biology | Issue 2/2010

Login to get access

Abstract

Objective

Gefitinib (N-(3-chloro-4-fluorophenyl)-7-methoxy-6-[3-(morpholin-4-yl)propoxy]quinazolin-4-amine, Iressa) is an approved anticancer drug. In this study, we labeled gefitinib with carbon-11 and evaluated [11C]gefitinib to explore its specific binding in intact fibrosarcoma (NFSa)-bearing mice.

Methods

[11C]Gefitinib was synthesized by the reaction of desmethyl precursor (1) with [11C]CH3I. In vitro uptake of [11C]gefitinib into NFSa, human-A431 epidermoid carcinoma, and Jurkat T cells was determined. Positron emission tomography (PET) imaging using [11C]gefitinib was performed for NFSa-bearing mice.

Results

[11C]Gefitinib accumulated into NFSa cells with 2.1 uptake ratio (UR)/mg protein in cells. Addition of nonradioactive gefitinib decreased uptake in a concentration-dependent manner. [11C]Gefitinib also had high uptake (2.6 UR/mg protein) into epidermal growth factor receptor/tyrosine kinase (EGFR/TK)-rich A431 cells but low uptake (0.2 UR/mg protein) into EGFR/TK-poor Jurkat cells. In vivo distribution study on NFSa-bearing mice by the dissection method revealed that [11C]gefitinib specifically accumulated into the tumor. The ratio of radioactivity in tumors to that in blood and muscle as two comparative regions increased from 0.4 to 6.0 and from 0.6 to 5.0 during this experiment (0–60 min), respectively. PET for NFSa-bearing mice produced a clear tumor image, although high radioactivity was distributed throughout the body. Treatment with nonradioactive gefitinib (100 mg/kg) decreased uptake in the tumor. In vivo metabolite analysis demonstrated that [11C]gefitinib was stable in the tumor, liver, kidney, and blood.

Conclusion

These results demonstrated the promising potential of [11C]gefitinib to serve as a PET ligand for in vivo imaging of NFSa-bearing mice.
Literature
1.
go back to reference Khazaie K, Schirrmacher V, Lichtner RB (1993) EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev 12:255–274CrossRefPubMed Khazaie K, Schirrmacher V, Lichtner RB (1993) EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev 12:255–274CrossRefPubMed
2.
go back to reference Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS (1997) Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 8:1197–1206CrossRefPubMed Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS (1997) Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 8:1197–1206CrossRefPubMed
3.
go back to reference Boschelli DH (2002) 4-Anilino-3-quinolinecarbonitriles: an emerging class of kinase inhibitors. Curr Top Med Chem 2:1051–1063CrossRefPubMed Boschelli DH (2002) 4-Anilino-3-quinolinecarbonitriles: an emerging class of kinase inhibitors. Curr Top Med Chem 2:1051–1063CrossRefPubMed
4.
go back to reference Raymond E, Faivre S, Armand JP (2000) Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs 60(suppl 1):15–23CrossRefPubMed Raymond E, Faivre S, Armand JP (2000) Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs 60(suppl 1):15–23CrossRefPubMed
5.
go back to reference Ciardiello F, Caputo R, Bianco R et al (2001) Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7:1459–1465PubMed Ciardiello F, Caputo R, Bianco R et al (2001) Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7:1459–1465PubMed
6.
go back to reference Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL (2001) Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 61:8887–8895PubMed Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL (2001) Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 61:8887–8895PubMed
7.
go back to reference Wakeling AE, Guy SP, Woodburn JR et al (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62:5749–5754PubMed Wakeling AE, Guy SP, Woodburn JR et al (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62:5749–5754PubMed
8.
go back to reference Anido J, Matar P, Albanell J et al (2003) ZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, induces the formation of inactive EGFR/HER2 and EGFR/HER3 heterodimers and prevents heregulin signaling in HER2-overexpressing breast cancer cells. Clin Cancer Res 9:1274–1283PubMed Anido J, Matar P, Albanell J et al (2003) ZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, induces the formation of inactive EGFR/HER2 and EGFR/HER3 heterodimers and prevents heregulin signaling in HER2-overexpressing breast cancer cells. Clin Cancer Res 9:1274–1283PubMed
9.
go back to reference Bellomi M, Petralia G, Sonzogni A, Zampino MG, Rocca A (2007) CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma: initial experience. Radiology 244:486–493CrossRefPubMed Bellomi M, Petralia G, Sonzogni A, Zampino MG, Rocca A (2007) CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma: initial experience. Radiology 244:486–493CrossRefPubMed
10.
go back to reference Søvik A, Kippenes SH, Bruland ØS, Rune OD, Malinen E (2008) DCEMRI monitoring of canine tumors during fractionated radiotherapy. Acta Oncol 47:1249–1256CrossRefPubMed Søvik A, Kippenes SH, Bruland ØS, Rune OD, Malinen E (2008) DCEMRI monitoring of canine tumors during fractionated radiotherapy. Acta Oncol 47:1249–1256CrossRefPubMed
11.
go back to reference Mikhaeel NG (2006) Use of FDG-PET to monitor response to chemotherapy and radiotherapy in patients with lymphomas. Eur J Nucl Med Mol Imaging 33(Suppl 1):22–26CrossRefPubMed Mikhaeel NG (2006) Use of FDG-PET to monitor response to chemotherapy and radiotherapy in patients with lymphomas. Eur J Nucl Med Mol Imaging 33(Suppl 1):22–26CrossRefPubMed
12.
go back to reference Molthoff CF, Klabbers BM, Berkhof J et al (2007) Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice: comparison of 2′-deoxy-2′-[18F]fluoro-D-glucose (FDG) and 3′-[18F]fluoro-3′-deoxythymidine (FLT). Mol Imaging Biol 9:340–347CrossRefPubMed Molthoff CF, Klabbers BM, Berkhof J et al (2007) Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice: comparison of 2′-deoxy-2′-[18F]fluoro-D-glucose (FDG) and 3′-[18F]fluoro-3′-deoxythymidine (FLT). Mol Imaging Biol 9:340–347CrossRefPubMed
13.
go back to reference Van de Wiele C, Lahorte C, Oyen W et al (2003) Nuclear medicine imaging to predict response to radiotherapy: a review. Int J Radiat Oncol Biol Phys 55:5–15CrossRefPubMed Van de Wiele C, Lahorte C, Oyen W et al (2003) Nuclear medicine imaging to predict response to radiotherapy: a review. Int J Radiat Oncol Biol Phys 55:5–15CrossRefPubMed
14.
go back to reference Riesterer O, Milas L, Ang KK (2007) Use of molecular biomarkers for predicting the response to radiotherapy with or without chemotherapy. J Clin Oncol 25:4075–4083CrossRefPubMed Riesterer O, Milas L, Ang KK (2007) Use of molecular biomarkers for predicting the response to radiotherapy with or without chemotherapy. J Clin Oncol 25:4075–4083CrossRefPubMed
15.
go back to reference Fredriksson A, Stone-Elander S (2003) PET screening of anticancer drugs. A faster route to drug/target evaluations in vivo. Methods Mol Med 85:279–294PubMed Fredriksson A, Stone-Elander S (2003) PET screening of anticancer drugs. A faster route to drug/target evaluations in vivo. Methods Mol Med 85:279–294PubMed
16.
go back to reference Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80SCrossRefPubMed Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80SCrossRefPubMed
17.
go back to reference Ishikawa H, Tsuji H, Kamada T et al (2006) Risk factors of late rectal bleeding after carbon ion therapy for prostate cancer. Int J Radiat Oncol Biol Phys 66:1084–1091PubMed Ishikawa H, Tsuji H, Kamada T et al (2006) Risk factors of late rectal bleeding after carbon ion therapy for prostate cancer. Int J Radiat Oncol Biol Phys 66:1084–1091PubMed
18.
go back to reference Tsuji H, Mizoe J, Kamada T et al (2007) Clinical results of carbon ion radiotherapy at NIRS. J Radiat Res 48S:A1–A13CrossRef Tsuji H, Mizoe J, Kamada T et al (2007) Clinical results of carbon ion radiotherapy at NIRS. J Radiat Res 48S:A1–A13CrossRef
19.
go back to reference Sugane T, Baba M, Imai R et al (2009) Carbon ion radiotherapy for elderly patients 80 years and older with stage I non-small cell lung cancer. Lung Cancer 64:45–50CrossRefPubMed Sugane T, Baba M, Imai R et al (2009) Carbon ion radiotherapy for elderly patients 80 years and older with stage I non-small cell lung cancer. Lung Cancer 64:45–50CrossRefPubMed
20.
go back to reference Zhang H, Yoshikawa K, Tamura K et al (2004) [11C]Methionine positron emission tomography and survival in patients with bone and soft tissue sarcomas treated by carbon ion radiotherapy. Clin Cancer Res 10:1764–1772CrossRefPubMed Zhang H, Yoshikawa K, Tamura K et al (2004) [11C]Methionine positron emission tomography and survival in patients with bone and soft tissue sarcomas treated by carbon ion radiotherapy. Clin Cancer Res 10:1764–1772CrossRefPubMed
21.
go back to reference Koizumi M, Saga T, Yoshikawa K et al (2008) 11C-Methionine-PET for evaluation of carbon ion radiotherapy in patients with pelvic recurrence of rectal cancer. Mol Imaging Biol 10:374–380CrossRefPubMed Koizumi M, Saga T, Yoshikawa K et al (2008) 11C-Methionine-PET for evaluation of carbon ion radiotherapy in patients with pelvic recurrence of rectal cancer. Mol Imaging Biol 10:374–380CrossRefPubMed
22.
go back to reference Holt DP, Ravert HT, Dannals RF, Pomper MG (2006) Synthesis of [11C]gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography. J Labelled Comp Radiopharm 49:883–888CrossRef Holt DP, Ravert HT, Dannals RF, Pomper MG (2006) Synthesis of [11C]gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography. J Labelled Comp Radiopharm 49:883–888CrossRef
23.
go back to reference Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH (2006) Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett 16:4102–4106CrossRefPubMed Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH (2006) Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett 16:4102–4106CrossRefPubMed
24.
go back to reference DeJesus OT, Murali D, Flores LG et al (2003) Synthesis of [18F]-ZD1839 as a PET imaging agent for epidermal growth factors receptors. J Labelled Comp Radiopharm 46:s1CrossRef DeJesus OT, Murali D, Flores LG et al (2003) Synthesis of [18F]-ZD1839 as a PET imaging agent for epidermal growth factors receptors. J Labelled Comp Radiopharm 46:s1CrossRef
25.
go back to reference Su H, Seimbille Y, Ferl GZ et al (2008) Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur J Nucl Med Mol Imaging 35:1089–1099CrossRefPubMed Su H, Seimbille Y, Ferl GZ et al (2008) Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur J Nucl Med Mol Imaging 35:1089–1099CrossRefPubMed
26.
go back to reference Ando K, Koike S, Fukuda N, Kanehira C (1984) Independent effect of a mixed-beam regimen of fast neutrons and gamma rays on a murine fibrosarcoma. Radiat Res 98:96–106CrossRefPubMed Ando K, Koike S, Fukuda N, Kanehira C (1984) Independent effect of a mixed-beam regimen of fast neutrons and gamma rays on a murine fibrosarcoma. Radiat Res 98:96–106CrossRefPubMed
27.
go back to reference Ando K, Koike S, Ohira C et al (1999) Accelerated reoxygenation of a murine fibrosarcoma after carbon-ion radiation. Int J Radiat Biol 75:505–512CrossRefPubMed Ando K, Koike S, Ohira C et al (1999) Accelerated reoxygenation of a murine fibrosarcoma after carbon-ion radiation. Int J Radiat Biol 75:505–512CrossRefPubMed
28.
go back to reference Koike S, Ando K, Oohira C et al (2002) Relative biological effectiveness of 290 MeV/u carbon ions for the growth delay of a radioresistant murine fibrosarcoma. J Radiat Res 43:247–255CrossRefPubMed Koike S, Ando K, Oohira C et al (2002) Relative biological effectiveness of 290 MeV/u carbon ions for the growth delay of a radioresistant murine fibrosarcoma. J Radiat Res 43:247–255CrossRefPubMed
29.
go back to reference Ando K, Koike S, Uzawa A et al (2005) Biological gain of carbon-ion radiotherapy for the early response of tumor growth delay and against early response of skin reaction in mice. J Radiat Res 46:51–57CrossRefPubMed Ando K, Koike S, Uzawa A et al (2005) Biological gain of carbon-ion radiotherapy for the early response of tumor growth delay and against early response of skin reaction in mice. J Radiat Res 46:51–57CrossRefPubMed
30.
go back to reference Suzuki K, Inoue O, Hashimoto K, Yamasaki T, Kuchiki M, Tamate K (1985) Computer-controlled large scale production of high specific activity [11C]Ro 15–1788 for PET studies of benzodiazepine receptors. Int J Appl Radiat Isot 36:971–976CrossRefPubMed Suzuki K, Inoue O, Hashimoto K, Yamasaki T, Kuchiki M, Tamate K (1985) Computer-controlled large scale production of high specific activity [11C]Ro 15–1788 for PET studies of benzodiazepine receptors. Int J Appl Radiat Isot 36:971–976CrossRefPubMed
31.
go back to reference Takei M, Kida T, Suzuki K (2001) Sensitive measurement of positron emitters eluted from HPLC. Appl Radiat Isot 55:229–234CrossRefPubMed Takei M, Kida T, Suzuki K (2001) Sensitive measurement of positron emitters eluted from HPLC. Appl Radiat Isot 55:229–234CrossRefPubMed
32.
go back to reference Elkind NB, Szentpetery Z, Apati A et al (2005) Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, gefitinib). Cancer Res 65:1770–1777CrossRefPubMed Elkind NB, Szentpetery Z, Apati A et al (2005) Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, gefitinib). Cancer Res 65:1770–1777CrossRefPubMed
33.
go back to reference Mishani E, Abourbeh G, Jacobson O et al (2005) High-affinity epidermal growth factor receptor (EGFR) irreversible inhibitors with diminished chemical reactivities as positron emission tomography (PET)-imaging agent candidates of EGFR overexpressing tumors. J Med Chem 48:5337–5348CrossRefPubMed Mishani E, Abourbeh G, Jacobson O et al (2005) High-affinity epidermal growth factor receptor (EGFR) irreversible inhibitors with diminished chemical reactivities as positron emission tomography (PET)-imaging agent candidates of EGFR overexpressing tumors. J Med Chem 48:5337–5348CrossRefPubMed
34.
go back to reference Pal A, Glekas A, Doubrovin M et al (2006) Molecular imaging of EGFR kinase activity in tumors with 124I-labeled small molecular tracer and positron emission tomography. Mol Imaging Biol 8:262–277CrossRefPubMed Pal A, Glekas A, Doubrovin M et al (2006) Molecular imaging of EGFR kinase activity in tumors with 124I-labeled small molecular tracer and positron emission tomography. Mol Imaging Biol 8:262–277CrossRefPubMed
35.
go back to reference Mishani E, Abourbeh G (2007) Cancer molecular imaging: radionuclide-based biomarkers of the epidermal growth factor receptor (EGFR). Curr Top Med Chem 7:1755–1772CrossRefPubMed Mishani E, Abourbeh G (2007) Cancer molecular imaging: radionuclide-based biomarkers of the epidermal growth factor receptor (EGFR). Curr Top Med Chem 7:1755–1772CrossRefPubMed
36.
go back to reference Ghosh S, Liu XP, Zheng Y, Uckun FM (2001) Rational design of potent and selective EGFR tyrosine kinase inhibitors as anticancer agents. Curr Cancer Drug Targets 1:129–140CrossRefPubMed Ghosh S, Liu XP, Zheng Y, Uckun FM (2001) Rational design of potent and selective EGFR tyrosine kinase inhibitors as anticancer agents. Curr Cancer Drug Targets 1:129–140CrossRefPubMed
37.
go back to reference Bianco R, Damiano V, Gelardi T, Daniele G, Ciardiello F, Tortora G (2007) Rational combination of targeted therapies as a strategy to overcome the mechanisms of resistance to inhibitors of EGFR signaling. Curr Pharm Des 13:3358–3367CrossRefPubMed Bianco R, Damiano V, Gelardi T, Daniele G, Ciardiello F, Tortora G (2007) Rational combination of targeted therapies as a strategy to overcome the mechanisms of resistance to inhibitors of EGFR signaling. Curr Pharm Des 13:3358–3367CrossRefPubMed
38.
go back to reference Press MF, Lenz HJ (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67:2045–2075CrossRefPubMed Press MF, Lenz HJ (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67:2045–2075CrossRefPubMed
Metadata
Title
[11C]Gefitinib ([11C]Iressa): Radiosynthesis, In Vitro Uptake, and In Vivo Imaging of Intact Murine Fibrosarcoma
Authors
Ming-Rong Zhang
Katsushi Kumata
Akiko Hatori
Nobuhiko Takai
Jun Toyohara
Tomoteru Yamasaki
Kazuhiko Yanamoto
Joji Yui
Kazunori Kawamura
Sachiko Koike
Koichi Ando
Kazutoshi Suzuki
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 2/2010
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-009-0265-5

Other articles of this Issue 2/2010

Molecular Imaging and Biology 2/2010 Go to the issue